CHAPTER IT

UNIVERSALITY AND A FUNDAMENTAL LEMMA

L. Introduction
The subject of this and the following chapters has its

2rigin in a theorem of H. Bohr and R. Courant [1l] which be-

Longs to the classical value distribution theory of the

2iemann zeta-function, 7 (s) . (An account of this theory
may be found in Titchmarch [19; Chap. 11].) We have in mind

Theorem A. For fixed o ¢ (f’ 1) , the curve y(1) =

z{(g + it) 1is dense in C .

Recently S.M. Voronin [20] strengthened Theorem A by

proving the following two theorems:

Theorem B. For fixed o ¢ (%, 1) , the curve Yl(r) =

i1y, ..., 2P D5 4 i1)) is dense in @" .

(z(o + it), ¢' (0

S with Re s. ¢
n j-

Theorem C. For fixed Sy Sor ey
(%, 1) for 1 <j <n and Im sj # Im Sy for j # k , the
curve Y2(T) = (C(sl-+it), c(s2 +it), ..., c(sn-+ir)) is

dense in En .
51




Note that Theorem A is contained in both Theorem B and
Theorem C.

Interesting as Theorems B apd C are, Voronin [21] sub-
sequently extended Theorem B to show that Z(s) is "univer-

sal":

Theorem D. Let Dr be the closed disc of radius
r < % centered at s = % in the'complex plane. Suppose
f(s) is analytic on the interior of Dr and continuous
and nonvanishing on Dr . Then for any € > 0 , there is a
T ¢ R such that
max |[Z(s + it) - £(s)| < e .
seDr
This is a universality theorem in that it asserts that
the translates of < (s) approximate all the functions in a
large class of functiéns. We may also consider Theorem D to
be an infiniﬁe dimensional Hilbert space analogue of Theorem
B. In fact, it is not difficult to see that Theorem D im-
plies Theorem B.
The condition in Theorem D that £(s) be nonvanishing
on Dr is significant. 1Indeed, suppose that the conclusion

of Theorem D were true for a function £f(s) which has a zero

interior to Dr but not on the boundary of Dr ' BDr . Let
min |[£(s)| = m > 0 and choose e = m- in Theorem D. Then
seSDr

there would exist a T € R such that
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max |g(s + it) - £(s)| < min |£(s)]| .
seDr .SEBDr

This and Rouché's theorem would imply that ¢ (s) has a zero

in the disc Dr + 1t . In other words, it would follow that

the Riemann hypothesis is false.

In the following chapters our object will be to prove
other universality theorems. We now describe some of our
main results.

Voronin [21] mentions that Theorem D is true for all
Dirichlet L-functions, L(s,¥) . In Chapter III we show
that much more is true. Let e > 0 , let g > 1 be an in-
teger, and let C be aAsimply caonnected compact set in the
sStrip %-< 0< 1 . Suppose that for each character Y (mod q) ,
fX(s) is continuous on C and analytic on the interior of

C . Then there exists a T € R such that

£ ()

max |L(s + it, X) - e X | < ¢
seC
for each X (mod g). As applications, we deduce a univer-

sality analogue of Theorem C and we prove that the Dedekind
zeta-function of any abelian extension of the rationals is
universal.

In Chapter IV we prove that certain Hurwitz zeta-

functions, z(s,a) , are universal. In particular, suppose

that o« e (0, 1) , o # % » and o 1s rational. Again we nﬁgf

denote by C any simply connected compact set in the strip
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% <o <1 . If € >0 and f(s) is continous on C and
analytic on the interior of C , there is a T € R for which

max [Z(s + it; a) - £(s)]| < €
seC :

If we take C to be a disc and choose an f(s) having
zeros inside C Dbut not on the boundary of C , then we
conclude from Rouché's theorem as before that zZ(s,a) has:
zeros inside C + it . Thus (s, a) has zeros off the
line ¢ = % but in the critical strip. The same results
hold when o ¢ (0, 1) and a is transcendental, but we
leave untreated the difficult case in which o is an alge-
braic irrational number.

In Chapter V we prove a g-analogue of Theorem D. Let
C, f(s) , and ¢ be as in the previous paragraph. We show
that there is a number dy = qO(C, £, e) such that for every
q > Iy - there exists a character ¥ (mod g) for which
ef(s)l

max |L(s,yx) - < g

seC
A. Good [6] has combined Voronin's work With a method
of H.L. Montgomery [13] for proving Q-theorems for 1lag
lz(s)| . The results of this fusion are quite interesting.
>For example, Good is able to tell how large 1 must be taken
in order to ensure that the set Q(Dr + it) covers a pre-
scribed annulus. Since Good desired quantitative results,

it was necessary for him to develop methods which are some-




what different from Voronin's. In our proofs, we follow
Good's approach rather than Voronin's.
Essentially, there are two steps to this approach. These

are perhaps best described by sketching the proof that £ (s)
is universal. Let C , f(s) , and € be as above. .The
first step is to show that if u is sufficiently large,
there is a p > ¢  and there are real numbers 6p (p prime,
U < p < p) such that

max | Z e(® )p ° - £(s)] < £ .

seC u<p<p P 2
This follows from Lemma 2.2, the so-called fundamental lemma.
The second step of Good's approach consists of using mean-
value theorems, a zero-density estimate for C(s)b, and a
general form of Kronecker's theorem on diophantine approxi-

mation, to show that there is a T eR such that

max |log ¢(s + iT) - EZ e(6 )p °| < % .
seC p<p<p P

(Of course, the logarithm must be suitably defined.) By com-
bining both these inequalities we find that there is a

T ¢ R for which

max |log z(s + it) - f(s)| < e .
seC’

