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1. Introduction and notation

Let z�s� denote the Riemann zeta-function and r � b� ig a zero of z�s�. In the
process of evaluating N�T �, the number of zeros of z with 0 < g < T , each zero is
counted with multiplicity, denoted by m�r�, to give the von Mangoldt formulae
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2p
log

T

2pe
� 7

8
� S�T � � O

1

T

� �
;

S�T � � 1

p
arg z�1

2
� iT �p log T :

It is not known if m�r� � 1 for all r but it is so conjectured. Indeed, all the zeros
located so far, more than 1:5 ´ 109 of them, are simple. Support for this
conjecture is further strengthened by the fact that Montgomery's pair correlation
conjecture (see [12]) implies that almost all the zeros are simple.

It is known that at least two-®fths of the zeros are simple. (See Conrey [3, 4]
for a discussion of results in this direction). Assuming the Riemann Hypothesis
(RH), Montgomery [12] has shown that at least two-thirds of the zeros are simple,
and later, with Taylor [13], the constant two-thirds was improved to
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Cheer and Goldston [1] have recently improved upon this result slightly by
showing that RH implies that at least 0.672753 of the zeros are simple.

A problem related to the simplicity of the zeros of z�s� is the enumeration of
distinct zeros (that is, to count each zero precisely once without regard to
its multiplicity).

Let us de®ne

Nd�T � � jfr � b� ig: 0 < g < T ; z�r� � 0gj;
Ns�T � � jfr � b� ig: 0 < g < T ; z�r� � 0; m�r� � 1gj:

We are interested in obtaining bounds for the constants Cd and Cs de®ned by

Cd � lim inf
T!1 Nd�T �=N�T �;

Cs � lim inf
T!1 Ns�T �=N�T �:
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Of course, it is clear that Cd � 1 if and only if Cs � 1. To get a bound for Cs ,
Montgomery proceeded by observing that

Ns�T �>
X
g < T

�2ÿ m�g�� � 2N�T � ÿ
X
g < T

m�g�

(where all sums over zeros are repeated according to multiplicity and we use
m�g� in place of m�r� on assuming RH), and he showed in [12] thatX

g < T

m�g�< �C0 � o�1��N�T � �C0 � 4
3
; T ! 1�:

One gets a bound for Cd by observing that

2Ns�T �<
X
g < T

�m�g� ÿ 2��m�g� ÿ 3�
m�g� �

X
g < T

m�g� ÿ 5N�T � � 6Nd�T �;

so that

Cd > 1
6
�5� 2Cs ÿ C0�: �1:1�

Due to the relationship between C0 and Cs in Montgomery's method, we have

Cd > 1
6
�9ÿ 3C0�> 5

6
if C0 � 4

3
: �1:2�

(The constants are improved very slightly by using the better value for C0 in [13]
or in [1].) If one could devise a method for evaluating Cs independently of C0,
then (1.1) would be essentially better than (1.2).

In this paper we develop a new method to obtain lower bounds for Cs and Cd.
Our method requires the assumption of the Riemann Hypothesis as well as an
assumption of an upper bound for averages of sixth moments of Dirichlet L-
functions L�s; x�. This sixth moment hypothesis is implied by the Generalized
LindeloÈf Hypothesis, which is the assumption that for any « > 0,

L�s;x�p« �q�1� j t j��«

for j > 1
2
, where x is a character modulo q. The Generalized LindeloÈf Hypothesis

is weaker than the Generalized Riemann Hypothesis which conjectures that
L�s; x� 6� 0 if j > 1

2
. For convenience, we state our main result as follows.

Theorem 1. Assuming the Riemann Hypothesis (RH) and the Generalized
LindeloÈf Hypothesis (GLH), we have

Cs > 19
27

; Cd > 5
6
� 1

81
:

Remark. In an earlier version of this paper, we had omitted the assumption of
GLH. We thank the referee for pointing out this mistake. Our paper [5], which
refers to the methods here, requires this additional assumption of GLH as well.
Also, we would like to thank especially a second referee who gave a considerable
simpli®cation for the evaluation of our main terms in § 8. We have included this
simpli®cation here.
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1.1. Notation
We shall use � to denote Dirichlet convolution of arithmetic functions. Thus if

a and b are arithmetic functions, then

�a � b��n� �
X
d jn

a�d �b n

d

� �
:

Further, we de®ne operators Ts and Lk by

�Ts a��n� � nsa�n�;

�Lkb��n� � �log n�kb�n�:
Note that

Ts�a � b� � �Ts a� � �Ts b�
and

L�a � b� � �La� � b� a � �Lb�:
Also, observe that if k is squarefree and a is multiplicative (that is, a�mn� �
a�m�a�n� wherever �m; n� � 1), then

a�b � g��k� � �ab � ag��k�:
We use tr to denote the r-fold divisor function (often denoted dr� �). Often this

has an unspeci®ed but bounded positive integer subscript r, not necessarily the
same at each occurrence. We make frequent use of the inequalities tr�n�ts�n�<
trs�n� and tr�mn�< tr�m�tr�n� for positive integers r, s, m and n. We use I for
the arithmetic function which is the identity for Dirichlet convolution, that is,
I�1� � 1 and I�n� � 0 for n > 1. Also, we use 1 for the arithmetic function for
which 1�n� � 1 for all n.

Throughout L shall denote log�T =2p�, and e�x� denotes e2pix.

2. Sketch of the proof for Cs

We note that r is a simple zero of z�s� if and only if z 0�r� 6� 0. By Cauchy's
inequality, it follows thatX

g < T

Bz 0�r�
���� ����2<Ns�T �

X
g < T

jBz 0�r�j2; �2:1�

where B�s� is any regular function. We shall take

B�s� �
X
k < y

b�k�kÿs; �2:2�

where

y � T v; �2:3�
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and

b�k� � m�k�P log y=k

log y

� �
; �2:4�

where P�x� is a polynomial with real coef®cients which satis®es

P�0� � 0; P�1� � 1:

Then, if v < 1
2
, we shall prove the following theorem.

