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Q=041

1 o wo_ X2w
= -m z A(n)x(n)n's x——é-—-—'dw
n=1 L a=g—iwm w<n"

| = a=g+ie amo+ie
= -Z%I ] A(m)x(n)n~% f (%)W dw _ [ Ey W dw

4y 2 n 2
n= A=g-jw w a=-g=-ie v
2 2
= -} A(n)x(n)n~S (log X-log %—) - J _A@)x(n)n~S (-log E—)
n<x X<n<x
= log x ) ) A (n)x (n)n~% .
n<x

Now consider the residues obtained by pulling the line of
integration to the left. The residue at z = s is

1l-s 2(1-s)
e

-log x L-‘-(s,)() . That at z =1 is =E(y) X 5
L (1-s)

LPs _ 2(p-s)

(0—5)2

The residues at the nontrivial zeros p are

—-2r-oi—-g 2{(~2r-o-5)
- X

and at the trivial zeroes they are 3
(-2r-o~s)

The result now follows. E]

Before we can state the next lemma we need to intro-

duce some more notation. For each zero B+iy of each L-

function (mod g) with B > % + We remove the segment

(%+iy, B+iy] from the half-plane o > % . We also remove

the segment (%,1] . Call the resulting slit half-plane
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ﬁc; . We may obviously choose a single-valued analytic

branch of 1log L(s,x) for each X {(mod g) on £§ so that

lim log L(s,X) =0 .

g

It is well known that

log L(s,X) = z A.!B).xm (o0 > 1)

n=1 n® log n

For 05 > 1 we put § = 05 - 1 ; then

2
log L(s,) = [  ARX(EL o6,
& .5
n<N* n” log n

uniformly for o > 00 . The next lemma extends this for-

mula (with modifications) to the right half of the critical

strip.

Lemma 3.9. Let C be a compact set in the strip

% < 0] €0 <0y < 1l and set § = oy - % . For each

T > 0 there is a subset 3('1‘) C [0,T] with measure
J(T) = T(L + o (1))

such that when T 1is large enough,

:{: ATS/S(n)x(n} —62/16
(20) max{log L(s+it,x) - 5/4 - << T
seC n<T

S+i
n lTlog n
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for all Tt € é(T) and X (mod g). The implied constant

depends on g and oy -

Proof: Let A = max!sl . For each zero B+iy of
seC

+ we remove from

N

each L-function (mod gq) with B8 >

%] ez]

[T1'6/4, T] those 1 satisfying IY-T].iT6/4 + A . 1In

this way we remove

<< EZ N(;+§ T,X)

¥ (mod q) 22

intervals each having measure << T5/4 . Since by Lemna

3.1 this is
<< (qr)178/210g1%r

the set of 1 removed has measure

1- 14
T 6/4log

<< T

for fixed q . Letting jAT) be the set of T remaining

in [Tl_d/4, T] and letting J(T) be its measure, we find

that

-8 _
J(m) = 7 - % 4 o (pl8/410g1 4

T(L + o(l)) .




I : 103

Note that if 7t ¢ 3&T) , then C+irt g;EE and 1if

o+it € C , then

(21) min|y-t-c¢; > T‘S/4
Y

We now prove (20). Let T e é&T) and s = o+it e C
Integrating both sides of (19) along the half-line

fo+it+it, «+it+it) , we see that

. Ax (n)x (n)
log Ls+it,X) - } :
n<x? ns+lTlog n

e EOO J X2(l-u) + xl_u

du
log x (1-u) 2+ (T+£) 2
¥ =-2r=-o-u -2 (2r+o+u)
+ 1 X + X du
1 2
cg x s r=0 (2r+otu)“ + (Tt+t)2
- B-u 2(B-u)
+ : % X > du .
log x s BtiYy (B-u)2 + (y-1-t)
Hence
(22) log L(s+it, X) - |} 5 Agig%Xin)
n<x n log n

<< Eé—;(Rl(s+i‘r,x) + Ry (S+iT,X) + Ry(s+it,x)) .