We conclude from this that there is a T ¢ R which makes




_ ef(S)I

max |[Z(s + iT)
seC

smaller than any preassigned positive value, as desired.
While the author was writing this dissertation, Voronin
[22] announced that the Epstein zeta-functions and the Hur-
witz zeta-functions, ¢ (s,a) , with o ratiénal, a e (0, 1),
and o # % r have zeros in the right half of the critical
strip. The author then obtained a copy of Voronin's disser-—
tation abstract ([25]. 1In it, Vbronin states a simultaneous
universality theorem for n-tuples of Dirichlet L-~functions
analogous to our Theorem 3.1. Presumably, Voronin is also
able to prove a universality theorem for ¢(s,a) with a
rational. However, it seems that he has not duplicated
either our universality theorem for ¢ (s,a) with o trans-
cendental, or the g-analogue of Chapter V. Furthermore,
all of Voronin's univesality theorems involve the discs Dr
whereas ours involve arbitrary compact sets. As we shall
see, this fact has some interesting consequences (see Theorem
3.3, for example). Finally, where it has been possible to

compare proofs, they differ significahtly.

§2. Some Notation and Statement of the Fundamental Lemma

'In Section II.l1 we mentioned that the first part of

our method for proving universality theorems is based on the
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fundamental lemma. Before we can state this lemma we must

introduce our notation.

Throughout this chapter, U denotes an open bounded

rectangle with vertices on the lines o = Ol and o0 = 02
where % < ol < 9, <1 . By L2(U) we mean the set of

equivalence classes of all complex-valued functions which
are square integrable on U with respect to Lebesque mea-

sure. This is a Hilbert space with the inner product given

by
£y (s), fz(s)> = f fl(s)f—z_(s) dodt
U
for fl(s) and fz(s) € LZ(U) . We denote by P2(U) the

closed subspace of L2(U) generated by the polynomials

in s .

Let A = {A} be a monotone increasing sequence of real
numbers tending to « . We write NA(X) for its counting
function. Thus

N, (x) = ) 1.
A A<x
Al
If 0 <u<p , we let FU 0 be the set of all functions

of the form

H<e <o
AeA

where the 2z, are complex numbers with |le < 1 . Each
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FU,O is a convex set. Also, if u < pl < Po s ﬁhen
Fu,ol gru,pz

Hence
Ty = uk<)p Tu,o

is a convex set. Finally, since the functions in Fu are

entire and U is a bounded set, we conclude that Fu is

a convex subset of LZ(U) .

The pfbof of the fundamental lemma is based on

Lemma 2.1. Suppose that for any fixed ¢ > 0 , we have

. X
C e
]NA(X + =) - NA(X)| > =5 .
X X

Then for any u > 0 ; the closure of Fu in L2(U) is
PZ(U) .
Remark. Our hypothesis on NA(x) in Lemma 2.1 is far

from being the most general one possible. We have just made

it general enough to cover the cases we shall require.

When A 1is the sequence of logarithms of the primes,

AR RN R

Lemma 2.1 yields Theorem 4 (ii) of A. Good [6]. Voronin

[21] deduces his fundamental lemma from a theorem of D.V.
(¥ v
Pelerskii [15]. Basically, PeCerskii's theorem is an exten-

sion to Hilbert space of Riemann's theorem on rearrangements




of conditionally convergent series of real numbers.

We now state

Lemma 2.2 (The Fundamental Lemma). Suppose that

N, (x) < e*

and that for any fixed ¢ > 0 ,

X
C =

Ny x £ 5) -] > = .
X X

Let C Dbe a simply connected compact set in the strip
% < oy < 0 < 62 < 1 and suppose f(s) 1is continuous on C
and analvytic in the interior of C . Then for each u > 0

there exists a constant = po(ol, 02, C, A, £, n) such

°o
that if p > Po 7 there are numbers 6, € R for which

A
max |f(s) - 2; e(d

)e—xsl < U~b&

}\. -
seC u<exip
Al
The constant implied by <« depends only on Ol ,02 ;, C ,

and A .

In the next section we set down the lemmas needed for

the proofs of Lemmas 2.1 and 2.2.
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53. Auxiliary Lemmas

Lemma 2.3. Let P(x) be a polynomial of degree n . Let

a € R and suppose that
max ]P(X)I < M . e
a-l<x<a+l L
fhen 0l
max [P'(x)] < n°M . L
a-l<x<a+l ;

This is a classical result of Markov [11] (see Cheney L

[3; p. 911).

The next lemma is Mergelyan's theorem (see Rudin [17;

Theorem 20.5]).

Lemma 2.4. TIf C is a compact set in the plane. whose com-

Plement is connected, if f(s) 1is a continuous complex

function on C which is analytic in the interior of C , I

and if € > 0 , then there exists a polynomial P(s) such

that

max |f(s) - P(s)| < e .
seC

Lemma 2.5. Let C be a compact subset of the rectangle

U . Let




d = min min |s - z]| .
zedU seC

If f(s) 1is analytic on U and

f If(s)l2 dodt < e ,
[8)

then

max |£(s)| < Je/m

seC d

Proof: Let Sg. be any point in C and let Dn denote

the closed disc centered at so with radius R < d . Then

DR<: U . Now for each r with 0 < r <R , we have

2T .
_ 1 7 i6
f(so) = 5= L} f(s0 + re 7)d6 .
Hence
P R
TRT|£(s,)| = 27 | |£(s,)]|zdr
0 0 0
'R 2m .
= ar f if £(s. + ret¥)as|rar
0 2T 0 -0

A

2T R S
( J ]f(sO + rele)l rdrd6é

{2W fR ‘f(so +rei6) lzrdrd6> 1/2“02“ JR rdrde> 1/2




Therefore

£isg) < 7T
R
The result follows from this. [ ]
The fdlldwihg lemma is due to A. Good [6; Lemma 6].
Lemma 2.6. Let K and L be positive integers with K< L.