Theorem 2. Assuming GLH, we have

S1 :�
X
g < T

Bz 0�r�, 1
2
� v

Z 1

0
P�x� dx

� �
TL2

2p
�2:5�

and

S2 :�
X
g < T

Bz 0�r�Bz 0�1ÿ r�, l
TL3

2p
; �2:6�

where

l � 1
3
� v

Z 1

0
P�x� dx

� �2

�v

Z 1

0
P�x� dx� 1

12v

Z 1

0
P 0�x�2 dx: �2:7�

Assuming the Riemann Hypothesis, we have S2 �
P

g < T jBz 0�r�j2. (This is the
only place we need RH.) Our estimate for Cs is then obtained by choosing the
polynomial P�x� optimally. By the calculus of variations, the optimal choice is

P�x� � ÿvx2 � �1� v�x:
Then Z 1

0
P�x� dx � 1

2
� 1

6
v and

Z 1

0
P 0�x�2 dx � 1

3
v2 � 1;

so that with v � 1
2
ÿ « �«! 0�� we obtain

S1 , 19
24

N�T �L and S2 , 57
64

N�T �L2:

Theorem 1 then follows.
To obtain the formulae (2.5) and (2.6), we use Cauchy's residue theorem to

write

S1 �
1

2pi

Z
C

z 0

z
�s�z 0�s�B�s� ds �2:8�

and

S2 �
1

2pi

Z
C

z 0

z
�s�z 0�s�z 0�1ÿ s�B�s�B�1ÿ s� ds; �2:9�

where C is the positively oriented rectangle with vertices at 1ÿ c� i, c� i,
c� iT , and 1ÿ c� iT ,

c � 1�Lÿ1; �2:10�
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and T is chosen so that the distance from T to the nearest g is qLÿ1. (It is easy
to see that this assumption on T involves no loss of generality.)

Remark. There is a fair amount of work involved in evaluating S1 and S2,
even if one considers only main terms without regard to error terms. Therefore,
let us motivate this work by a suggestion as to what we might expect, by
considering averages over all t instead of just ordinates of zeros of z�s�. In this
case we would start with the function G�s�B�s� instead of z 0�s�B�s�, where (see
(3.2) for the de®nition of x�s�)

G�s� � z 0�s� ÿ x 0

x
�s�z�s�

and for P we take P�x� � x. Note that G and z 0 agree at s � r. Then it is trivial
to see that Z T

1
GB�1

2
� it� dt , TL

by writing the integral as a complex integral and moving the line of integration to
j � c > 1. Also, we know thatZ T

1
jGB�1

2
� it�j2 dt , 4

3
TL2

since Levinson evaluates this integral in his work [10]. (He considers the integral
more generally on the a-line where 1

2
ÿ a p �log T �ÿ1.) Thus, consideration of

integral means leads one to suspect that our method might lead to a proof that
three quarters of the zeros are simple. However, one can see from the formulae
(2.5), (2.6), and (2.7) that the average at zeros is slightly different from the
average over all t.

3. Preliminary transformations

The ensuing analysis is much simpler if, instead of (2.8) and (2.9), we use
slightly different expressions.

The functional equation for z�s� is given by

z�s� � x�s�z�1ÿ s�; �3:1�
where

x�1ÿ s� � x�s�ÿ1 � 2�2p�ÿsG�s� cos 1
2
ps: �3:2�

We differentiate to obtain

z 0�s� � ÿx�s� z 0�1ÿ s� ÿ x 0

x
�s�z�1ÿ s�

� �
: �3:3�

We ®rst consider S1 . It follows from (2.5) and (3.3) that

S1 � ÿ
X
g < T

x�r�z 0�1ÿ r�B�r�

� 1

2pi

Z
C

z 0

z
�1ÿ s�x�s�z 0�1ÿ s�B�s� ds: �3:4�
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Let s � j � it be on C. We shall use the following well-known estimates:

x�s�p j t j1=2ÿj; �3:5�
B�s�p y1ÿjL; �3:6�

z 0�1ÿ s�p j t jj=2L2; �3:7�
and

z 0

z
�1ÿ s�pL2 �3:8�

for s on C; the last estimate holds if the distance from t to the nearest g is
qLÿ1 which we have assumed. Hence, the contribution to S1 from the integral in
(3.4) taken along the horizontal sides of C is

pT c=2ycL5 p T 1=2yL5: �3:9�
To estimate the contribution to S1 from the right-hand side of the contour C,

we use (3.3) to replace x�s�z 0�1ÿ s� in (3.4). Also, by (3.1) and (3.2),

z 0

z
�s� � z 0

z
�1ÿ s� � x 0

x
�s� � ÿ log

j t j
2p
� O

1

1� j t j
� �

: �3:10�

Thus, the integral along the right-hand side of C is equal to

1

2pi

Z c�iT

c�i

x 0

x
�s�2z�s� ÿ 2

x 0

x
�s�z 0�s� � z 0

z
�s�z 0�s�

� �
B�s� ds

� T

2p
L2 � O�TL�; �3:11�

since only the term n � 1 from the Dirichlet series for z�s�B�s� contributes
anything to the main term.

To evaluate the contribution to S1 from the left-hand side of the contour C, we
make the change of variable s! 1ÿ s in (3.4). Then, the integral along the left-
hand side is equal to ÿÅI1, where

I1 �
1

2pi

Z c�iT

c�i
x�1ÿ s� z

0

z
�s�z 0�s�B�1ÿ s� ds: �3:12�

So far, we have shown by (3.4), (3.9), (3.11), and (3.12) that

S1 �
T

2p
L2 ÿ ÅI1 � O�TL� � O�T 1=2yL5�: �3:13�

We now consider S2 . By (2.6), (3.3), and Cauchy's theorem,

S2 � ÿ
X
g < T

x�1ÿ r�z 0�r�2B�1ÿ r�B�r�

� ÿ 1

2pi

Z
C

x�1ÿ s� z
0

z
�s�z 0�s�2B�s�B�1ÿ s� ds: �3:14�

By the estimates (3.5)±(3.8), the contribution to S2 of the integral over the
horizontal sides of the contour is

pT 1=2yL8: �3:15�
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The integral along the left-hand side of C is, by (3.3) and (3.10), equal to

1

2pi

Z 1ÿc�iT

1ÿc�i

x 0

x
�s� ÿ z 0

z
�1ÿ s�

� �
x�s� x 0

x
�s�z�1ÿ s� ÿ z 0�1ÿ s�

� �2

B�s�B�1ÿ s� ds;

which, by the change of variable s! 1ÿ s and another use of (3.3), is

ÿ 1

2pi

Z cÿiT

cÿi
x�1ÿ s�

´
x 0

x
�s�3z�s�2 ÿ 3

x 0

x
�s�z 0�1ÿ s�x�s� ÿ z 0

z
�s�z 0�s�2

� �
B�s�B�1ÿ s� ds: �3:16�

We multiply this out and rewrite it as a sum of three integrals. For the ®rst two of
these we move the line of integration to the line j � 1

2
with the same error term

as in (3.15). Thus the above is equal to

M1 �M2 ÿ ÅI2 � O�T 1=2yL8�; �3:17�
where

M1 �
1

2p

Z T

1

x 0

x
�1

2
ÿ it�3jBz�1

2
� it�j2 dt; �3:18�

M2 � ÿ
3

2p

Z T

1

x 0

x
�1

2
ÿ it�jBz 0�1

2
� it �j2 dt; �3:19�

and

I2 �
1

2pi

Z c�iT

c�i
x�1ÿ s� z

0

z
�s�z 0�s�2B�s�B�1ÿ s� ds: �3:20�

The integral in (3.14) taken along the right-hand side of C is equal to ÿI2. Thus,
by (3.15) and (3.17), we see that