We now estimate the Ry v 1l < j <3 assuming that x > 1
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and that T 4is so large that 1+t > 0 for all + € g%T)

and Oo+it € C . TFor Rl we have

Rl(s+ir,x) << -—i——z J x2 (1-u) + Xl—u du

l o0
<< —1 [ %2 (1-u) du + [ <11 gy

2
(T+t) s 1
2(1l-c
e 1 Cx ( ) .
(t+t) 2 log x
Since o > ql = %+6 , this is
1-28
(23) Ry(s+it, x) << —X_ .
(T+t)“° log x
For R2 we have
1 -
- -~ CT, - - a3
R, (s+iT, ) << z % 2r U | =2 (2rtevtu) au
(T+t)2 r=0 |
<< =L __ ) %~ 2T-a-u du
('r+t)2 r=0
© o
<< 1 5 z x 2T x 2 du
(T+t) r=0
o)
1 x

<<
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Thus, since o > %+6 for s e C

~1/2=¢

(24) Ry (s+iT, X) << 5
(t+t)“ log x

To treat R3 we write

(25) R3(S+iT,X) = R3l(s+it,x) + R32(s+ir,x) ,

where

( | J‘” LB, 2(B-u) .
R s+iT,x) = : . u
. o 1v=t=t]<1®% (8-w)2 + (y-t-1)2

and

Ra, (s+i ) ) xFe + XZ(B-u)
s+1T,X) =
32 5 IY-t-T]>T6/4 (B-u)? + (Y-t-T)2

du .

In view of (21), if R+iy is a zero with ly-t-r{i 78/4

then B8 < %+§ . Also, for u>o , B-u< —% . Thus

’

- 1
Ry, (s+iT,y) << xB Y4au EZ
? o lY‘t'T]<T6/4 §2 + (y-t-1)°
-8/2
<< % Loy 1

log x ly-t-1!il52 l<]Y—t—TI£$6/4(Y-t-r)2

By Lemma 3.2 and the assumption that t+t > 0 we have
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zz: li << l-é-‘log g(lt+t]| + 2) << log(t+1+2)
ly-t-1]<1 S

[e ]

and

1
1<|y=t=1] <784 (y-t-1)2

T . T .
<< [ 2 ] ng qlt+r+il +2) + [ z ] log g(lt+t=4] +2)
j=1 32 j=1 32
<< log(t+T+T6/4 + 2) .
Hence
-8/2
(26) R3l(S+iT,X) << t log(t+T+T6/4 +2) .
log x

Since B < 1 for every zero B+iy , we find that

R32(s+ir,x) << J (xl'u + xZ(l-u))du ZE: s/ S

5 |y-t-1]|>T (y-t-1)2

The integral is

X1-26
<<

log x

as g > o, = %+6 . For the sum we obtain by means of Lemma

3.2 and the assumption t+1 > 0 the estimate
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1 EZ log gllT+t+il +2)
<< :
lY-t--T|>'l‘6/4 (y-t-7) j>118/4] 32
+ zgj log g(lT+t-i] +2)
3>[10/4] 32
<< log (t+t+3+2)
j>[T6/4] j2
<< I log (t+t+x+2) dx
2
08/ 4 *
_ —log(t+t+x+2)|® + dx
X |T6/4 54 X(THEFRH2)
8/
cc log(r+t+78/4 +2)
/4
Thus
2 ! *

log x 78/4
Combining (25) through (27), we deduce that

8/4 1-28
log (t+t+1%/% +2) [ _8/2 | x

log x 78/4

R3 (S+iT,X) <<

This estimate along with (22), (23), and (24) leads to
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(28) log L{(s+iT,X) -

1 Xl--26 x—l/2—6

(log x)2 (r+t)2 (T+t)2

<<

§/4

1-2
| %782 4 % +2)] .

1 T+t+T
2674 o9 (

If we retrace our steps it is not difficult to see that the
implied constant depends only on g and ¢ or g and
0y . Now choosing x = ’I‘G/8 and taking T so large that

Tl-5/4 << T+t << T

for T € QWT) and O+it € C , we find that the right-hand

side of (28) is

_1-62 ~§2/8-1 , =62
o 1 (T36/8 1-6%4 | 138/16-8%/8-1 | =8%/16, o ¢
§2 (log T)2
_8/8-52
4+ 70/8=82/4 4 %
_52
cc 82716

Thus (28) gives the estimate

A (n)x (n)
7%/8 -52/16

log L(s+it,¥%) « << T

n<p®/4 nStiT 109 n
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uniformly for s e C, T ¢ é(T) and ¥ (mod gq). This

completes the proof of the lemma. [:

Lemma 3.10. Let C be a compact set in the strip

% <07 <0< Oy < 1l and ;et § = cl-% . Suppose that
P > U > e . There exist entire functions Ru(s,x)

(x (mod q)) such that if 0 g.ep < 1 for each prime

plg or u < p <p , and if d is small enough, where

0 <4« % » then there exists a T e R with
”:I,lQS_E -9 ” < a : (p[q)
2m Bl —
and
e (8 )x(p)
max max|log L(s+it,X) - &, (s,X) - ) —“‘E“g“‘l
X (mod gq) seC U<p<p P

The implied constant depends on 0y »r 02 , 9, and C .

