THE ZEROS OF HURWITZ'S ZETA-FUNCTION ON o = 1/2

Steven M. Gonek

Dedicated to Professor Emil Grosswald

1. Introduction.
Let s = o + it be a complex variable. For a fixed a, 0 < a < 1, Hurwitz’s

zeta~-function is defined in the half-plane ¢ > 1 by

t(ssa) = E (n+a)75,
n=0

and except for a simple pole at s = 1, may be analytically continued throughout
the complex plane. The resemblance of z(s,a) to Riemann's zeta-function, z(s),
is in certain ways superficial. For besides the two cases z(s,1/2) = (25-1);(5)
and z(s,1) = z(s), z(s,a) possesses neither a functional equation nor an Euler
product. It is therefore not surprising that the zeros of these functions are

distributed differently. For instance, we note the following:

1. While z(s) has no zeros in o > 1, z(s,a) has infinitely many (provided

a # 1/2 or 1). In particular the analogue of the Riemann hypothesis for z(s,a) is

false. This was proved by Davenport and Heilbronn [3] when a is rational (# 1/2

or 1) or transcendental, and by Cassels [1] when o is an algebraic irrational. One
may also prove a quantitative version of this result [2; p. 1780]. Namely, for any
§ > 0, the number of zeros of z(s,a) (a # 1/2 or 1) in the rectangle 1 < g < 1+§,

0 <t<Tis =T for sufficiently large T.

2. Llet 9159, be fixed with 1/2 < 9 < 0y < 1. Then z(s,a) has infinitely many
zeros in the strip o, < o < o, when a is rational (7 %-ar 1) or transcendental.
The rational case is due to S.M. Voronin {8] (see alsc S.M. Gonek [5]), the trans-
cendental case to S.M. Gonek [5]. Here too one can show that the number of zeros
up to height T is « T for all large T. On the other hand, well-known zero-density

estimates imply that z(s) has at most o(T) zeros in such a rectangle.
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Pursuing these contrasts further, one might naturally ask whether the line
o = 1/2 is special to z(s,a) as it is to z(s). We know that as T tends to
infinity, the number of zeros of either function in the strip 0 < t < T is
~ %F log T. For z(s), N. Levinson [7] showed that more than 1/3 of these zeros
lie on o = 1/2; it is widely held that the correct proportion is 1. In this paper,
our purpose is to show that for certain values of o the proportion of zeros of
z(s,a) on o = 1/2 is definitely less than 1. Specifically, we shall prove the

following result.

or There is a positive constant ¢ < 1 such

=121
THEOREM. Let a = 3’ 3’ 4:

o|;

£lw
| —

that the number of zeros of z(s,a) (counted according to their multiplicities) on

r

the segment [1/2, 1/2 + iT] is < (cto{1)) 5

log T as T tends to infinity.

The author would like to take this opportunity to thank Professor Hugh L.
Montgomery for bringing this problem to his attention and Professor Patrick X.

Gallagher for pointing out an error in the original manuscript.

2. An Auxiliary Lemma.

To prove our theorem we require information about the number of zeros
common to two L-functions. This is provided by the lemma below which is essentially
due to A. Fujii [4; Theorem 1].

Recall that two Dirichlet characters not induced by the same primitive
character are called inequivalent. We denote by L(s,x) the Dirichlet L-function

with character x .

LEMMA. Suppose X1 and Xp are inequivalent characters. Let oy = By + 171 denote
a zero of L(s,X1) with 0 < By < 1, and write mi(p1) for the multiplicity of Py as

a zero of L(S»xi) (i = 1,2). Then there exists a positive constant ¢ < 1 such that

:
(M) 1 min m.(pq) < (cto(1)) 5= Tog T
0cy sTisl,z U 107 e

as T tends to infinity, where ' means the sum is over distinct zeros IR
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PROOF. We see from the proof of Theorem 1 in Fujii [4; §3,2] that for distinct
primitive characters X712 Xp there exists a positive constant ¢ < 1 such that as
T tends to infinity
) T
(2) ) 1> (c]+o('|)) o log T.
0 < Yy < T m

m'| (p]) > mz(ﬂ])

Indeed, (2) holds even when X]» Xp» OF both X1 and x, are imprimitive as-long

as they are inequivalent. To see this, note that if x: induces X; (i =1,2) and
Xp» Xp are inequivalent, then x; . x; are distinct primitive characters. (Of
course if X3 is primitive Xy = x:.) Therefore (2) is true for the pair L(s,x;),
L(s,x;). But L(s,xi) and L(s,x:) have the same zeros in 0 < o < 1. Hence (2)

is valid for the pair L(s,x]), L(s,xz) as well. (In the statement of his theorem,
Fujii assumes X1 and Xo have the same modulus. However, he later points out (in