S2 �M1 �M2 ÿ 2RI2 � O�T 1=2yL8�: �3:21�
The integrals in M1 and M2 have been evaluated (implicitly) by Conrey in [2].
Let

F�s� �
XN

n�0

�ÿ1�nan z�n��s�Lÿn �
X1
m�1

Q
log m

L

� �
mÿs; �3:22�

where

Q�x� �
XN

n�0

an xn

is a polynomial with real coef®cients. Let

M �
Z T�U

T
jBF�1

2
� it�j2 dt; �3:23�

where

U � TLÿ10

503simple zeros of the riemann zeta-function



and B�s� is as in (2.2). Then

M � U Q�0�2 � v

Z 1

0

Z 1

0
P�u�Q 0�v� � 1

v
P 0�u�Q�v�

� �2

du dv

� �
� O�ULÿ1�logL�5�; �3:24�

provided v < 1
2
. Moreover, for T < t < T � U , we have

x 0

x
�1

2
ÿ it� � ÿL� O�Lÿ10�: �3:25�

Thus, we can replace x 0=x by ÿL and sum integrals of length U to obtain
estimates for M1 and M2. For M1 we take Q1�x� � 1, and for M2 we take
Q2�x� � ÿx. We then obtain

M1 �
ÿTL3

2p
1� 1

v

Z 1

0
P0�u�2 du

� �
� O�TL2�logL�5� �3:26�

and

M2 �
3TL3

2p
1
2
� v

Z 1

0
P�u�2 du� 1

3v

Z 1

0
P 0�u�2 du

� �
� O�TL2�logL�5�: �3:27�

We have shown that (3.26) and (3.27) are valid for v < 1
2

as T ! 1. It is worth
remarking that (3.26) and (3.27) are valid for v < 4

7
, by the work in [4].

It remains to estimate I1 and I2 in (3.12) and (3.20). Indeed, this forms the
main area of dif®culty and requires a bit of preparation, in the form of lemmas,
which we state in the next section.

4. Preliminary lemmas

Lemma 1. Let r > 0. Then, for any c0 > 0,

1

2pi

Z c�iT

c�i
x�1ÿ s�rÿs ds � eÿ2pir � E�r; c�rÿc if r < T=2p;

E�r; c�rÿc otherwise;

(
�4:1�

uniformly for c0 < c < 2, where

E�r; c�p T cÿ1=2 � T c�1=2

jT ÿ 2prj � T 1=2
: �4:2�

This is provided implicitly by Gonek in [8, Lemma 2].

Lemma 2. Suppose that A�s� �P1
n�1 a�n�nÿs for j > 1, where

a�n�p tk1
�n��log n�l1

for some non-negative integers k1 and l1. Let B�s� �Pn < y b�n�nÿs, where

b�n�p tk2
�n��log n�l2

for non-negative integers k2 and l2 and where

T e p y p T
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for some e > 0. Also, let

I � 1

2pi

Z c�iT

c�i
x�1ÿ s�B�1ÿ s�A�s� ds;

where c � 1� 1= log T. Then we have

I �
X
n < y

b�n�
n

X
m < nT =2p

a�m�e�ÿm=n� � O�T 1=2y�log T �A�

for some A.

Remark. An admissible value for A is k1 � k2 � l1 � l2.

Proof. By Lemma 1 it suf®ces to show thatX
n < y

jb�n�j
X

m

ja�m�j
mc

�T 1=2 � fm;n�T ��p yT 1=2�log T �A;

where

fm;n�T � �
T 3=2

jT ÿ 2pm=nj � T 1=2
:

Now by a theorem of Shiu [15], for any e > 0,X
XÿY < n < X

tk�n��log n�l pe Y�log X �k�lÿ1 �4:3�

provided that Y q X e. It follows easily thatX
n < y

jb�n�j
X

m

ja�m�j
mc

p y�log T �A

with A � k1 � k2 � l1 � l2 ÿ 1. Thus, the term with the T 1=2 is acceptable. Next,
we break up the sum involving fm;n into three parts. The terms with
jT ÿ 2pm=nj > 1

2
T have fm;n�T �p T 1=2, so this case is like the one we have just

discussed. Now consider the terms for which

T 1=2 < jT ÿ 2pm=nj< 1
2
T :

Assume ®rst that

T 1=2 < 2pm=nÿ T < 1
2
T ;

the other inequality leading to a similar argument. We further re®ne the sum into
p log T sums of the shape

T � P < 2pm=n < T � 2P

where T 1=2 p P p T . For m and n satisfying this condition, fm;n�T �p Pÿ1. Also,
m < nT and m ranges over an interval of length <nP so that the contribution
from one of these sums is

pT 3=2
X
n < y

jb�n�j
X

m

ja�m�j
nT

Pÿ1;
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which, by Shiu's theorem, is

p yT 1=2�log T �A

for some A. Summing this over the p log T values of P contributes an additional
factor of log T .

Finally, we consider the contribution of the terms for which

jT ÿ 2pm=nj< T 1=2:

For such values of m and n we have fm;n�T �p T ÿ1=2. For a given n the
admissible values of m are <nT in size and range over an interval of length
<nT 1=2. Thus, Shiu's theorem is applicable and we ®nd that the total contribution
from these terms is

pT 3=2
X
n < y

jb�n�j
X

m

ja�m�j
nT

T ÿ1=2 p yT 1=2�log T �A

for some A. This concludes the proof.

Lemma 3. Suppose that

Aj�s� �
X1
m�1

aj�m�mÿs

and that

A�s� �
X1
m�1

a�m�mÿs �
YJ

j�1

Aj�s�;

for some natural number J > 1. Then for any integer d > 0 and any completely
multiplicative function f , we haveX1

m�1

f �m�a�md �mÿs �
X

d�d1... dJ

YJ

j�1

X1
�m;d1... djÿ1��1

f �m�aj�mdj�mÿs:

Proof. The assertion for J > 2 follows from J ÿ 1 applications of the case
J � 2, which we now prove. This case follows immediately on observing that for
any two arithmetical functions a and b,

�a � b��md � �
X
g jm

�h;m=g��1

X
h jd

a�gh�b md

gh

� �
;

for the right-hand side is equal toX
l jmd

a�l�b md

l

� � X
gh�l

�h;m=g��1

1 �
X
l jmd

a�l�b md

l

� � X
g j l

�l;m��g

1;

which is the same as the left-hand side.