Proof: Let N = [8 log ul and take T so large that
7p8/8

> max(uN,p) . With AX(n) as in Lemma 3.8, we have
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A (n)x (n)
(29) :E; ré/8 " = 3 § X (p%)
n<p®/4 pstit log n p<p k=1 pk (s+1iT)

v 1 X
u<p<p ps+1‘r

Ez ATS/B(p)X(p)
+ -
6,/4 pS""lT log p

p<p<T

A (X)) x (p%)
© T5/8 PHIX(p

+ K(S+1T) o ok

p<u k=N+1 p

k k
EZ . ATG/B(p Yx (p™)

) K(5+1T) ] o pk

-+
p<p<r®/4 k22 p

We assume s € C . Since |A 6/8(n)x(n)/log n| <1 we
T
see that

k k
ATS/S(p Yx (p™) o

Lol <« 1 1 -

p<p k=N+1 pR(5*1T)10g pK ooy x=n+1 po%

-0 (N+1) |

<< 2 1 < u2

pc(N+l)

Since o > for s e C and N

[8 log ul , this is

N

-4 log 2)log v “1-4 log 2

<< nfe
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As log 2 > .69 this is

Also we find that

Z w A 6/8 (pk)x(pk) -
] « 1

uep<T®/t k=2 p* (5711 164 pk u<p<r®/4 k=2 pok

1-2¢
<< ¥ —15 << I SR [
u<p p2 u<n n2d 20-1

o 26

since o > o] = %+6 for s € C . Now define the entire

functions Zu(s,x) by

N k
(n™)

%, (s,x) = Xin7) (x (mod q))
h pgp kzl kpXs

Using this definition, the above estimates, and the estimate

in (29) leads to
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z; A 6/g(n)x(n)
(30) s L : - Qu(s+iT,X) - ¥ XiEL_
n<T%/% nS*1T 159 n u<p<p p=tit
A
Z 1678 B)X (@)
- =246
= §/4 s¥it o)
p<p<T P log p
uniformly for s € C , T € R, and X (mod g) ; the constant

in the O-term depends on ¢ and thus on 01 . Letting
g(T) be the set in Lemma 3.9 and assuming T 1is large

enough, we obtain from (20) and (30) that

] . )
(31) log L(s+it,¥)- & (s+it,¥) - X{p)
° T u<g§o pSTT
A (p)x(p)
/8
E T + 028y 4 o(p-82/16,

p<p§I6/4 ps+1'r log p

uniformly for s e C , T ¢ é&T) , and for each x (mod q).
Here the O-terms depend on g and oy -
Let A Dbe the sequence of logarithms of the primes in

(n)

Lemma 3.7 and for the b (T) take A (p)x (p)/log p ,
A T6/8

a different character Y corresponding to each n . Then

the elements of A are linearly independent over © ,

IATG/S(P)X(p)/log p| <1, and




§(T) = min [ 1og p - log p'|
p#p'<T

> |log(T-2) - log T| > % .

Also NA(u) << e% . Thus the conditions of Lemma 3.7 are

met. We conclude that there is a 1 ¢ éAT) such that

(32) |- *ieae oap| <a ¢ p <M and plq,
(33) ”- I—%%E—E - ep” <4 if wWw<p<p or plg,
and
Z AT5/8 (P)x (p) i/2-0, s
(34) max max << p =9 .

§/4 :
P<p<T / pSTIT 169 p

X {mod g) seC

Here the implied constant in << depends on 01 +05, » C,

and g . Since Ru(s,x) is independent of any p divia-

ing q , we conclude from (32) that if d is small enough,
§

(35) ‘max max |2 (s+it,yx) =~ zu(s,x) <p° .

¥ (mod g) seC H

Furthermore we find from (33) that if d is small enough,

X (p)e (8 ) -
(36) max max -Xé?% - 2 — P <y 5_
X (mod q) seC|u<p<p p° H<p<p p
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By (31), (34), (35), and (36) we see that if T is suffi-
ciently large and d . is sufficiently small, there is a

T ¢ R with

e(ep)x(p)
max max|log L(s+it,x) - 2,(s,x) - 7§
X (mod g) seC U<P<p p°
-g2 - -
<< u—ZG + po8°/16 u S P 8
82
<< u—G + p=8/16 .

Since we are assuming TS/8 > uN and N = [8 log ul

v

[8 log e] = 8 , we have

—§2 -45 -
p8/16 a8 -8

Thus the above is

Note that the implied constant depends on 01,05 ¢ q and

C . Finally, by (33), the same 1 satisfies

[- *52e-=2 - o] < a

5o (plg) .

