A Formula of Landau and Mean Values of {(s)
S. M. Gonek

Let p =8 + iY denote a complex zero of the Riemann zeta
function, ¢(s). A remarkable formula of Landau [2] (also
see Titchmarsh [4;pp. 61-62]) states that for fixed x> 1

and T = o

(1) I = 5o A +00og D)
0<Y<T

where A(x) = logp if x = pk for some prime p and posi-
tive integer k, and A(x) = 0 for all other real x. This
can be proved by estimating the integral
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where ® 1is a suitably chosen rectangle enclosing those zeros
p for which 0 <y <T.

Striking as (1) is, it has little utility because it is not
uniform in x. It is possible, however, by keeping the esti-

mates of (2) explicit in x and T, to prove the following

uniform version of (1).
THEOREM 1. Let x, T>1. Then

(3) z L = —%? A(x) +0(x log 2x loglog 3x)
0<y<T .

+

0(x log 2T ) + 0(log x min(T, zxy; ))

+

Omin((E, T log 1) ;
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here < x> 1is the distance from x to the nearest prime

power other than x.

Note that a trivial estimate for our sum is < x T log T

(\/; T log T on the Riemann hypothesis) since there are
V&
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terms in (3) reflects the varied behavior of the sum in dif-

log T =zeros with 0 <79 <T. The large number of error

ferent x ranges. Thus, the last error term is significant
when x 1is near 1, the next-to-last when x 1is near a prime
power. Finally, we observe -that (3) has a particularly simple

form if x is an integer such that 2 < x €< T, namely

xP = - é%-A(x) + 0(x log 2T loglog 3T)
0<y<T
Theorem 1 may be used to estimate various sums involving
zeros of the zeta function. For example, one may use it to

prove

THEOREM 2. Assume the Riemann hypothesis. Let T be large,
1

L= 3;-log T ; ‘and |a| <L with «@ real. Then
2
(4) o8 Q/2 + iy +e/L)|
: 0<y<T
S sin w2, T 2 7/4
= (- G ) S log Tk O(T log Ty

The constant implied by 0 is absolute.

In [1] we gave asymptotic formulae for the sums

I t®eian®a-p-t0/m) @y =00, .
0<y<T

where f(#)(s) is the pth derivative of ¢§(s8) = f(o)(s).

Theorem 2 is the most interesting special case of these formu-

lae. In fact, from (4) J. Mueller [3] deduced that
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where 0 <71 <72 < ... are the ordinates of the zeros of
t (s) in the upper half-plane. Previously it was only known
that A > 1.

We now use Theorem 1 to sketch a proof of Theorem 2 which
is much shorter than that given in [1] ; detailed proofs of
both theorems will appear elsewhere. We use the notation
A =~ B below to mean that A = B + error terms.

We begin with the approximate functional equation for §(s)
(see Titchmarsh [5;p.69]) from which it follows that
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n<x
where x = x(y) = v/2m+/1log 7.
Our problem is essentially to show that
gin me 2, T 2

n-l'i-i (y +a/L)

n<x

2 b 1
~ (1- (25 = logT .

0<y<T

In order to avoid minor difficulties, however, we will show

instead that

sin T, 2, T 2
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where now X = T/2m+flog T is dependent of 7.

Squaring out and changing the order of summation, we have

1 & i(y+a/L)

B = —
m,n<X V™ 0<y<T "
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The terms in (m,n) and (n,m) are conjugate, so

o 1 1 . L i + .
n<X 0<Y<LT n<n<X 0<T<T

(5)

Bl+28eBz,

say. Since

H %NlogX“'logT .

n<X
and the number of Y € (0,T] is "211—[ log T ,
T 2
6 ~-— -
(6) B, o7 log 1
Now by the Riemann hypothesis and Theorem 1, the innermost sum
in B, equals - ?T;r A(%) plus error terms. Hence
n
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B2 M= Ty Z —7;—'(ﬁﬂ -
n<n<X

The term in (m,n) vanishes if m*n , SO we may write

2 2w k<X k1—3.01/Lm
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The last sum equals

’
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log X/u
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where W(u) = nZ< A(n) , and by the prime number theorem
u

with remainder term, this is essentially

f log X/u 4 _ L+ie/L log T G
1 10t/L (a/L)Z
Therefore,
‘ A Bz % 1-—cos(a/L210g X)
(/L)
2
£yl sin(a/2L log X)
LT «/2L ¢

or; since ‘log X ~log T .and L= é%—log Ty

x B2 s ain B2

Combining this with (5) and (6), we obtain
Vgl sin ., 2\ T 2
B = (1 X ( ) > 2.”- lOg T ’

as desired.