Let ap, and bk » L <k < K, 1<2 < L be complex num-

bers. Suppose the system of equations

L
(1) 22 a, W, = Db, 1 <k <K

=1

. — .

has a solution W e D , where D. = {(w;, ..., WL)IWQ e C,
lwkl <1, 1<% <L} . Then the system also has a solution
—
w' e D, for which |wi[ = 1 for at least 1L - K integers
L <L .
Proof: The proof is by induction on L . The assertion is
trivial for K =L . For 1 <K <L , the solutions of (1)

form a linear manifold of dimension at least L - K over

the complex numbers. By hypothesié, this manifold intersects




D. . Hence it intersects the boundary of D

L . That 1is,

L
there exists a real number 8 such that the sytem

has a solution in Droq - Since this is a system of K

equations in L - 1 unknowns, the inductive hypothesis
. . | 3 . ]

asserts that it has a solution (w!, ..., WL-l) £ DL—l

with lwil =1 for at least L - K - 1 integers & with

1 <% < L-1 . This proves the lemma. [ |

Lemma 2.7. Let C be a compact set in the strip

L.

5 < g < g, <1 . Let

1 2

N, (x) < e® .

Assume that 0 < u < p and that for each X & A with
wo< el < p we have le{_il . Then there are numbers

g, € R such that

A
max l E; zxe_kS - ZZ: e(€>>\)e—>‘S « Y2

seC u<ekﬁp u<exsp

Ag Ach

The implied constant depends only on o C , and A .

l 14
Proof: Choose A > 1 so that |s| <A for all s e C ,

let U Dbe the open rectangle with vertices gy + 1A,




7, t 1A . Then CCU . Set K = [Ae2 log(2v+2)] + 1
for v >0 . Let v < Vv' <2v . We have
_ K
z; z.e” S = z ) (= Xs)
) A M (k=0
v<e <v'! v<e <v!
Agl Ael
E; z O )
<e i A k>K ki
Ael
Since NA(x) < ¥ y the number of A ¢ A with ex < v' is

< V' v .,

Thus, if |z,| < 1, we find that

29f) 7 (A logavean®
K T kU k!
vt eyt k>K k>K
Ach

< v z (Ae logé2v+2))k
k>K

«y 7 delegEw)
k>K

. . 1 e, k
for s e U . (Here we have used the inequality T (E)

when k > 1 .) The last sum is the tail of a geometric

serieswith ratio <1 so the entire exprassion is

Ae log(2v+2).K

< v " )

<« ve ¥ <yl




We now see that if the zy each have modulus <1 , then

(2) Z zxe'xS =

k
sk E; zx(—xg + O(v—l)

Il o~1%R

k
v<eksv' k=0 v<eksv'
Al Ael
uniformly for s € U . Assume that the number of A g A
with v < ex < Vv' is at least X +.1 . Applying Lemma 2.6

to the system

k
(-A) —
2; ZX i = bk ’ 0 <k <K,
v<e <v'!
Ael

we conclude that there are complex numbers zi with

[zi] <1 and [zi] <1 for at most K + 1 of the A such

that
k k
(=AY _ E; (=\)
Z S T S T 02k <k.
v<e <v'! v<a <v!
Aed Al

Hence by (2),

-AS _ Ez L =As -1
E; z,e = z,e + O(v ™)

v<exgv' v<exgy'
Ach Aeh
for all s € U . Therefore real numbers ex can be found
such that
E; -AS -\s -1 _Ol
z,e = e(ek)e + O(v 7) + O(Rv )
v<eA§v' v<ekgv'

Aeh Ael




for all s € U

. (Recall that the left edge of the rectangle

U lies on the line o0 = Gl .) Since

KV <'v T log(2v+2) < v1/2

I

we obtain

(3) Z z}\e_As = Z e(6,)e™"% + o /2y .

v<eksv' v<eX$»'
Ael Ael
Now assume that the number of X € A with Vv < ex < v' is

at most K . Then for all s € U we find that

-0
Ez er—xs < Rv 14 v—l/2 ,

A
v<e LV

Ael

and

-0
E; e(ek)e As « Kv 1 < vV 1/2
v<ek5v'
Aelh

14

where the 6) are arbitrary real numbers. Thus (3) holds

in this case also. Adding the respedtive sides of (3) to-

gether with v' = 2y and v of the form v = 20 for

0 <n < log(%)/log 2 , and then using (3) once more if neces-

sary to cover any remaining part of the range (u,0l , we

obtain




sup I E; z)ke—kS - Ez e(€)>\)e_>\S < p_l/z

A
seU H<e <p u<exso

AED Ael

It is clear from the proof that the constant implied by <«

depends only on A , Oy v and A . Since A depends on
C , the constant depends on A, Ol , and C . The result
now follows.
§4. Proof of Lemma 2.1

Let Tu be the closure in’ L,(0) of Tu . Since the
functions in Ty are entire, Ty E‘Pz(U) . Since PZ(U)
is closed in LZ(U) , Tug;Pz(U) . We must show that PZ(U)

c- As a closed subspace of the Hilbert space L2(U) ’

U

PZ(U) is isomorphic to its dual. Furthermore, TITu is
convex since Ty is. Therefofe, by a consequence cf the
theorem of Hahn-Banach (see Rudin [18; Theorem 3.4]), an

element g(s) ¢ P2(U) is in 'y 1if and only if
{g(s), £(s)) e<Tu, £(s)>
for each f(s) ¢ PZ(U) , Where
{Tu, £(s)) = {Ka(s), £(s)>|h e Tu} .

If £(s) = 0 , this condition is clearly satisfied. Thus,

from now on we assume f(s) Z 0 . It then suffices to show




(Tu, £(5)) =€ .