Lemma 4 (Perron's formula). Suppose that A�s� �P1
n�1 a�n�nÿs for j > 1,
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where

ja�n�j< Ktk�n��log n�l:
Then for any « > 0 we have

R :�
X
n < x

a�n� ÿ 1

2pi

Z c�iU

cÿiU
A�s� xs

s
ds p« Kx«�1� xUÿ1�;

where c � 1� �log x�ÿ1 and the implied constant is independent of K. If
U p x1ÿ« for some « > 0, then

R p« KxUÿ1�log x�k�l:

Proof. By the lemma of § 17 of Davenport [6],

R p
X1
n�1
n 6� x

x

n

� �c ja�n�jmin�1; Uÿ1j log x=njÿ1� � ja�x�j;

the last term occurring only if x is an integer. The lemma follows easily from
this, (4.3), and the fact that a�n�p« n« for any « > 0.

Lemma 5. Suppose that y, d p T with log y q log T. Let

S�d; M � :�
X

k < y=d

b�kd �
k
�log k�M :

Then for any « > 0,

S�d; M � � �ÿ1�M m�d �d
f�d � P �1ÿM� log y=d

log y

� �
�log y�Mÿ1 � O«�EM� if 0 < M < 1;

O«�EM� if M > 2;

8<:
where

EM � F1�d �LMÿ2�«�1�L�d=y�b�
with b � �C logL�ÿ1 for some constant C > 0 and

F1�d � �
Y
p jd
�1� pÿ3=4�:

In all cases,

S�d; M �p« L
Mÿ1�«F1�d �:

This follows from Lemma 10 of Conrey [2].

Lemma 6. If Q is a polynomial, thenX
d < y

m2�d �
f�d � Q

log y=d

log y

� �
�

Z 1

0
Q�u� du

� �
log y� O�1�:

This is well-known in the case Q�x� � 1 and the general case may be deduced
from this particular one.
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Lemma 7. Suppose that Q is a squarefree positive integer. Then for bounded
r > 0 and ®xed j, with 0 < j < 1, we haveX

d jQ
tr�d �dÿj p exp�C�log Q�1ÿj�log log Q�ÿ1�

and X
d jQ

tr�d �dÿ1 p �log log Q�C

for some positive constant C which is independent of Q.

Proof. Since the summand is multiplicative, we have

log
X
d jQ

tr�d �dÿj �
X
p jQ

log�1� tr� p�pÿj�p
X
p jQ

pÿj:

If the primes p jQ are denoted p1; . . . ; pn and the ®rst n primes are q1; . . . ; qn, then
qn < 2 log Q if Q is large enough. Moreover, pÿj

i < qÿj
i so that, by the Prime

Number Theorem, the above sum is

p
X

q < 2 log Q

qÿj p

Z 2 log Q

2ÿ
uÿj dp�u�

p
�log Q�1ÿj�log log Q�ÿ1 if 0 < j < 1;

log log log Q if j � 1:

(
The result now follows.

5. Estimation of I1 and I2

By (3.12) and (3.20), we have

In �
1

2pi

Z c�iT

c�i
x�1ÿ s�An�s�B�1ÿ s� ds; �5:1�

where n � 1 and 2, with

A1�s� �
z 0

z
�s�z 0�s� �

X1
1

a1�m�mÿs �5:2�

and

A2�s� �
z 0

z
�s�z 0�s�2B�s� �

X1
1

a2�m�mÿs: �5:3�

Thus, by Lemma 2 with k � 4 and l � 3, we get In �Mn � En where

Mn �
X
k < y

X
m < kT =2p

an�m�b�k�
k

e ÿm

k

� �
�5:4�

and

En p T 1=2yL7: �5:5�
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To evaluate Mn we apply Perron's formula to the sum over m and the main
term arises from the residue of the pole at s � 1 of the generating function. If we
assume the Generalized Riemann Hypothesis, then the error terms are easily
handled. For our less conditional treatment, however, we must use Perron's
formula at a later stage after some preliminary rearrangements of the sum.

We ®rst express the additive character e� � in terms of multiplicative characters.
Thus, if m=k � M=K where �M; K � � 1, then

e ÿm

k

� �
� e ÿM

K

� �
� 1

f�K �
X

x mod K

t� Åx�x�ÿM� �5:6�

where, as usual for a character x mod K,

t�x� �
XK

a�1

x�a�e�a=K �: �5:7�

Note, for use in § 8, that t�x0� � m�K �, where x0 is the principal character mod
K, so that the contribution of the principal character to this expression for
e�ÿm=k� is just m�K �=f�K �. Now we wish to reduce the sum to a sum over
primitive characters. If w mod q induces x mod K, then (see [6, p. 67])

t�x� � m
K

q

� �
w

K

q

� �
t�w�: �5:8�

Thus, by (5.7),

e ÿm

k

� �
� 1

f�K �
X
q jK

X
w

�
m

K

q

� �
Åw

K

q

� �
t� Åw�w�ÿM� �5:9�

since �M; K � � 1 implies that �M; q� � 1, whence x�ÿM� � w�ÿM�; here and
elsewhere the * indicates that the sum is over all primitive characters mod q. (The
character mod 1 which induces all other principal characters will be included as a
primitive character.) Finally, we wish to eliminate the dependence in our formula
on g � gcd�m; k�. By the MoÈbius inversion formula, for any f ,

f �M; K � � f
m

g
;
k

g

� �
�
X
d jg

X
e jd

m
d

e

� �
f

m

e
;
k

e

� �
: �5:10�

The condition d jg is equivalent to d jm, d jk. Thus,

e ÿm

k

� �
�
X
d jm
d jk

X
e jd

m�d=e�
f�k=e�

X
q j k=e

X
w

�
m

k

eq

� �
Åw

k

eq

� �
t� Åw�w ÿm

e

� �

�
X
q jk

X
w

�
t� Åw�

X
d jm
d j k

X
e jd

e j k=q

m�d=e�
f�k=e�

Åw
ÿk

eq

� �
w

m

e

� �
m

k

eq

� �

�
X
q jk

X
w

�
t� Åw�

X
d jm
d j k

w
m

d

� �
d�q; k; d;w�; �5:11�
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where for a character w mod q we de®ne

d�q; k; d;w� �
X
e jd

e j k=q

m�d=e�
f�k=e�

Åw
ÿk

eq

� �
w

d

e

� �
m

k

eq

� �
: �5:12�

Note that if k is squarefree, then

jd�q; k; d;w�j<
X
e jd

e jk=q

f�e�
f�k� �

�d; k=q�
f�k� : �5:13�

Now by (5.4) and (5.11), if we replace k by kq and m by md and rearrange,
then

Mn �
X
q < y

X
w

�
t� Åw�

X
k < y=q

b�kq�
kq

X
d j kq

d�q; kq; d;w�
X

m < kqT=2pd

an�md �w�m�

�
X
k < y

1

k
Nn

y

k
;
kT

2p
; k

� �
; �5:14�

where

Nn�y; z; k� �
X
q < y

b�kq�
q

X
w

�
t� Åw�

X
d j kq

d�q; kq; d;w�
X

m < qz=d

an�md �w�m�: �5:15�

To estimate this we distinguish the cases q � 1, 1 < q < h �LA for some
A > 0, and h < q < y < y. The main term arises from q � 1; the case 1 < q < h is
treated using Siegel's Theorem, and the case h < q < y depends on an identity for
An and the large sieve. This is analogous to the proofs of Bombieri's Theorem
given by Gallagher [7] and Vaughan [17].