This completes the proof of the lemma. []




LlD

84, Proof of Theorem 3.1

Since the simply connected compact set C 1is in the
strip % < 0 <1, there exist o1 r Oy such that € lies
in the strip % < 9 <0 <o, < 1 . Let 6 = cl—% , let
ln(s,x) (X (mod q)) be the entire functions of Lemma 3.10,
and assume U > max(g,e) . For 1 <a <q, (a,9) =1,

we define

l —
F_(s) = —=— ZE: x(a) (£, (s) = %, (s,%)) ,
a $(q) x(mod q) X a

where the fX(s) are the functions given in Theorem 3.1.
Clearly each Fa(s) is continuous on C and analytic

in the interior of C . Using the relations

¢(q) if x = x'

. o
% x'(a)x(a) =
a=1
0 if X 75 X' ’
we find
9
¥ oxt(a)F, (s)
a=1
q, Z _
= T x' (@) X(a) (£ (s) = 2, (s,%))
a=1 6 (q) x(mod q) X

Il

>
(£, (s) = 2, (s,%)) I x'(a)x(a)
¥ (mod q)

b (g) a=1




14106

= fX:(s) - QU(S,X') ’
or

q

*
(37) fX(s) - lu(s,x) = aZl X (@)F 4 (s) (x (mod q))

Let A, = {log plp = a (mod q)} for 1 <ac<aqg, (a,g) = 1.

By Lemma 3.3,

N, (x) = 1l 135 oX 4+ 0(eX7O7F,
a ¢ (q)
Obviously
b
NA (x) << e
a
Furthermore
c
x+od .
2 ) —
e X x+—%-c/x
c
Ny (x + —%) - N, (x) = - St 4y o(e ¥ )
a b4 a d (q) log t
eX
c
P
e x% _ eX
>> -—
-1
x+23
log(e * )
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Similarly

C:L eX
N, (x) = N, (x===) >> =
Aa Ay <2 x

Thus each NA (x) satisfies the hypotheses of Lemma 2.2.
a

Hence there exists a number o > u and numbers 0 < ep <1

such that

e (6 )

(38) max |F, (s) - Ez —_be << u—l/2

seC H<p<p ps
p=a(mod q)

for each a with 1 <a<qg and (a, q) =1 . By (37)

and (383) we see that

q* e(6.)
£,08) - L,(s,0 = [ x(a) D, B+ ou~1/2y
a=1 U<p<p p®
pZa(mod q)
- x(ple(8)
= 7 P+ o(qu~1/2)
U<p<p p®

for each x (mod g). Thus

x(ple (8 )
(39) max max|£ (s)-%, (s,x) - ] ——___E_E_ << y~1/2

¥ (mod q) seC U<p<p p
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We remark that the assumption u > q 1is necessary so that
the 8, (plg) given in the statement of Theorem 3.1 are

independent of the ep in (32). ©Now by Lemma 3.10, if

0 < d < % and d is small enough, there is a T € R such
that
T_lo
(40) H- ‘—2;9-9 - % I < a (pla)
and
_ x(p)e(ep) ,
max max|log L(s+it,x) - £, (s,x) - ] ——
X (mod q) seC H<p<p p°
(41)
<< u'G .
Combining (39) and (41) we obtain
max max|log L(s+it,X) - £ (s)
X (mod g) seC X
<< w78 ¢ T2 p-s .
This in turn leads to
£ (s) log L(s+it,¥)-£ (s)
(42) L(s+it,x) = e X s e X

£ (s)
e X' 1+ o %y




fy (s) ]fX(s)] .
= e + O((max e yu~o)
seC

£, (s)
e X + o9

uniformly for s € C and for Y (mod q). Finally, if in
addition to our other hypotheses on d we assume that
d < e, where € is as in Theorem 3.1, and if uyu is taken

large enough to begin with, then there is a T € R with

|- 5222 -0 | < (®lq)

and

£ (s)
max|L(s+it,x) - e X | < ¢ (x (mod q)) ,
seC

because of (40) and (42). This completes the proof of

Theorem 3.1. D




CHAPTER IV

UNIVERSALITY OF THE HURWITZ ZETA-FUNCTIONS

§1. Statement of Results

Throughout this chapter we let o denote a real number

with 0 < a <1 . For any such o the Hurwitz zeta-function,

z(s,a) , is defined by

o

E(S,d) = 1
m=2=0 (m+q) S

(0 > 1) .
These functions may all be continued to the entire complex
plane and are analytic except for a simple pole at s =1 .

In this chapter we prove the following universality

theorem.

Theorem 4.1. Let C be a compact simply connected set
in the strip % < g<1l. Let o be rational or transcen-
dental, o # % , a#1 . If f(s) 1is continuous in C and

analytic in the interior of C , then for any € > 0 there

exists a T ¢ R such that

max|g(s+it,a) - £(s)| < e .
seC

120
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Notice that we are able to apéroximate f(s) rather
than just ef(s) as in our previous universality theorems.