Now consider the projections

| Z
(<t , £(s)> = z J T(s)e S dodt | lz, ] < 1
WP ) A | "TA =
p<e ' <p U
Ael

for p > u . These are closed discs centered at the origin

with radii

ro(u,0) = Z ’ f F(s)e ™ qodat
u<el<o U
Ach

We will show that there is a sequence of pj tending to

with Jj such that the discs <1“u 0. £(s)> , which are
"3
nested, have radii tending to « . It will then follow

that {Tu, £(s)> = € and the lemma will be proved.

To this end, define

f(s)e

(c,+8-8) 2z
(5) F(z) ='J 2 dadt
U

Clearly F(z) 1is entire. By the Cauchy-Schwartz inequality,

(o,+8+A) |z |/
F(z)] <e 2 f 1£(s) | dodtJdodt 1/2
8] U
where A = sup|s| < » . Thus F(z) 1is of exponential type.

seU




Zxpanding the exponential in the integrand in (5) into a power

:eries gives

(o, +8z @ k
F(z) = e 2 f E(s) ) ('i?) dodt
k=0 -
8]
(O2+6)z o (—Z)k _ K
= e z —Tl—f f(S) S dodt .
k=0 - U

The inversion of integration and summation is justified by

"bsolute convergence.) We write this as

(o,+8)z o __\k
5) F(z) = e 2 I 7y 575%— .
k=0 :
where
, _ = k
{7) Fk = { f(s) s dodt (k =0, 1, ...)
8]
Again by (5) we have
(0,=0)x
IF(x)] < &% f |£(s)|e 2 dodt
[8)
2(0,=-0)x 1/2
< %% f lf(S)|2 dodt f e 2 dcdt
U U
for x e R . Since 0o < o, when s € U , this gives
§x

(8) |lF(x)] < e for x < 0




‘Jjow assume there is a ¢ > 0 and an 0 such that

IF(x)| < & °F

wom {8) and (9) it follows that

'3 analytic in the strip |v| < 8 , where w=u + iv . On

‘he other hand, it also follows from (8) and (9) that

S(x) € LZGR) . By one of the Paley—Wieneﬁ theorems (see
udin [17; Theorem 19.3)we may conclude from this and the
Zact that F(z) is of exponential type that ﬁ(w)' has com-

cact support. Since F(w) is analytic in |v| < & , we

must have ﬁ(w) = 0. Thus F(z) = 0 . By (6) and (7) this

neans that

P, = f f(s) sdedt =
9]

That is, either f(s) Z 0 , or £f(s) is orthogonal to

PZ(U) . Since f(s) € P2(U) and we are assuming f(s) Z 0,

(9) cannot hold. Hence, for each § > 0 , there is a sequence

of real numbers xj tending to <« with J such that

~8%, .
(10) |F(xj)l >e (]

I
—
[\

~

Now assumé § 1is so small that



nd define a sequence {yj}j;ﬁ of real numbers by the con-
ition
-(02+cS.)x -(0'2+c3)y.
12) max e lF(x)]| = e B0
| x-x.]<1 J
1=
2t
K (_'Z)k
113) Eg(2) = Z Fi i (K =0, 1, ...)
k=0
ind let B satisfy
(14) B log(sos) = 1 + &
: 9'2en
Note that (14) implies B > 2eA . By (6), (7), and (13),
—(62+c§)x : : Xk
e F(x) - EK(x){ < L R0 7
KSR k!
2 1/2 (ax) ©
< f |£(s)|® dodt f dodt I |
= fx 1
U U K
Vk
< ¥ (2f)
k>K :
. . . 1 e k .
Using the inequality E7~i'(E) for k > 1 , we find that
this last expression is




nrovided that _ﬁ_'i % . Since B > 2eA , this last condi-

tion is met when K > Bx . Assuming this, we have by (14)

that
(Aex)K < (ég)Bx - e—xB log B/Ae < e—x(l+6) )
K — B
Thus
-(o,+8)x _
(15) e 2 Fx) - B (x)| < e ¥

for x 1large and K > Bx . By (12), (15), and the observa-

tion that

=2 < x < .42 if x.~-1 < x < x.+1
Y374 2 X 2 ¥y T2l

we obtain

: -(02+6)x -y.+2
i max  |Ep(x)| < max e |F(x)| + e

§ |x-x%.]<1 T x-x.]<l

§ —(02+6)y. -y.+2
= e TR +e

T

for K > B(yj+2) and j large. By (10), (11), and (12),



-(0,+8)y. o= (0,+28) %, -y.+2
e 2 ] lF(yj)l > e 2 J > e
lor large J . Thus
-(02+6)y.
‘16) max  |E (x)] < 2e I F(y.) ]
‘X—lef_l J

for K 2 B(y;+2) and j large enough. Now if lx‘xj| <1y
we see by Lemma 2.3 that

% ,
|EK(X) - EK(yj)l =/,J Ek(u)du!
73
< x-y.| max  |E'(x) ]|
- I |x-x. <1 K
j ———
< x-y.| K2 max [EK(x}[ .
] | x-x.| <1
j —
In conjunction with (16) this leads to
(17) |EK(x) - EK(yj)| < 2[x-yji K" e lF(yj)|

for all x with |x—le <1 , provided that K > B(yj+2)
and J 1is large enough. Now at least one of the intervals
2

1 - 1., -2
. = F(2 By, R , or . . + =(2 By.
vy = 7(2 Byy) ¥4l lyyr vs + (2 Byy) 7]




is contained in [xj—l, xj+l] when 3 1is large. Without

loss of generality we assume the latter is true and we write

1 -2

I. = . .+ =(2 By.

5= Wy vy + 702 BY )T

If we assume that B(yj+2) < K < 2'Byj and that j 1s large

anough, we obtain from (15) and (17) that for all x ¢ Ij ’