In § 6 we consider small values of q > 1; in § 7 we consider larger values of q,
and in § 8 we evaluate the main terms.

6. Small values of q

By (5.2) and (5.3),

an�md �p t4�m�t4�d ��1� �log m�3� �n � 1; 2�: �6:1�
Therefore, by Perron's formula (Lemma 4) with U � exp��log w�1=2�,
T p w p T 2, and d p T we haveX

m < w

an�md �w�m� � 1

2pi

Z v�iU

vÿiU
An�s;w; d �ws ds

s
� O t4�d �

w

U
LC

� �
; �6:2�

where v � 1� �log w�ÿ1, C > 0 is some constant, and

An�s;w; d � �
X1
m�1

an�md �w�m�
ms

; j > 1: �6:3�

We apply Lemma 3 to show that An�s;w; d � has an analytic continuation to the
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left of j � 1. We have by (5.2),

A1�s;w; d � �
X

d1d2�d

X1
m�1

L�md1�w�m�
ms

 ! X1
m�1

�m;d1��1

w�m� log md2

ms

0B@
1CA

�
X

d1d2�d

I�d1�
L0

L
�s;w� ÿ L�d1�

1ÿ w�P�Pÿs

� �
d s

2

d

ds

L�s;w�F�s;w; d1�
d s

2

� �
;

�6:4�
where

I�d � �
1 if d � 1;

0 if d 6� 1;

(

F�s;w; d � �
Y
p jd
�1ÿ w� p�pÿs� �

X
n jd

m�n�w�n�
ns

;

and, if L�d1� 6� 0, then P � P�d1� is such that L�d1� � log P. Similarly, by (5.3),

A2�s;w; d � �
X

d1d2d3d4�d

I�d1�
L0

L
�s;w� ÿ L�d1�

1ÿ w�P�Pÿs

� �

´ d s
2d s

3

d

ds

L�s;w�F�s;w; d1�
d s

2

� �
´

d

ds

L�s;w�F�s;w; d1d2�
d s

3

� �
B�s;w; d1d2d3; d4�; �6:5�

where

B�s;w; d; e� �
X
�m;d ��1
m < y=e

b�me�w�m�
ms

: �6:6�

Thus we see that An�s;w; d � has a meromorphic continuation to the whole plane.
If w is the principal character mod 1, then An�s;w; d � has a pole at s � 1. For any
other character, An�s;w; d � has at most one (simple) pole in the region

j > jo�t� :� 1ÿ c

log q�1� j t j� ;

where c is an absolute constant. By Siegel's theorem, this pole, if it exists, is at a
real number b which satis®es

1ÿ b q« qÿ« �6:7�
for any « > 0.

We will move the path of integration in (6.2) to the segment j � jo�U �,
j t j< U and estimate the integral on the new path. In doing so, we cross the pole
at s � 1 if q � 1 and the pole at s � b, if it exists. De®ne

Rn�w; d � � Res
s�1

An�s; 1; d � ws

s
: �6:8�
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Let G be the path consisting of three line segments fj ÿ iU: v > j > jog,
fjo � it: ÿU < t < Ug, and fj � iU: jo < j < vg. Then by (6.2), (6.8), and
Cauchy's theorem,X

m < w

an�md �w�m� ÿ I�q�Rn�w; d �

p

Z
G

An�s;w; d � ws

s
ds

���� ����� Res
s�b

An�s;w; d � ws

s

���� ����� t4�d �
w

U
LC: �6:9�

By (6.4), (6.5), (6.6), and standard estimates,

An�s;w; d �p t4�d �LCy1ÿjo

for j > jo�U �, j t j< U, jsÿ 1jqLÿ1, and jsÿ b jqLÿ1, where C > 0 is an
absolute constant. Moreover, by the de®nitions of U, w, and jo,

wjo�U�pA w exp�ÿC�A�L1=2�
for q < h �LA , where C�A� denotes a positive function of A not necessarily the
same at each occurrence. With the choice

« � 1=2A;

it follows from (6.7) that

wb pA w exp�ÿC�A�L1=2�
for q < h. Hence, by (6.9),X

m < w

an�md �w�m� ÿ I�q�Rn�w; d �pA t4�d �w exp�ÿC�A�L1=2� �6:10�

uniformly for T p w p T 2 and q < h �LA, where A > 0 is any ®xed constant.
We use this in (5.15). Now

jt�w�j � q1=2 �6:11�
and by (5.13), if kq is squarefree, then

jd�q; kq; d;w�j< �d; k�
f�k�f�q� : �6:12�

Further, for kQ squarefree, Q p T , k < y, and j � 1
2

or j � 1, we have

1

f�k�
X
d jkQ

tr�d �dÿj�d; k� � 1

f�k�
X
d j k

tr�d �d 1ÿj
X
e jQ

tr�e�eÿj

p
tr�k�kÿ1L if j � 1;

tr�k�kÿ1=2 exp�CL1=2� if j � 1
2
;

(
�6:13�

by Lemma 10 and since k p f�k� log log k. Here r stands for a non-negative
integer, which is bounded above and which is not necessarily the same at each
occurrence. Thus, by (5.15) and (6.10)±(6.13), for w � qz =d , z q T , and any
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A > 0, we ®nd that

Nn�h; z; k� ÿ b�k�
X
d j k

d�1; k; d; 1�Rn

z

d
; d

� �
pA z

tr�k�
k
LC

X
q < h

q1=2 exp�ÿC�A�L1=2�

pA tr�k�
z

k
exp�ÿC�A�L1=2�: �6:14�

We now consider the larger values of q.