Theorems of the previous type for o = 1 and ¢ =1 follow

2
immediately from Theorem 3.1 since t(s,1) = ¢t(s) and
Z(s,%) = 25 1L(s,X) , where X is the (unique) character

(mod 2).
In 1936 H. Davenport and H. Heilbronn [5] considered

the question of whether < (s,a) has zeros in the half rlane

g>1. If o = % or 1 , we find C(s,%) = (1-28)z(s) and
t(s,1) = t(s) . Since (s) has a convergent Euler product

in ¢ >1, t(s) has no zeros in o > 1 . Therefore neither
does C(s,%) or z(s,l) . However, they showed that for
all other rational and transcendental values of a r Cis,a)
has infinitely many zeros in o > 1 . This left open the
question for o algebraic and irrational. Some twenty-£five
years later, J.W.S. Cassels [2] settled thiscase in the af-
firmative.

S.M. Voronin [22] recently announced an extension of
the result of Davenport and Heilbronn. Specifically, he
asserts that for o rational and not egqual to

or 1,

t(s,a) has infinitely many zeros in the strip < g < 1.

N Nl

From Theorem 4.1 we deduce

Theorem 4.2. Let « be rational or transcendental,
o # % r @ # 1 . The real parts of the zeros ofl z(s,a) are

dense in [%, 1] .
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To prove Theorem 4.2, let C be a closed disc in the

strip % <0 <1 and let f(s) be analytic in the interior

of C and continuous on C . Also assume f(s) has zeros

inside C but not on the boundary of C , 3 . If

m = min lf(s)[ » then we find by Theorem 4.1 that there is a
sedC

T € R such that

max |Z(s+itT,a) - £(s)| < m = min !f(s)l .

seaC seodC
This and Ronché's theorem imply that I (s+it,a) has the
same number of zeros in C as f(s) . Theorem 4.2 now fol-
lows.

We expect Theorems 4.1 and 4.2 to remain true when «o
is an algebraic irrational, but we are unable to prove that
this is so. It is not hard to appreciate the difficulty in
proving Theorem 4.1 for such o . When «a 1is rational we
may express Z(s,a) in terms of L-functions and then apply
Theorem 3.1 to obtain Theorem 4.1. When o is transcen-
dental our proof relies on the fact that the numbers
log (m+a) (m=20,1,...) are linearly independent over @ .
Neither of these approaéhes work when a is an algebraic
irrational. All we can say in this case is that more than
half the numbers of the set {log(m+a)}§:o are linearly
independent over @ when M is large. This fact was dis-
covered by Cassels [3] (see also Worley [27]) and used by
him to settle the problem of the existence of zeros of

t(s,a) in o > 1 when a is an algebraic irrational. It
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seems likely that this observation may be of use in our prob-

lem too.
§2, Proof of Theorem 4.1 for Rational «
Let o = g where (a,g) = 1 . Since a # % and

a#1 , we have g > 3 . Our starting point is the identity

S
(1) C(S.g) = 2 Z X (a)L(s,X)
¢ (q) X (mod q)

valid for all s € € . To prove (l) we use the formula

=
-
tHh
3
i

= a (mod q)

-1 Z X(a)x(n) =

¢ (g) X (mod q)
0 if n Z a (mod q)

For o > 1 the right-hand side of (1) is

S (=]
= ZE: Xta) ¥ Xlgl
% (g) x(mod q) n=l n
o S
= ] Sg <"""'l Z Y(a)x(na
n=1 n ¢ (@) ¥ (mod q)
7 a®
- n=1 ns

nza(mod q)
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.7 —df

k=0 (kg+a)S

z(s,2) .
q

This establishes (1) in ¢ > 1 . Except for a simple pole at
s = 1 , the right hand side of (1) is analytic in the entire
complex plane. Thus, by analytic continuation, (1) defines
C(s,%) for all s .