-(o.+8) x -(0,+8)y.
e 2 F(x)% > e 2 J F(yj)
-(o,+8)vy.
- - 2 3
IEK(yj) e F(yj)l
—(62+6)x
- le F(x) - EK(x)l
-(0,+8)y. : - -y
> e 2 ] lF(yj)|(l —2|x—yle2) e ¥ e
-(o,+8) y. -Y.
> % e 2 J |F(yj)| - 2¢ .
By (10), (11), and (12), the above is
-(0,+28)x. -y. -(0,+26) (y.+1) -y.
> L e 2 J-2e " > L e 2 J - 2e J
Z 2 - 2
-(0,+28)y.
> ge 2073

Thus, if B(yj+2) <K <2 Byj , if Jj 1is large enough, and




if x € Ij , we have

—(O

+48) x.
(18) le 2

- +2¢ .
r | > % . (02 )Yj

Now by our hypothesis on NA(x) , Wwe see that the number of

A e A that are also in Ij is

1 -2
eyj
> —3— -
73
. X.+1
Taking pj =e J , this and (18) yield for large Jj that
Z = (o, +8) A - (9,+6) A
e PO > e |F(A) |
u<et<p. kte :
re A N Aed
e(1—02—26)yj
> 3 .
Y3
On the other hand, by (5),
S e 3
2 _ = -As
- e |lF(M) ] = - J f(s)e dodt
p<e ipj u<e <p. |U
Ael el

Thus we have a sequence pj +~ X as Jj - « suchthat thediscs




<Tyo.r £(s))

J

s radii

e(l—02—26)yj
rf(umg) > 3 .

Y5

.11), we find that rf(u,pj) tends to <« with J .

. completes the proof of the lemma. [ |

Proof of Lemma 2.2

Let C Dbe a simply connected compact set in the strip

.3, < 0 < 02 <1, let £(s) be continuous on C and

“alytic in the interior of C . Set A =1 + max |s| and
seC

i
-

let U be the open rectangle with vertices gy + iA ,

£ iA . Thus CCU . Given u > 0 , there exists by

Lemma 2.4 a polynomial P(s) such that

(19) max |£(s) - P(s)]| <u—l/2 .

seC

Jow since our hypotheses on NA(X) include the hypothesis

°f Lemma 2.1, we have P, (0) = fﬁ . Thus P(s) ¢ FU

“1is means there -is a sequence of real numbers pj tending

%0 infinity with 3 and there are complex numbers zij) with




Iz{j)] < 1 such that

j l Ez Z{jg—KS - P(s) 2 dodt < u—l

U u<ekipj

Acll

A

It follows easily from this that there is a number DO de-

pending on U , A , P, énd U such that for any o > po ,

there are complex 1z, with lzkl < 1 for which

(20) f | E; zke")\S - P(s) 2 dodt < u-l .
U p<ekip
Ael
Since P(s) and :{: zke_)‘S are both analytic on U ,
u<e’<p
Ael

we obtain from (20) and Lemma 2.5 that

Ez z —}S - P(s)

(21) max S ze < (mn 2 a7t
geC 'u<e <p
Aeh
where
d = min min |s-z| .
zedU seC

Since we are assuming NA(X) < ¥ ; Lemma 2.7 implies there

are 0, € R such that A
max I E; 2 eSS _ EZ e (5 )e—xs « u—l/z : ﬁ
seC A A A A P
u<e"<p u<e“<p It

Al Ael




AT A

the constant depends on o, , C , A . Combining this with

1
(21) yields
max IP(S) - 2; e((3>\)e_>\S « u_l/z ,
seC n<e <o
Al
~here the implied constant depends on Ol v 9y s C , and A
'since d 1in (21) depends on ol , 02 , and C). This and
'19) imply
max lf(s) - ZE: e(8>\)e_>\S < u-l/2 .
sec H<e <p
Al

:t only remains to note that the number Py above depends
on 6, , 0, ,C, £, A, and u , since U depends on

C and the polynomial P(s) depends on U , f ,




CHAPTER IIIX

SIMULTANEQUS UNIVERSALITY OF L~FUNCTIONS

§1. Statement of Results

The principal result of this chapter is

Theorem 3.1.‘ Let g > 1 be an integer and let C be
a simply connected compact set in % < g < 1. Suppose that
for each prime p[q we have 0 < ep < 1 and that for each
character y (mod q), fX(s) is continuous on C and anal-

ytic in the interior of C . If ¢ > 0 , there is a

T ¢ R such that

-7 log P -
(1) “—_—_EF—_ - ep” < g (p|lq)
and
fX(s)
max |L(s+it, ¥x) - e | < ¢ (x (mod q)) .

seC

We explicitly state that a <t satisfying (1) exists
because this form of the theorem lends itself most easily

to the applications we have in mind.
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S.M. Voronin [23] has proved that for fixed

o € (%, 1) , the curve
Y(t) = (L{o+it, Xq), ..., L(o+it, X,))

is dense in €% if the characters X1r +++s Xn are pair-
wise nonequivalent. Presumably this means no two of the
characters are induced by the same primitive character.
Voronin [25] ﬁas also étated a universality version of this

result analogous to our Theorem 3.1l. Specifically, let D.

be a closed disc of radius r < % centered at s = % and
suppose that € > 0 . If X1r oo Xn are as above and if
£f1(s), ..., f£,(s) are continuous on D, and analytic in

the interior of D, . then there is a T € R such that

£.(s)

max |L{s+it, xj) - e 7

< g, 1<j<n.
sEDr

From this, Voronin deduces that certain n-tuples of Dedekind
zeta-functions are simultaneously universal. Such results
can also be obtained from Theorem 3.1. However, we are con-

tent to establish

Theorem 3.2. Let C be a simply connected compact
set in % < 0 <1l . Assume K 1is an abelian field exten-
sion of ® and let CK(s) be the Dedekind zeta-function
of K . If £(s) is continuous on C and analytic in the
interior of C , if € > 0 , then there is a T ¢ R such

that




ef(s)[ < e

max |Ly(s+it) -
seC
To prove this, recall that there is a positive integer
g . such that K is a subfield of the cyclotomic field
g[ezﬂl/q] (see Marcus [10; p. 193]). If G is the Galois
jroup of X over @ , then the group of characters on G ,