54) that this assumption is unnecessary.) Now

K min m (eq) = N my(pq) + T my(07)
0 < Y S T i 1,2 0 < 15 T 0 < Yy < T
m-;(p-') < mz(p]) m](p-,) > mZ(Q])

< ! my(pq) + ' (my (py)-1)

< 0:§1§T ey OgélsT 100y
m](D]) < mz(p]) m](p1) > mz(p])

= hy m-l(p]) - i 1.
OsvpcT OcvyysT

m](P]) > mz(D])

The first sum on the last line is the total number of zeros of L(s,x]) in

0<o<1,0<t<T, and is therefore equal to (1+o(1)) %; log T as T tends to

infinity. Using this and (2) we conclude that
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3t min  mi(py} < (1-c,+0(1)) i Tog T.
Osyy<T t=12 1 Zn

This establishes {1) with ¢ = 1-cq.

3. Proof of the Theorem.

For the sake of convenience, we carry out the proof of the Theorem only
for o = 1/3 and 2/3. The modifications required to prove the other cases are
minor and will be discussed at-the end of this section. Throughout we write e(x)
for e2™1X,

We begin with the identity (see Davenport and Heilbronn [3; p. 181])

S
(3) (6§ = gy I KlLls.

where 1 < a < q, (a,q) = 1, and the sum is over all ¢(q) characters mod q. Take
q = 3 and assume that a is either 1 or 2. We are then summing over ¢(3) = 2

characters in (3), both of which are real. Thus

% t(s, §) = Lisaxg) + x(a)L(s,x),

where Xo and x are the principal and nonprincipal characters, respectively, mod 3.

Since L(s,xO) = (1-3-5);(5), the last equation becomes
(4) -%cu,%=(hfﬂdw+xunumx

REMARK. As will become apparent, it is essential to our proof that the sum in
(3) reduce to two terms. This is why the reduced fraction a in the Theorem must

have denominator 3,4 or 6.

Now write
(5) 6(s) = 5 s(s=1)x2r($)e(s)
and
_sH
(6) Bsax) = (3 2 r(&hiis.)
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Using (5) and (6) to replace z(s) and L(s,x) in (4) by £(s) and £(s,x), and then

s+1
multiplying both sides of (4) by (3) 2

r(é%l), we find (after simplifying) that

1 /2 e s, & - B QZ:I?;S/ZJ r(?:; g(s)x(a)g(s,x).
H
We write this more briefly as
(8) A(s)z(s, §) = B(s)e(s) + x(a)e(ssx),
where
(9) Als) = /T2 (30)75/2(5Ey
and
(10) B(s) = /1:2 (3:&13;5/2) Nfi;
2

Since A(s) never vanishes, the zeros of the right-hand side of (8) are precisely

those of ¢(s, 3). Thus, z(1/2 + it,, EO = 0 if and only if the terms on the
3 0* 3

right-hand side of (8) cancel or vanish for s = 1/2 + it Since B{s) # 0 on

o
o = 1/2 we see that 1/2 + ito is a zero of z(s, %) if and only if:

g(1/2 + 1t0sx)
I. g(1/2 + 1t0) #0, g(1/2 + 1t0,x) #0, and B(1/2 + 1t0) = -x(a) ERT77—:_?E67__’

or

I g(1/2 + itg) = £(1/2 + itg,x) = 0.

Writing N(T) for the number of zeros (counting multiplicities) of z(s, %& on
[1/2, 1/2 + iT] (T > 0), NI(T) for the number of these zeros arising from condition

I, and NII(T) for the number arising from II, we see that
(11) N(T) = NI(T) + NII(T)'

We estimate N(T) by combining estimates for NI(T) and NII(T)'
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First consider NI(T). From the relation £(s,x) = £(s,x) (x is real) and
the functional equation
. i/3
£(1-s,x) M) £{s,x),

3
where 1{x) = [ x(n)e(%), one easily finds that £{1/2 + it,x) is real.
n=1

Similarly £(1/2 + it) is real. Thus if t, satisfies I, B(1/2 + ito) is real. If

T>Tg>0and if Ni(TO’T) denotes the number of solutions of
arg B(1/2 + it) = 0 (mod =)

with t € [TO,T], it follows that Ni(TO’T) is an upper bound for the number of
distinct to € [TO,T] that satisfy I. We now prove that there exists a T0 such
that Ni(TO’T) << T forall T > TO, and that 1/2 + 1t0 is a simple zero of

t(s, %) if ty satisfies I and ty > TO‘ These two assertions and the fact that

z(s, %) has only finitely many zeros on [1/2, 1/2 + iT0] clearly imply that

(12) NI(T) << T (T > To).