7. Large sieve estimates

For larger q we use Perron's formula (Lemma 4) with U � T 20, T p w p T 2,
and v � 1� �log w�ÿ1 to obtainX

m < w

an�md �w�m� � 1

2pi

Z v�iU

vÿiU
An�s;w; d �ws ds

s
� O«�w«�: �7:1�

Then by (5.15), (6.11), and (6.12),

Nn�y; z; k� ÿ Nn�h; z; k�p« max
Q < y

X
d j kQ

m2�kQ��d; k�
f�k�

Z y

h
xÿ1 dS�x� � T «y1=2; �7:2�

where

S�x� �
X
q < x

q1=2

f�q�
X

w

� Z v�iU

vÿiU
An�s;w; d � qz

d

� �s ds

s

���� ���� �7:3�

for z p Ty. We use an identity for An which corresponds to Vaughan's identity.
We have

An � Hn � In �n � 1; 2�; �7:4�
where

Hn � Hn�s;w; d � � �An ÿ Fn��1ÿ LG� �7:5�
and

In � In�s;w; d � � Fn ÿ Fn LG� An LG; �7:6�
here, Fn is a partial sum of An,

Fn � Fn�s;w; d � �
X
m < u

an�md �w�m�
ms

; �7:7�

L � L�s;w�, and G is a partial sum of L�s;w�ÿ1,

G � G�s;w� �
X
m < v

m�m�w�m�
ms

: �7:8�

For the parameters u and v we will take

u � x2; v � T 1=2: �7:9�
Now we haveZ v�iU

vÿiU
An�s;w; d � ws

s
ds �

Z v�iU

vÿiU
�Hn � In��s;w; d � ws

s
ds: �7:10�
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By (6.4) and (6.5), L�s;w�An�s;w; d � is regular for j > 0; hence the same is true
of In. Therefore, by Cauchy's theorem, if q > 1, thenZ v�iU

vÿiU
In�s;w; d � ws

s
ds �

Z
G

In�s;w; d � ws

s
ds; �7:11�

where G is the path consisting of three line segments fj ÿ iU: 1
2

< j < vg,
f1

2
� it: ÿU < t < Ug, and fj � iU: 1

2
< j < vg. We can easily bound the

integral along the horizontal segments of G. By (6.4) and (6.5),

An�s;w; d �L�s;w�p
X

d1d2d3d4�d

�1� jL�s;w�j � jL 0�s;w�j�3

´ jB�s;w�j
Y
p jd
�1� pÿj�2 log3 d; �7:12�

where

B�s;w� �
X
m < y

b�m�w�m�
ms

�7:13�

for some coef®cients b which depend on d1, d2, d3, and d4, but satisfy

b�n�p 1 �7:14�
uniformly in n and the di. Thus, for some ®xed r,

An L p tr�d �L3�1� jL j � jL0j�3jBj �7:15�
for d p T and j > 1

2
. If 1 < q p T and j > 1

2
, then, it is well-known that

L�s;w�p �q js j�1=4; L0�s;w�p �q js j�1=4L �7:16�
and it is trivial that

Fn�s;w; d �p« y1�«; G�s;w�; B�s;w�p T 1=4: �7:17�
Since U � T 20, it follows from these estimates and (7.11) thatZ v�iU

vÿiU
In�s;w; d � ws

s
ds �

Z 1=2�iU

1=2ÿiU
In�s;w; d � ws

s
ds� O�T ÿ1�: �7:18�

Now by (5.15), (6.12), (6.14), (7.2), (7.3), (7.4), (7.10), and (7.18),

Nn�y; z; k� ÿ b�k�
X
d j k

d�1; k; d; 1�Rn

z

d
; d

� �
pA;« tr�k�

z

k
exp�ÿC�A�L1=2� � y1=2T «

� z max
Q < y

X
d jkQ

gm2�kQ�
f�k�d

Z y

h
xÿ1dHn�x�

� z1=2 max
Q < y

X
d jkQ

gm2�kQ�
f�k�d 1=2

Z y

h
xÿ1 dIn�x�; �7:19�
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where g � �d; k�,

Hn�x� �
X
q < x

q3=2

f�q�
X

w

� Z U

ÿU
jHn�v� it �j dt

v� j t j ; �7:20�

and

In�x� �
X
q < x

q

f�q�
X

w

� Z U

ÿU
jIn�12� it�j dt

1
2
� j t j : �7:21�

To estimate Hn and In we can use HoÈlder's inequality and the large sieve
inequality in the form

X
q < x

q

f�q�
X

w

� Z U

ÿU

X
n

anw�n�nÿit

�����
�����
2

dt

a� j t j

p
X

n

�n� x2 log U �janj2; �7:22�

this holds uniformly for a > 1
2

(see Vaughan [17]).
By (6.1), (6.3), (7.7), and (7.22),X

q < x

q

f�q�
X

w

� Z U

ÿU
jAn�v� it � ÿ Fn�v� it�j2 dt

v� j t j

p
X
m > u

�m� x2L�jan�md �j2mÿ2v

p �1� x2uÿ1�LCt4�d �2 �7:23�
for some C. Similarly, by (7.8),X

q < x

q

f�q�
X

w

� Z U

ÿU
j1ÿ LG�v� it;w�j2 dt

v� j t j

p
X
m > 1

�m� x2L�
X
e jm
e < v

m�e�w�e�w m

e

� �������
������
2
mÿ2v

p �1� x2vÿ1�LC �7:24�
for some C > 0, since the sum over e is 0 if m < v and is pt�m� in any case.
Hence, by Cauchy's inequality, (7.5), (7.9), (7.20), (7.23) and (7.24),

Hn�x�p tr�d �LC�1� x2vÿ1�1=2x1=2

p tr�d �x1=2�1� xT ÿ1=4�LC �7:25�
for some C > 0.

Now for an arbitrary f � f �s;w� let

A� f � �
X
q < x

q

f�q�
X

w

� Z U

ÿU
j f �1

2
� it;w�j dt

1
2
� j t j ; �7:26�
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so that In�x� �A�In�. Then by (7.6), (7.15), and HoÈlder's inequality, we have

In�x�p A�F 2
n �1=2A�1�1=2 �A�F 2

n �1=2A�L4�1=4A�G4�1=4

� t4�d �L5A�1� jL j6 � jL0j6�1=2A�B4�1=4A�G4�1=4: �7:27�
By (7.7), (7.8), (7.13), (7.22), and (6.1),

A�F 2
n �p �x2 � u�LCt2

4�d �;
A�G4�p �x2 � v2�LC;

and

A�B4�p �x2 � y2�LC;

for some constant C > 0. Also, A�1�p x2L, and by the method of Montgomery
[11] (see also Ramachandra [14]),

A�jL jk�; A�jL 0jk�p« x2T « �k � 2 or 4�: �7:28�
We also need (7.28) with k � 6 which is our sixth moment assumption referred to in
the introduction. This follows from GLH and this is the only place we use GLH.