5, is a subgroup of the group of Dirichlet characters (mod

7). We then have that

-sf ~Tp
(2) txs) =TT (-p B 7 TTurus,x ,
plg xeG
where fp is the degree of inertia of any prime f§ in K

lving over p , and r, = ¢(q)/f (see Marcus [10; p. 1951).
P P

A
Obviously the principal character (mod q), Xg » is in G .

e set

f(s) + % Iy log(l - p ) if X = ¥
Pig

A

0 if xe G, X # Xg » ?;; 

If ¢ >0 , we obtain from Theorem 3.1 that there is a

T ¢ R such that

-sf_r

ef(s)T—Tfl -p B Py §., (s) 1if y = Xg
plg . )

1+ Gx(s) if y e G, X # Xo




uniformly for s € C , and

(4) |- =229 < e (pla) .
where
| A
(5) max [8y(s)| < e (x € G) .
. seC

For such a T we find from (2) and (3) that

-sf_r

~(s+it)f_ -r R A
(6) txls+it) = T T - p Py PG_f‘S’ TTa-p P Pss (s))
pla pla X
- TT @+ & (s)
X#X, X
N
XEeG

unifdrmly for é é cC . It foilows from (4) and (5) that
the right-hand side of (6) will be as close as we like to
ef(s) uniformly on C , if € is taken small enough. This
proves Theorem 3.2.

The only L-function (mod 1) is the Riemann zeta-func-
tion. Thus Voronin's Theorem D of Section II.1 follows
from Theorem 3.1 on taking g =1 . However, the fact that

our set C 1is somewhat arbitrary allows us to state a more

dramatic result.

Theorem 3.3. Let Cj, ..., C, be disjoint simply

ccennected compact sets in % < g <1 . Suppose £f3(s), ...,

fn(s) are functions such that fj(s) is continuous on Cj




and analytic in the interior of cC; , 1 <j<n . I e >0,

J
there exists a T € R such that
£.(s)
max |z (s+it) - e | < €, 1<3<n.
sst

This is a universality analogue of Voronin's Theorem C
of Section II.l. Analogous results hold for the other func-

tions for which we have universality theorems.

The proof of Theorem 3.3 is quite simple. Let

Since the Cj are disjoint, there is a function f(s) which
is analytic in the interior of C and continuous on C

such that

f(S) »= f] (S)

for s ¢ Cj ryr 1 £3j £n. Taking g =1 in Theorem 3.1,

we obtain a T ¢ R for which

max |g(s+it) - ef(S)I < e ;
seC

but

f: (s) )
max ]Q(s+ir) - e J < max ]c(s+ir) - ef(s)[
seCj seC

for 1 < 3j <n . The result follows from this.




The remainder of this chapter is devoted to proving

Theorem 3.1.

§2. Auxiliary Lemmas

Our first lemma is a weak version of a theorem of Mont-

gomery [12; Theorem 12.1].

Lemma 3.1. Let g > 1 be an integer and let T > 2 . For
each character ¥ (mod q), let N(o,T,x) be the number of
zeros B+iy of L(s,x) with o <B <1, 0 < vl <T.

’ .
Then for § < 0 <1 we have

Z N(o,T,x) << (gT)3/2-0 15g91%T .
¥ (mod q)

The next lemma is classical.(see Prachar [16; Chap. 7,

Satz 3.3]).

Lemma 3.2. For each character ¥ (mod q) the number of
zeros B+iy of L(s,x) such that |y-t] <1 and

0 < B <1l is

<< log q(]t]| + 2) .

The following is a quantitative form of the prime num-




ber theorem for arithmetic progressions (see Prachar [16;

Chap. 4, Satz 7.5]).

Lemma 3.3. Let

T(x; g,a) = E; 1 .

px
pZa (mod q)
P prime

Then for =x 2 x45(q) and (a,q) =1,

1 ~-cvYlog x

(g

T(x; g,a) = ) li x + O(x e )

the constants are absolute.

Lemma 3.4. Let 6 = min|ip-Ag| , where Ays <--s Ay are
r#s- '

distinct real numbers. Then for any complex numbers
al, ’.‘.’ aR ¥4
|2

14

R
dt = (T + 2m6 1te) ) Iar
r=1

where 8 1is real and IGI <1l.

This is due to Montgomery and Vaughan [14; Corollary 21.
For a proof of the next lemma see Titchmarsh [19;

Sec. II.7].

Lemma 3.5. Suppose that Ay, ..., Ag are linearly indepen-




e

dent over @ and that © eee, B are fixed numbers with

1’ K
0 <8, <1, 1<k <K. For 0<4dc«< 1 ;, let I_.(T) be
— K- —_— —_— 2 d

the sum of the lengths of the intervals between T = 0 and

T = T such that

l=t2 = &l <@y 1<k <K.
Then
I_(T)
lim -4 = (2a)K .
T+ T

Lemma 3.6. Suppose that C 1is a compact set in the strip

% <0y <0 <0, <1 and that A 1is a monotone increasing
sequence of real numbers which tends to « , is linearly in-
dependeﬁt over 0 ,-and has the counting fundtion

Ny (u) << el . Let p > e be so large that there is at

least one X € A with eX < p and set

S(s,T) = z b

p<e”<T

AelX

y(Te ™%,

where the bA(T) are complex-valued functions of T with
by ()| <1 . Also let Ay, ..., Ay be those A e A with

el < p and fix 0 <O <1, 1<k <K. If for 0 < d<g,

L3(T) 1is the set of 7T e [0,T] satisfying
rxk

I-57 -exllza, 1<xc<x,

then for T sufficiently large




[

1-2

2 (o}
max|S (s+it,T) [“dt << 2a)X o Lir + 671(m)) ,

&d(T) seC

where

§(T) =  min PN .
ersgel <T
A,A'eh
The constant implicit in the << symbol depends only on

gy » 02 , C, and A .