To estimate Ni(TO’T) we examine %f arg B(1/2 + it). (The derivative exists

for all t since B(s) is analytic and nonzero in 0 < o < 1.) By (10)

arg B(1/2 + it} = arg( —2-']——— ) + arg ety ]1"9—3 )
t< +1/4

1 (-t log 3
+ arg(l- — e(Z252 2
7 2n )

+arg(r(3 + 1 §)/1(1/4 + 1 §))

or

fo o log 3 sin{t Tog 3)
(13) arg 8(1/2 + it) =n + E——?Q—— + arc tan(
Y3 - cos(t log 3)

+arg(r(3 + 1 $)/r(1/4 + 1 §)),
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where the choice of arguments is immaterial. The sum of the derivatives of the

first three terms on the right-hand side of (13) is equal to

log 3
4-2/3 cos(t log 3)

Observing that
gf arg T'(o+ it) = Re %L (ot it)
and‘using the formula (see Ingham [6; p. 57])

T (8) = Tog s + o)

which is valid in |arg s| < n-8 for any § > 0, we find that

Loarg(rG+ 1 Pr(a+ i ) «< gy

for t > 0. Thus

d Sy L log 3 1
S arg B(1/2 + it) = +0(my) (t>0).
dt 4-2/3 cos(t log 3) t

From this we see that there exists a T0 > 0 such that %? arg B(1/2 + it) is
bounded and greater than zero for t > TO' That is, arg B(1/2 + it) is an increasing

function with bounded derivative on [T0’°)' Clearly this implies that
Ni(To,T) << T (T > To).

Now suppose that 1/2 + ity is a zero of z(s, %J arising from condition I and
that ty > Ty (T0 as above). Differentiating the right-hand side of (8) with

respect to t and evaluating at s = 1/2 + ito, we obtain
. d .
(14) £(172 + 1tg)(Gp)y BU1/2 + it)

+B(1/2 + no)(‘j—t)toawz + m+x<a)<g—t>togmz +it,x).
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The second and third terms are real since x(a), %f (172 + it), %f (172 + it,x)
and B(1/2 + ito) are. (Recall that B(1/2 + 1t0) is real whenever ty satisfies I.)
If we write B(1/2 + it) = [B(1/2 + 1‘t)|e(ar Bél/Z * it ), the first term in (14)

becomes

arg B(1/2 + 1t0) d d )
(15) &(1/2 + ityle( > ){(ag)t0|8(1/2 + it)|+1(aE9t0 arg B{1/2 + it)).

arg B(1/2 + ito)
2m

Since tg satisfies I, e( ) = +1 and £(1/2 + 1t0), which is real, does

d . L.
not equal zero. Also (Hf)to arg B(1/2 + it) > 0 for tg > T0 (this is how T0 was
chosen), and %f |[B(1/2 + it)| is real for all t. It follows that (15) and there-

fore (14) have nonvanishing imaginary parts. Thus 1/2 + ito is a simple zero of
the right-hand side of {(8) or, what is the same thing, of (s, %J. This finally
establishes (12).

We now turn to NII(T). Let m(z), m](z), and mz(z) be the multiplicities of
the point z as a zero of (s, %0, z(s), and L(s,x) repsectively. By (5), z(s) and
£(s) have the same zeros in 0 < ¢ < 1; the same is true for L(s,x) and £(s,x) in
1ight of (6). Thus t0 satisfies II if and only if 1/2 + ito is a common zero of
t(s) and L(s,x). In particular, %—+ 1t0 is a zero of z(s) on ¢ = 1/2. Letting

p =R + iy denote a typical zero of z{s), we then have

(16) N =T e,
0<y<T
g=1/2
where as usual }' means the sum is over distinct zeros o . In order to estimate

this we need to consider the numbers m{p). From (8) and the fact that B(s) # 0
ono=1/2, it immediately follows that
= min mi(1/2 + iy) if m](1/2 + iy) # m2(1/2 + i)
2

i=1,
m(1/2 + iv)

v

m (172 + dy) 1f m(1/2 + i) = my(1/2 + iy).
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However, the lower bound this provides for m(1/2 + iy) in the case m1(1/2 + iy) =
m2(1/2 + iy) is of no use to us since we seek an upper bound for NII(T)' We remedy
this by proving that, except for finitely many vy, if m](1/2 + iy) = m2(1/2 + ivy)
then m(1/2 + iy) = m1(1/2 + iy) or m](1/2 + iy) + 1, with the latter holding at
most 0{(T) times for y ¢ [0,T].