Thus, by (7.9), (7.27), and the above, we ®nd that

In�x�p« t4�d �T «�x1=2�x2 � u�1=2�x2 � v2�1=4 � x�x2 � y2�1=4�x2 � v2�1=4�
p« t4�d �T «�x2 � x3=2T 1=4 � x3=2y1=2 � xT 1=4y1=2�: �7:29�

Next, by (7.25),Z y

h
xÿ1 dHn�x�p �hÿ1=2 � y1=2T ÿ1=4�tr�d �LC: �7:30�

By (7.29),Z y

h
xÿ1 dIn�x�p« �y� y1=2T 1=4 � y1=2y1=2 � T 1=4y1=2�t4�d �T «: �7:31�

Hence, by (7.19), (7.30), and (7.31),

Nn�y; z; k� ÿ b�k�
X
d j k

d�1; k; d; 1�Rn

z

d
; d

� �
pA;« tr�k�

z

k

� �
exp�ÿC�A�L1=2� � tr�k�

z

k

� �
�hÿ1=2 � y1=2T ÿ1=4�LC

� tr�k�
z

k

� �1=2�y� y1=2T 1=4 � y1=2y1=2 � T 1=4y1=2�T «:

We use this estimate in (5.14); after substituting y � y=k, z � Tk=�2p� and
summing over k , we have

Mn ÿ Rn pA;« T exp�ÿC�A�L1=2� � Thÿ1=2LC � �T 3=4y1=2 � T 1=2y�T «;

for some ®xed C > 0 and h �LA for A > 0 to be chosen. We take A � 2�A0 � C �
and have for any A0 > 0,

Mn � Rn � OA0;«�TLÿA0 � �T 3=4y1=2 � T 1=2y�T «�:
This gives Mn � Rn � o�T � provided y p T v with v < 1

2
.

The rest of the paper is devoted to estimating the main term.
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8. The main terms

In the sequel all equalities should be taken as asymptotic equalities. We also
assume throughout that y � T v with v < 1

2
. Since the contributions from q > 1 have

been shown to be negligible, only the principal character term, q � 1, contributes.
This essentially means that for the purposes of obtaining main terms one may
replace e�ÿm=k� by m�K �=f�K � (compare (5.6), (5.7), and the remark below
(5.7)). Hence we may write the expressions for Mn more transparently as

Mn �
X
k < y

X
m < kT =2p

an�m�b�k�
k

m�K �
f�K � :

We now describe a simple way of obtaining the main term for M1 . We may
easily recast our expression for M1 as

M1 �
X
l < y

X
k < y=l

b�kl�
kl

m�k�
f�k�

X
m < kT=2p
�m; k��1

a1�ml�: �8:1�

Observe that a1�n� �
P

d jn L�d � log�n=d � � log2 nÿPd jn L�d � log d. We will
replace

P
d jn L�d � log d by

P
p jn log2 p; the overall error in evaluating M1

caused by this is easily seen to be O�T log T �. Thus,X
m < kT =2p
�m; k��1

a1�ml� �
X

m < kT =2p
�m; k��1

log2�ml� ÿ
X
p j l

log2 pÿ
X
p jm
� p; l ��1

log2 p
0@ 1A

� f�k� T

2p
�log klT �2 ÿ

X
p j l

log2 p
� �

ÿ
X

p < kT =2p
� p; kl ��1

log2 p
X

m < kT =2pp
�m;k��1

1

� f�k� T

2p
�log klT �2 ÿ

X
p j l

log2 pÿ 1
2
�log kT �2

� �
� f�k� T

2p
1
2
�log kT �2 � 2 log l log kT � log2 lÿ

X
p j l

log2 p
� �

:

Employing this in (8.1) we obtain M1 � M11 �M12 �M13 �M14, with obvious
meaning. Using Lemmas 5 and 6 and integration by parts we see that

M11 �
T

2p

X
k < y

m�k�
k

�log kT �2
2

X
l < y=k

b�kl�
l

� T

2p

X
k < y

m2�k�
f�k�

�log kT �2
2 log y

P 0
log�y=k�

log y

� �
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� T

2p

log2 y

2

Z 1

0
P 0�1ÿ a��1=v� a�2 da

� T

2p

log2 y

2
vÿ2 �

Z 1

0
�2=v� 2a�P�1ÿ a� da

� �
:

Similarly,

M12 �
2T

2p

X
k < y

m�k�
k
�log kT �

X
l < y=k

b�kl�
l

log l

� ÿ 2T

2p

X
k < y

m2�k�
f�k� �log kT �P log�y=k�

log y

� �

� ÿ 2T

2p
log2 y

Z 1

0
�1=v� a�P�1ÿ a� da:

It is trivial from Lemma 5 that M13 � 0. Finally,

M14 � ÿ
T

2p

X
k < y

m�k�
k

X
p < y=k

log2 p

p

X
l < y=kp

b�klp�
l

� ÿ T

2p

X
k < y

m2�k�
f�k�

X
p < y=k

m� p� log2 p

� pÿ 1� log y
P 0

log�y=kp�
log y

� �

� T

2p
log2 y

Z 1

0

Z 1ÿa

0
bP 0�1ÿ aÿ b� db da

� T

2p
log2 y

Z 1

0

Z 1ÿa

0
P�1ÿ aÿ b� db da

� T

2p
log2 y

Z 1

0
aP�1ÿ a� da:

Adding the expressions for M11 , M12, M13 and M14 above, we obtain

M1 ,
T

2p
1
2
L2 ÿ

Z 1

0
P�x� dxL log y

� �
;

so that by (3.13), and (5.5) we have the required estimate

S1 �
T

2p
1
2
L2 �L log y

Z 1

0
P�x� dx

� �
� O«�T 1=2�«y� � o�TL2�:

We now turn to the task of evaluating M2. As in (8.1) we may recast our
expression for M2 as

M2 �
X
l < y

X
k < y=l

b�kl�
kl

m�k�
f�k�

X
m < kT =2p
�m; k��1

a2�ml�

�
X
l < y

X
k < y=l

b�kl�
kl

m�k�
f�k� S�kT =2p; l; k�; �8:2�
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say. Let Lj�n� be de®ned by
P

n Lj�n�nÿs � �ÿz 0�s�=z�s�� j and g�n� byX
n

g�n�nÿs � �ÿz 0�s�=z�s��z 0�s�2 � �ÿz 0�s�=z�s��3z2�s�:

Lemma A. Suppose a and b are coprime, squarefree integers and that
0 < j < 3 is an integer. Let gj�n; a; b� be de®ned by the relationX1

n�1

gj�n; a; b�nÿs �
X
�n;ab��1

L�n�nÿs
� �j X

�m;b��1

d�ma�mÿs
� �

:

Then

Gj�x; a; b� :�
X
n < x

gj �n; a; b�, x
�log x� j�1

� j� 1�!
f�b�2

b2
d�a�;

where d�a� � Pp ja�2ÿ 1=p�. Further,

G�x; a; b� :�
X
n < x
�n;b��1

g�an�, x
f�b�2

b2

X3

j�0

3

j

� �
bj�a�d�a�

�log x� j�1

� j� 1�! ;

where bj�a� :�Pd ja L3ÿj�d �=d�d �.