Proof: Let U be the interior of the rectangle with

vertices 01 £ 1A , o3 + iA , where A = max [sl . Set
seC

§ = min min |s-z| .
zedU seC

By Cauchy's integral formula we have

it, T 2
max|S (s+iT, T) |2 = max Elf §£E%£§L§—l dzlf
seC sec <Mt
18)
i""l—g |S(z+it, T)|? |az] laz| .
(2m8)

oU U

Thus




|max S(s+it, T)|? ar

(
|

"%d(T) SeC
< —— | laz| |s(z+it, ™2 at||az]
(2m8) 2 9
3U 30 ¥ (T)
2

< —l ldz|| max |S(z+it, T)|2 4t
~ (2m8)2 zedU

- 3U ‘Qd(T)

A + - 2
2 (62 cl)

= — max |s(z+it, T)[2 drt

Since 0 < 0y=07 < % r We may write this as

seC zeaU

(7) max|S(s+iT, T)[zdr << max J ]S(z+iT,,T)|2 dat | ,
Q4 (m 4

d(’I‘)

where the constant depends only on § and A . An applica-
tion of Cauchy's inequality to the integral on the right-

hand side of (7) yields

(8) |s(z+it, T)]%at < 2 [Sq (z+it, T) |2 ar

g (1) | SUALS

+ 2 |S, (z+it, T)|%ar ,

&d('r)




where

I

Z by (T)e~A (Z+iT)
peer<pt
© A€l

Ez bk(T)e—x(z+ir)

pl<ekfp
Ach

Sl(Z+iT, T)

S2(Z+iT, T)

Il

14

and p' 1is any number greater than p .

First we treat the first integral on the right-hand

side of (8). Fix € > 0 small enough so that 0 < d-¢ and

d+e < % . Define &(1) to be 1 if ”T“ <4, 0 if

“T” > d+e , and let &(1) drop off to 0 1linearly on the
intervals 4 < "T“ < d+e . One easily verifies that the
Fourier expansion of £(t) 1is absolutely convergent and
therefore converges to £&(t) uniformly. We write

o2

(2) E(t) = } cpeltn)

n=-—w

with

CO = 2d+e .

Next we define

K
= - 1Ak
£ (D) gg( = 0x) -

Clearly



R B T A AR R st

(10) E2(T) < Ep (1)

and both of these functions are upper bounds for the char-

acteristic function of qu(T) (for any T). Furthermore

we have
(11) &g, (1) = Cn_++:Cp e(= ) nb )e( == | niy)
K ~e<ng TTTomg<e 1 PR k=1 X K 2Tl
K
=]c@et- 2= [ mi) , say,
n k=1
where 1A = (nys «eey ny) runs over all K-tuples of integers.

By the linear independence of the Ay, over @ , we see that

the constant term in this expansion is

(12) c(@) = cf = (2a+e)¥ |

Since the series in (9) is absolutely convergent, so is the

series in (11). Thus, given €, > 0 r there exists a number
1

14

N(el) such that for each N > N(el) and all T

X
C 2 e =
O i S L el e

ni) . For such an N we have




K
£2 (1) < 2] ZE: c(@e (- L= ny Ay ) |2
T Rl 77 Ly M

K
< 2] c@e(- 2= T npag) |2 + 262
7l < T2y KK t

Using this and the fact that E%(T) is an upper bound for

the characteristic function of ~Qd(T) yields

T
(13) | |s; (z+it, T)]2ar < J Eé(r)]sl(z+ir, T) ]2 ar
0
L4(T)
, )
< 2 [ c@e(- 2= [ mx)|?]s, (z+it, ) |2 ar
0 |All<x 2m Ly KTk 1

T
+ 2 e% f |s1 (z+it, T)[2 ar
0

Writing =z = x+iy and applying Lemma 3.4, we immediately

obtain

T
(14) [ |sy(z+it, T)]|2 ar
0

< (T+21571(py) EZ |by (T) |2 e=2Xx |
- p<elr<p!
AeA

The first integral on the far right hand side of (13) is




¢
[

: K
_l(x+1y‘) o (- %(A + 7 ndg)) 2 ar .

<o by(T)c(Rle
p<er<p [l <N
Aeh

T
(15) J
0

By the linear independence of A over @ , we see that

there is a positive constant & (p,p', K, N, A) such that

X K
R ) agd | > 8,0t ,K,N,1)
=1 k=1
K K
for any two frequencies A + 1 nklk and A' + 7§ nﬁlk
‘ k=1 k=1

associated to different terms of the sum in (15). Thus, by

Lemma 3.4, we see that (15) is
< AT + 2m8~L(p,p0k,N,10))

. ”B%Nlc(m!z p(;p' |by (T2 e=22%
- AeA

From (10), (11), (12), and the linear independence of A

over @ we deduce that

- p
IC(E)IZ < %lc(ﬁ)]z = %im % J Eﬁ(r)dr

”ﬁ“f_N 0

T
< lim 2 jo Ey (T)dr

T

= c(0) = (2a+¢) K |




Hence (15) is

< (2a+e)K(T + 278 1 (p,pIK,N,A)) j{: [bA(T)IZ A%
pcercpr
Ach

Substituting this and (14) into (13) yields

J [sy(z+it, 1) |24t < @((2d+s)K +eD)T + anedsTl(pr
0 4 (1)

+ 4ﬂ(2d+e)K6—l(p,p',K,N,A9 22 Ibl('r)[2 e~2Ax
p<eti<p’

“Aed o
Since p > e , % < 0] € x <0, < 1., [bA(T)I <1, and

Ny (u) << e , we easily find that

-2Ao =20
z [b)\ (T) lze-ZAx < z e 1 = Z e 1

p<er<p! Tp<et log p<A
Aeh ' R el Ael
*® -207u 20,0 ®
= e dNA (U.) = NA (U)e
log p log p
® -207u 1-207
+ 20y NA(u)e du << p ’
log p B

where the << depends on g7y and A . Finally, we have

| { 1-20 o,
(16) [Sl(z+ir, T)lsz << p Q(2d+s)K + e])T
}ﬁa(T)
+ eis‘l(p‘) + (2d+e)Ka‘1(b,p',K.N,A9' .