Let f(s) and C be as in the statement of Theorem
4.1. Since ¢(g) 22 for g > 3 , we can find a constant
& such that neither f£(s)g~S+& nor f(s)g™® - c(¢(q) - 1)
vanishes on C . For such a ¢, and for ¥; an arbitrary

but fixed character (mod q), define

Jx(a)(f(s)q—s+0) if X # X
f(SIX) =

lxl(a)(f(s)q"s - c(@l@-1)) if ¥ = xp -

Then we have

S
(2) £(s) = -2 EZ X(a)£(s,x) .
¢ (g) ¥ (mod g)

Furthermore, each £(s,¥) 1is continuous and nonvanishing on

C and analytic on the interior of C . Thus we may select

a branch of 1log f(s,x) for each ¥ (mod g) which is con-
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tinuous on C ang analytic in the interior of ¢ . Since
C is simply connected and compact, we may apply Theorem 3.1
with fX(s) of the theorem equal to log £(s,x) to deduce

that if €1 >0 , there is a T ¢ R such that

(3) |- © 1og p] < £, (plq)

and

(4) max!L(s+iT,x) - £(s,%x)]| < o (x (mod q)).
seC ,

(3) and (4) lead to

-

If €1 1is small enough and ¢ >0

(5) maxlqiTL(s+iT,X) - £(s,x)]| <

(X (mod q)).
seC

QIm

For T as in (5) we find from (1), (2), and (5) that

maxlc(s+ir,§) - £(s)|

seC
s+it _ 5 —
= max|<Ld— x(a)L(s+it,y) - S— x(a)f(s,x)
seC|¢ (g) x(mod q) ¢ (g) x (mod q)
s _ .
= max| -J— ¥ (a) qlTL(S+iT,X) - £(s,y)
seC|¢(q) X (mod q)

max|q®| ES max

¢ (g) seC x (mod g) seC

L (s+it,¥) - £(s,x) ‘

< —g— Z E = £
¢ (g) x(mod q) 9
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This proves the theorem for o rational. [ ]

§3. Proof of Theorem 4.1 for Transcendental o

We begin with a lemma.

Lemma 4.1. Let C be a compact set in the strip

% < o1 <0 <0y < 1l and set § = Gl'% . If 0 < o <1 and
T 1is large enough, then
I 1
(6) max| g (s+it,a) - Z —=3713 << T-a
seC m=0 (m+a)

for all 1 ¢ [Tl/z, T] ; the implicit constant is absolute.

Proof: Let =z = x+iy . If % < x <1 and

lyl] < 7T , then by a well known formula (see Davenport [4;

p. 1731)

T 1-2z
z(z,a) = r T + o(T™%) .

m=0 (mt+a)? 1~z

Replacing z by s+it where s e C and T ¢ [Tl/z, T]
and noting that if T 1is large enough [T+t[ < 1T , we ob-
tain

T 1 1/2—0l -J1

Y + O(T ) +0(T 7).
m=0 (mt+a)

i

z (s+it,q) s
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This proves the lemma since %-ol > -0y -
Let A = {log(m+a)};_0 . Then A is monotonically

increasing and its counting function is

Ny (x) = EZ 1= ;Z: 1 =¢e*+ 0(1) .

log (m+a) <x m+a<eX

It follows that if ¢ > 0 ,

x
c e
INA(x+—§) - Ny (x)| >> = .
X X
Therefore N,(x) satisfies the hypotheses of Lemma 2.2.
Fix ¥ > 0 and let £f(s) and C be as in Theorem 4.1. We

can find numbers 0, and 0, so that C 1is'in the strip

% <0y <0< g, < 1 . Clearly

£(s) - 7§ L
0<m<u (m+o)S

is continuous on C and analytic in the interior of C .
Thus, by Lemma 2.2, there are real numbers p and 8

m
(H < m < p) such that

1 e(em)
(7) max|f(s) - ] —=—— - 7 —D) << /2
seC 0<m<p (m+a)S  p<m<p (mta)S

Here the implicit constant depends on 6y » 03 » A, and

c .

Next we take N

H
-

and
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(1)
blog(m+a)(T)
0 if mo> T
in Lemma 3.7. For T >0 let .é(T) = [Tl/z, T] The meas-
ure of é%T) is obviously
J()y =T -1/2 = p(1 + 0(1)) .
Also
s(T) = min | log (m+q) - log(m'+q) |

p<log(m+a)#log(m'+a)§?

Hi-

>3

It remains to show that A is linearly ihdependent over Q

when o is transcendental. Suppose there is a relation of

the form

) ap log(m+a) = 0

with the a, integers. Then

M a

TT (mea) ™= 1.

m=0

This cannot be an identity in « since it does not hold for
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@ =-m , m being any integer <M for which ap # 0 . Thus
¢ satisfies a polynomial with intéger éoefficients. This
contradicts the assumption that o is transcendental. We
now have from Lemma 3.7 that if 0 < g4 < % and T 1is large,

there is a T € 3(T) such that

(8) “- T loq(m+a)“_ <4

o for 0 <m <u,
(9) “_ L lgg(m+a) - em“ < 4 for H<m<«<op,
and
(10) max| L << p78

seC|p<mgT (m+a)s_H“r

where ¢ = cl-% and the Gm in (9) are thé same as those

in (7). The constant in (10) depends only on gy , Oy s

A, and C . If d 4is small enough, we obtain from (8) and

(9) that
e(8_)
max -1 + i - 1 - < p~S |
seC|0<m<y (m+a)S pu<m<p (m+a)S 0<m<p (m+a)STET) —

This, (7), and (10) vield
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(1) max
seC

£(s) = ] A << 78 4 712

0<m<T (m+a)SHLT

.