h

To show this set my(1/2 + iy) = my(1/2 + iy) = k > 1. Then the k™" derivative

of the right-hand side of (8) with respect to t evaluated at s = 1/2 + iy is
a7 BO/2 + ez + i) + xa)Gpkeqize + it

Since the zeros of B(s)e(s) + x(a)z(s,x) are those of z(s, %), we see that
m{1/2 + iy) > k if and only if (17) vanishes. By the definition of k, the kth
derivatives of the two g-functions are nonzero at 1/2 + iy . Hence (17) vanishes
only if its terms cancel. Since x(a), (%E)k g{1/2 + it), and (%f)kg(1/2 + it,y)
are real, this occurs only if B(1/2 + iy) is real. But we have already seen that
B(1/2 + it) is real at most O(T) times on [0,T]. Thus m](1/2 + iy) = m2(1/2 + iy)
implies that m{1/2 + iy) = m1(1/2 + iy) { = k) except for possibly 0(T) values of
vy € [0,T]. Suppose now that (17) does vanish at 1/2 + iy (so that B(1/2 + iy)
is real). Taking the k+1St derivative of the right-hand side of (8) with respect

to t and evaluating at s = 1/2 + iy , we obtain

(18)  (k)L(Ep)ke1/2 + 100G BO/2 + 1)1 + B(1/2 + 11)(G) 172 + 1t)

)k+'l

X(a)(dt 5(1/2 + itsX)-

As in our analysis of (14), we find that the second and third terms are real and
that the first has nonvanishing imaginary part when y is large. Thus (18) is
nonzero and m(1/2 + iy) = k+1 = m](]/Z + iy) + 1 (for large v).

To summarize: there exists a T0 > 0 such that if 1/2 + iy 1is a zero of

g(s) with v > TO’ then

m(1/2 + iy) = min m, (172 + iy) or min m; (172 + dy) + 1,
i=1,2 i=1,2
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the second case occurs at most 0(T) times on [TO,T].

We can now bound NII(T). Writing (16) as

N (T = T n(e) + o(1)
TO <y<T
B

= 1/2

and using the previous result, we have

NII(T) = 3 min mi(o) + 0(T)
TO <y<T i=1,2
g =1/2
= 3 min mi(p) + 0(T)
Ocy<T 1=1.2
g=1/2
< bR min mi(o) + 0(T),
O<y<T i=1,2

where the final sum is over the distinct zeros p of z(s) with 0 < g < 1,
0 <y < T. Applying the Lemma to the last sum {note that z(s) is an L-function)

we see that as T tends to infinity
(19) Npp(T) < (cvo(1)) 3= log T,

where ¢ is a positive constant < 1.

The proof of the Theorem for o = 1/3 and 2/3 now follows from (11), (12),
and (19).

Qur proof carries over to the cases o = 1/4, 3/4. 1/6, and 5/6 with only
sTight changes in the formulae. For instance, if « = a/4, a = 1 or 3, then

corresponding to (8), (9), and (10) we have

A(s)els, §) = B(s)e(s) + x(a)g(s,x)s

(4m) "/ 2r (31,

A(s) = 5

4
/T

and



where x is the nonprincipal character mod 4.

When a = %—, a=1orb5, the situation is only slightly more complicated.
The nonprincipal character x mod 6 is induced by the primitive character x* mod 3.
Also, for the principal character XQ mod 6 we have L(s,xo) = (1—2'5)(1-3'$)c(s).
Thus, in place of (4) we obtain

%; es, ) = (1-27%)(1-37%)e(s)ex (@) (1427)L(sx ),

and instead of (8)? (9), (10) we have

* *

A(s)e(s, g) = Bs)e(s) + x (a)e(s.x ),

as) = /020 s

T (]+2‘S) 2
and
+1
$/2 .-5/2 -s r(33-)
R
s(s-1)(1+27>) r(z)
In either case A(s) # 0 for 0 <o < 1 and %€ arg B(% + it) is bounded and > 0

for all large t.

4, A _Conjecture.

We expect the Lemma, and therefore the Theorem, to be far from best possible.
Indeed, it is generally held that no two L-functions with inequivalent characters
have common zeros in 0 < o < 1. On this assumption we would have NII(T) <«< T
instead of (19) and this along with (11) and (12) implies that N(T) << T. It is
plausible to suppose that these bounds are valid for other rational values of «

so we make the following

CONJECTURE. If o is rational, 0 <a < 1, and o # 1/2, then z{s,a) has << T
zeros on [1/2, 1/2 + iT].
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