The estimation of the second integral on the right-hand




Y4

side of (8) is much simpler. Again writing 2z = x+iy and

using Lemma 3.4, we have

T
J |S, (z+it, T) |24t _<_J |85 (z+it, T)|%at
Lg(m) 0
< (T + 216~ (7)) 2 Iy (T) [2 e722%
p'<eA§?
AeA

Estimating as above, we see that

1-20
E: ]bA(T)Iz e—ZAX <<J(p|) 1 ,

p'<er<T
Ael
where the implicit constant depends on oy and A . Thus
f 5 1-20l 1
(l7)J ISz(z+iT, T) |“dt << (p') (T + §7-(T)) .

..QH(T)

Combining the results of (7), (8), (16), and (17)

gives
.1—20
(18) max| (S(s+it,T) |24t << o (((2d+e)K + e%)T
S . (T) seC
d
+ Eis—l(p') + (2d+€)K6_l(p,p',K,N,A9
l1-20 -1
) Tr+ s (),

where the << depends on 6§ , A , 0y and A , Or, since

§ and A depend only on 61 » 0 , and C , the << de-




pends on o0y , 0o , C, and A . We now choose p' so

large that

1-2¢ 1-2¢

< 2a)X o 1

14

and € and El so small that

2

(2a+6)™ + €2 < 2(2a)% |

It follows that for all sufficiently large T , the right-

hand side of (18) is

. 1--20l -1
<< (2a)K p (T + 8 " (T)) .
This proves the lemma. []
Lemma 3.7. Assume the same notation and hypotheses as in
Lemma 3.6 except that instead of one sequence of functions
{bA(T)}AsA we have N such sequences [bﬁn)(T)}leA '
l<n<N, with [b{®) ()]

§(T) >> & . If for each T >0 , A(T)  is a subset of [0,T]

| A

1 . Furthermore, assume that

with measure

J(T) = T(1l+o (1)) ,

then for all large T , there is a T s_ﬁ(T) such that

A
”‘ %Fk - Bkn <d, 1l <k <K




and
1/2-¢0
max max ' ZE: b(n)(T) —A(s+it) << p 1 .
1<n<N seC 'p<e <T
Aeh™

The constant implicit in << depends on 01 » 06, , C, A,

and N .

Proof: Let

S, (s+it, T) = Z p{al(me-t(s+in) 4y <<y
p<eA<T -7
Ael
MS(t,T) = max max|S,(s+it, T)| .

l<n<W seC

We write

1l/2-¢
A = {r e Jymus(x,m < cp 1

and denote the measure of )id(T) by Gg(T) . We will be
done if we show that for some choice of ¢ (depending at

most on 07 , 09 , C , A, and N) and for all large 7T ,

the set

Adm N 4m

is non-empty. Now clearly




7/

N

ms(t,m)2 <| | max|s,(s+it, T |2
n=1 seC
N
< N} maxlsn(s+ir, T)]2 .
n=1 seC
Hence
N
(MS (t,T) )24t <N z g max!Sn(s+iT, T)I2 at| .
L4 (T) n=1 Qd(T)ssC

By Lemma 3.6 and the hypothesis §(T) >3 % (here the im-
plicit constant depends only on A), we find for T large
enough

J (MS (7,T))%ar << pl-qu(Zd)KT .

&d(T)
where the implied constant depends on ¢y » 02 ,C, A,
and N . From this it follows that the measure of the com-

plement of ){d(T) in ‘&d(T) is

Thus, choosing ¢ large enough as a function of o1 ,'02 ‘

C, A, and N , we can ensure that

Ga(T) > I4(T) - T2a)¥r ,
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where I5(T) 1is the measure of $Ld(T) . By Lemma 3.5, if

T 1is large enough,
Ig(T) > 2(2a)Kr

Therefore
1 K
Gd(T) > Z(Zd T o,
Since
J(T) = T(1 + o(1)) ,

é(T) and ){d(T) must overlap for lafge T . This gives

the result. .

§3. Three Lemmas on L-functions

The following is a simple adaptation of Titchmarsh

[19; Theorem 14.20].

Lemma 3.8. For x > 1 ’

1 2(1-5) - (l—S)
(19) 2 (s,x) = - A_(n)x(n)n~S + E(x) X X
L 2 % (1-s)2 1o
n<x g x
. 1 w g~ 2T=ows _ X-2(2r-m—s)
log x =0 (2r+o<.+s)2




where
1 if X 1is the principal character
E(x) =
0 otherwise ’
1 1if x(-1) = -1
oL =
0 if x(-1) =1 ’
and
( A(n) if n < x

- A(n)loqilenl :
Ag(n) = < Tog n 1f <

Proof: Let o = max(2, l+o) . Then

atio
zZ-s 2(z-s)
Eif X X L(z,x)az
T . (Z-S)Z L
a=ie

1 E Gtie « -s 2(z-s)

= e A(n)x(n) dz
2731 n=1 amic (Z_S)Z nZ