By our choice of éﬁT) » the estimate (6) of Lemma 4.1 is

valid. Combining it with (11) leads to

max|£(s) = (s+it,0)| << p~8 4 y~L/2 4 =8
seC

Since U < p < T , the result follows. This completes the

proof of Theorem 4.1. [ ]




CHAPTER V

A g-ANALCGUE OF THE UMIVERSALITY OF & (s)

§1. Statement of the Result

Our aim in this chapter is to prove the following g-ana-
logue of Voronin's universality theorem for £E(s) (see The-

orem D, Section II.1).

Theorem 5.1. Suppose that C is a simply connected
compact set in the strip % < o <1, and that f£f(s) 1is con-
tinuous on C and analytic in the interior of C . If
e >0 and g is sufficiently large, there exists a charac-

=

ter ¥ (mod g) such that

max{L(s,x) - ef(s)] < g

seC

The proof of Theorem 5.1 parallels that of Theorem 3.1
to some extent. However, the present proof is simpler as we

are not concerned with a simultaneous result.

§2., Some Lemmas

For our first lemma see Prachar [16; Chap. 1, Satz 5.117.

Lemma 5.1. If g > 3, then

d(g) >> g .

log log g

The following is an easy conseguence of the properties

of characters.
131
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Lemma 5.2. Tor complex ay and p > 0 we have

' 2
EZ 2pX(p) |2 la, |
IR TCUR R 10y
X (mod q) [p<p<g P p<pg P

The next three lemmas are essentially g-analogues of

Lemmas 3.5, 3.6, and 3.7.

Lemma 5.3. Suppose that ¢ is a set of K primes (K >.0)

and that for each p e @ , Gp is a fixed number with

0<6_ <1. If 0<4dc<2 and (q, ] p) = 1 (we set
P » ? pe@

[ Pp=1 if P is empty), we let I4(q) Dbe the number of
peg

characters X (mod g) satisfying

”ész.xial -6 |<a, bep.
: 27 pi=
Then

I.(q)

lim d_— = a¥ .,

g ¢ (q)

(q, T_r p)=1
pee

Proof: Throughout the proof we assume (a, | p) = 1.
LOOL DeEP

If K =0 the result is obvious so we assume X >1 . We

first show that for 0 < g < % and g large enough, there is
a X (mod g) such that
Jazexe@) _ o | < a, -

2T

To do this it clearly suffices to show that for any € > 0

and ¢ sufficiently large, there exists a X (mod g) such
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that

(1) 1+ 7§ x(p)e(-ep)l > K+l-¢ .
pef

To this end we consider the expression

1 2m
—_ ‘l + ¥ x(p)e(+8p) ’
¢ (g) x(mod q) pe@

where m is a positive integer to be specified later. By

the multinomial theorem this is

- : o 1 x ¥ 12
—Ba—— x(p;* ... Py lel- T vkek)l

$(q) X(mod q) {vy+...+Ve=m Vgl...Vg! . . k=1

. A ]
Vi 20
=! m! K
' = el I (ve-vprey
Vot.. s+ Vg=m \)b+,_.+v'x=m vol. ..\,K: v(')"‘“': =1

V20 vy 20

. (_3.-__ Z FX ( zlp:k)f Tf]l'p:);)) ’

$(q) x(mod q)

where Pyre--sPp are all the primes in P . Now if q is

large enough

R v, X v
i i P = I P (mod q)

only when v, =V

r 1 <k <K ; so by the formula
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1 if a = b (mod q)

-1 x(a)X(b) =

¢ (q) x(mod q)
9 if a Z b (mod q)

the above is

- )
vo+...+vK=m vol...v !‘

K
R >0
— 2 S
— ) —
> v0+...+vK—m vol...vK. v0+...+vK—m
Vk20 V20
= (R+1)2™ 1

v e s '+vK-m

provided gq is sufficiently large. The number of solutions

in nonnegative integers of the equation

is at most (m+1)K . Using this estimate we find that

- ’1 + ) x(ple(-8 ) 2m 5 iﬁill—-

pef (m+1) K

¢ (q) x(mod q)
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if g is sufficiently large. Since the left-hand side is

< max 1+ ] oxpe-o) |,

X (mod q) PEP
we have on taking omth roots.
K
max |1+ ] x(ple(=8 )| > (x+1)/(m+1)2" .
X (mod q) pEP

Taking m large enough as a function of K , the right

hand side can be made
> K+l-e .
This proves (1).