Proof. By standard ideas, the main term is the residue at s � 1 of

xs

s
ÿ z 0

z
�s� �

X
p jab

log p

ps ÿ 1

 !j

z2�s�
Y
p jb
�1ÿ pÿs�2

Y
p ja
��1ÿ pÿs�2�2� 3pÿs � . . .��;

which is asymptotically equal to the right-hand side of the ®rst statement. The
second assertion follows from the ®rst upon noting thatX

�n;b��1

L�n�nÿs
� �3�

X3

j�0

3

j

� � X
�n;ab��1

L�n�nÿs
� �

j
X
�n;a�> 1

L�n�nÿs
� �3ÿj

:

From the de®nition of a2�n� we easily see that

S�kT =2p; l; k� � ÿ
X
m < y
�m; k��1

b�m�G�kT�l; m�=�2pm�; l=�l; m�; k�

� ÿ
X
l1 j l

X
m < yl1=l
�m; kl ��1

b�ml=l1�G�kT =�2pm�; l1; k�:

By Lemma A and Lemma 5, the right-hand side above is

,ÿ Tf2�k�
2pk

X3

j�0

3

j

� �X
l1 j l

d�l1�bj�l1�
X

m < yl1=l
�m;kl ��1

b�ml=l1�
m

�log�kT =m�� j�1

� j� 1�!

,ÿ Tf2�k�
2pk

X3

j�0

3

j

� �
1

� j� 1�!
X
l1 j l

d�l1�bj�l1�m�l=l1�
kl

f�kl�
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´
�log kT � j�1

log y
P 0

log�yl1=l�
log y

� �
� � j� 1��log kT � jP

log�yl1=l�
log y

� �� �

,ÿ f�k�lT
2pf�l�

X3

j�0

3

j

� �
1

� j� 1�!
X
l1 j l

d�l1�bj�l1�m�l=l1��log kT � j

´
log kT

log y
P 0

log�yl1=l�
log y

� �
� � j� 1�P log�yl1=l�

log y

� �� �
:

Using this in (8.2), making obvious substitutions, and interchanging summa-
tions, we see that

M2 ,ÿ T

2p

X3

j�0

3

j

� �
1

� j� 1�! M2� j�; �8:3�

where

M2� j� :�
X
l1 < y

bj�l1�
d�l1�
f�l1�

X
k < y=l1

m�k�
k
�log kT � j

X
l < y=kl1

m�l�
f�l� b�lkl1�

´
log kT

log y
P 0

log�y=l�
log y

� �
� � j� 1�P log�y=l�

log y

� �� �
: �8:4�

A straightforward argument shows that the innermost sum over l is equal to

m�kl1�
X

l < y=kl1
�l; kl1��1

m2�l�
f�l� P

log y=kll1
log y

� �
log kT

log y
P 0

log y=l

log y

� �
� � j� 1�P log y=l

log y

� �� �

, m�kl1�
f�kl1�

kl1

log y
log kT

log y
Q0

log y=kl1

log y

� �
� � j� 1�Q1

log y=kl1
log y

� �� �
;

where for i � 0, 1, Qi�a� :� R a
0 P�aÿ b�P�1ÿi ��1ÿ b� db. Employing this in (8.4)

we obtain

M2� j�, log y
X
l1 < y

d�l1�bj�l1�
m�l1�

l1

X
k < y=l1
�k; l1��1

m2�k�
k2

f�k��log kT � j

´
log kT

log y
Q0

log y=kl1

log y

� �
� � j� 1�Q1

log y=kl1
log y

� �� �
: �8:5�

A simple calculation reveals that the sum over k above is

, �log y� j�1Rj

log y=l1

log y

� �Q
p��1� � pÿ 1�=p2��1ÿ pÿ1��Q

p j l1�1� � pÿ 1�=p2�

� �log y� j�1Rj

log y=l1

log y

� �
C

C�l1�
;

where C and C�l1� have their natural meaning and

Rj�a� �
Z a

0
�1=v� b� j��1=v� b�Q0�aÿ b� � � j� 1�Q1�aÿ b�� db:
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Substituting this in (8.5) and recalling the de®nition of bj�l1�, we have

M2� j�, C�log y� j�2
X
l1 < y

d�l1�bj�l1�
m�l1�

l1C�l1�
Rj

log y=l1

log y

� �

� C�log y� j�2
X
d < y

m�d �L3ÿj�d �
dC�d �

X
l1 < y=d
�l1;d ��1

m�l1�d�l1�
l1C�l1�

Rj

log�y=l1d �
log y

� �
: �8:6�

Mimicking the argument of Lemma 10 of Conrey [2] we see thatX
l1 < y=d
�l1;d ��1

m�l1�d�l1�
l1C�l1�

Rj

log�y=l1d �
log y

� �
, Cÿ1

Y
p jd

p2 � pÿ 1

p2 ÿ p

1

log2 y
R 00j

log�y=d �
log y

� �
:

(It is an easily veri®ed crucial point in this argument that Rj�0� � R 0j�0� � 0.)
Plugging the above display into the right-hand side of (8.6), we obtain easily

M2� j�, �log y� j
X
d < y

m�d �L3ÿj�d �
d

R 00j
log�y=d �

log y

� �
:

Using the above display and the familiar distribution of the L3ÿj�n� (and
integration by parts) we arrive at

2pM2

T�log y�3 � ÿ
X3

j�0

3

j

� �
M2� j�
� j� 1�!

1

�log y�3

�
Z 1

0

1
2
a2R 000�1ÿ a� daÿ 3

2

Z 1

0
aR 001�1ÿ a� da

� 3

6

Z 1

0
R 002�1ÿ a� daÿ 1

24
R 003�1�

�
Z 1

0
R0�a� daÿ 3

2
R1�1� � 1

2
R 02�1� ÿ 1

24
R 003�1�:

An easy computation shows that the expression in the right-hand side above
multiplied by v3 equals

ÿ 1

24v

Z 1

0
P 0�x�2 dx� 1

12
� 3v

2

Z 1

0
P�x�2 dxÿ v

2

Z 1

0
P�x� dxÿ v2

2

Z 1

0
P�x� dx

� �2

:

This completes our treatment of M2.
The estimate (2.7) now follows from (3.21), (3.26), (3.27) and the above, and

so proves our theorem.
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