Now let C; and C, be two equal cubes in the K-

dimensional unit cube with sides parallel to the axes, and

arg X, (p;) arg X, (py)

with centers at the points o reeey ———EF———=-
(arg xz(pl) arg xz(pKv

and 5 Fesay ————5%———— , where Xl and X2

are characters to the same modules qg . If Ij(q) (i=1,2)

is the number of characters X (mod q) for which the point

arg X (pq) arg X(PK)) o
( 5o Feeey > is in Cj » then
4Il(q)
lim il 1
(q, I p)=l

PEP
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arg X (py) arg X (py)
For ( soae ey m————— will lie inside C if
27 27 2

and only if

(arg X(Pl)XZ(Pl)ii(pl) arg x(pK)xz(pK)Xl(ij
2T ressy 2

lies inside Cy , and xxzii is a character (mod q). It

follows that

I (@) |
lim ——— = volume (C.) (ij=1,2) .
gr® ¢ (q) J
(q,pgep)=l

The result follows from this. [ ]

Lemma 5.4. Let C be a compact set in the strip

% < 01 < g < 02 <1 . Let AX(n) be as in Lemma 3.8, let

X be a character (mod g), let p > 1, and set

A (p)x (p)
q6/4

S(SIX) = Z .
p<p<qg pS log p

Fix 0 < Gp <1 for each p <p , and for 0 < & < % let

&d(q) be the set of characters ¥ (mod g) satisfying

”ar2'n'(p)-ep”-<—d’pip’p*q-

If K(g) 4is the number of p < p with p }f g , then for g
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sufficiently large

1-20
E; max|S(s,x) |? << (2d)K(q)¢(Q)D L.
Xg&d(q) seC

The implicit constant depends on G1 ¢ Oy o and C .

Proof: Fix X, 0 <K < 7m(p) and let P, be a set of
K primes <p . We associate with @K the sequence Q(Ffy) of

all g > 1 with

v(qr ‘,—rp) =1, T—T—P]q .
pefy pLo
PZfx

For g ¢ Q(@k) ,\Qd(q) is simply the set of X'(mod g) with

arg y (p)
” o -]l ca, pebyx,

and to prove the lemma it suffices to show that for any
choice of K and Py , if g is large enough, q & Q(f) ,

then

1-2¢
(2) Z max|s(s,x) [% << (2a)%s (q)p L,
xedg (g} seC

where the constant depends on Gl ' 02 ;, and C . To this

end let U be the interior of the rectangle with vertices

oy + iA , 0, + iR, where A = max|s| . Set
seC
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§ = min min[s-z[ .
zedU seC

By Cauchy's integral formula

max|S(s,x) |? = max
seC seC

1 S(z,x)dz 2
2mi zZ-s

aU

< —1—-—f Is(z,x) |2 lazx[ |az|

(216) 2
U U
Thus
Z max|s(s,x) |2
xeéé(q) seC
< -(LS‘)‘Q‘J leI[ ( Z( ls(z,xH?‘)leI
2 X € q)
U oU \ &d

| A

__l_—-(J ]dz[>2 max ( E: [S(z,x)ﬁﬁ
U

(278) 2 zedU xa&h(q)

2A+(0,-0. )\ 2
= (——-———2__]:._> max

= ( stz 7] .
zgdU Xedg (q)

. 1 . .
Since 0 < 02-01 < 5 ¢ We may write this as

(3) ZE: max|S(s,%) |2 << max ( :Ej [S(z,x)]2>

xe@é(q) seC zedU

4

xedy (q)
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where the constant depends only on § and A . We now

distinguish between two cases.
First assume K = 0 . Then Jld(q) is the set of all
characters (mod gq). Writing =z = x+iy and applying Lemma

5.2, the sum on the right hand side of (3) is

| A s/4 (P X (P)/log pl?
o)

= ¢(q) ] .
p<p<q p2¥

Since |A 5/4(P)X(P)/log p| <1 and x >0y for z e 3U ,
q .

this is
1 1
< 9(q) ] 257 < ¢(@) ) T3
P<PIg p p<n n
l-20l
<< ¢(a)p '
where the constant depends on 01 . Using this in (3) and

noting that 6§ and A depend on Gl + O , and C , we

obtain (2).

Now assume K > 1 . By Cauchy's inequality we may

write the sum on the right hand side of (3) as

(4) zz Is(z,%) ]2

xedg ()

< 2 Z ls1(z,x)[2 + 2 Z IS,z 012,

hxe&d(q) xedg (q)




