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Ler Z(s)=Y n~° be the Riemann zeta-function. Assuming the Riemann
Hypothesis we may write the non-real zeros of {(s) as 1+ iy where v>0.
Let 0<y=+' be consecutive ordinates of zeros and let

s(y)=("—1v).
On average, 8(vy) is 27/log v. We wish to investigate the distribution of
the (normalized) numbers

f(v)=8(v)2m) " log v.
To this end, we may define upper and lower distribution functions
DY (a)= lirﬁp sup D(a, T)

and
D (a)= lilm inf D(e, T),

D(a, )= ), 1/ Yy 1
O<vy=T

O<y=T

where

fv)=a

It is expected that D*(a) =D (a) (=D(a)) for all « and that D(0)=0,
D(a)<1 for all ¢, and D(«a) is continuous. In fact, from a “multiple
correlation” conjecture as in Montgomery [5] it is possible to determine
the behavior of D(a). However, there is little evidence for such a
conjecture. As far as what is known about D*(«a), Selberg proved that for
some ay <1,

D (a)>0
and for some a,>1,

D*(as)<1.
The «; and «, were never determined explicitly, nor were bounds for D~
and D™ given.

In this paper we present a new method for obtaining information about

D*(a). In fact we show, assuming the Riemann Hypothesis,

TueoreM (oN RH). If a>0.77 then D (a)>0. If a<1.33 then
DY (a)<1.

* The first three authors wish to thank the Institute for Advanced Study in Princeton where
part of this work was done.
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Remarks. 1. It is possible by our method to calculate, explicitly,
bounds for D*(a), although we have not done so here.

2. Our method allows for a certain amount of flexibility in the choice
of some coefficients, and we have made no serious attempt to obtain the
best result our method would give.

It would be of interest to have sharp bounds for D*(a) since proper
bounds for these could be applied to give effective lower bounds for the
class number h(—d) of a complex quadratic field K = Q((—d)?). This is
because Montgomery and Weinberger [7] have shown that for A, ¢ >0
there exists an effectively computable dy = do(A, £) such that if d > d, and
h(—d)= A then all the zeros 8 +iy of x(s)in0<o <1, 0<t<d}* have
B =3 and satisfy

(1—-&)2w
log d(y+1)?

A+e2nw

<8 L——,
) log d(y+2)?

In particular for y near d*™* we have

8(y)logy
2

is about 3. Thus, to obtain effective bounds for h(—d), we need only prove
(assuming RH) that there are gaps between zeta zeros which are not near
3 times their average. This could be accomplished with enough informa-
tion about D*(a) with a near 1 (but not equal to 1).

§2

In what follows, let L denote 1/27log T. Let F(s,y) be a Dirichlet
polynomial of length y. Let a and m be arbitrary positive numbers and
define for k=0

of2L

Y |Fly+e TP de
—af2L, T<y=2T

he(F, m, @) = Jim =2 7= 8
§ 1F@; TP ar
T

= :}_I_I)noo hk(E n, &, T)

say, whenever the limit exists. The function h.(F,n, «) has been
evaluated in [1] for k =1, 7 <1. In [4], F(s, y) was taken to be {(s) and
k =1, while in [2], it is the product of the zeta-function with a Dirichlet
polynomial. We shall see later that for suitable functions F, and F,, and
suitable numbers w and A, one can show

hl(Fl, %, u,) >1> h1(F2, %, A).
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For the proof of our theorem we shall also need the case k =2.

We order the zeros of {(s) in ascending order y,<wy,<---, where it
will be understood that if a zero is multiple, with multiplicity m, then it
will appear precisely m times consecutively in the sequence above. For
T <+, <2T, we define

87 (vi)=(Vis1— W)L,

87 (v)= (vi—v-0JL, (i=2).
Next, let

60(’Yi) = min (8+('Yi)’ 8_(’Yi))>

81(v:) =max (67(y,), 8~ (v).

The results we prove will show that a positive proportion of the zeros
satisfy
8o(v)<0.77 and &,(y)>1.33,

from which the theorem follows.
Let F(t, y) be a function satisfying

\F(t, )< T

for £ >0. Also for convenience, put y =T™.
For the small gaps, we have

2T

I |F(t, y)P* dt
T @

vy +(1/2L)8+(v)

- % [ meyrarom

T<y=2T
y¥—(1/2L)8~(v)

(1/2L)8+(vy)
= ) J \F(t+, y)P dt

T<y=2T
Son<p —(/20)5°()

(1/2L)8+(y)
+ X J |E(t+, y)I dt+O(T* ™)
T<y=2T
8o(y)=p —(12L)87(v)
(1/2L)8+(v)
= 2 J' |F(t+, y)P de
T<y=2T
Soly)<p —(A/2L)8™(v)
(1728

+ J Y. |F@t+y, y)Pdi+O(T )

T<y=2T
—(1/2L)u So(v)=p
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2T

>ha(E n, . T) [ IFG P di
T

w/2L

- 3| FGryyPHECy P O,
T<y=<2T
Bo(y)<m So(¥)/2L

Thus, we conclude that

w/2L.

L[ trernypercey pa
T<y=2T
So(v)<wm (1/2L)8o(v)
2T
=l T)-1) | |FG )P atr O(T')
T

Applying Cauchy’s inequality to the left-hand-side above shows it to be
bounded by

Bz 1)

Bo(v)<w
w/2L

X (T ) I UF @+, Y+ F(=t+y, P9 dt)é

<ye=2T
So(v)<wm 8oly)2L

1 2T 1
2 2
<@ T 1) (mEmunD [ 1FGyIar).
T<y=2T
So(v)<m T

Thus, one concludes that if h,(F,n, u)>1 for suitable choices of the
function F and the constants n and p, then

(B m, 1, T) =1 -0 1 1F (6 y)P )
2 1» P L @3
prites ho(F, 1, T) I IF (6 y)I* dt

as T—> . Here we have assumed that

2T

[ e praer,

T
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as will indeed be the case. By Cauchy’s inequality one sees that if
h‘l(E s “’)>09 and if

(7' 1Fe par)

Bim ——
T | |F(t, y)l*de
T

exists and is non-zero for a suitable® function F, then h,(F, 11, n) # 0. This
is, in part, the motivation behind the choice of our function F.

One considers the large gaps in a similar way. Starting from (2), it is
easily seen that

A/2L

2T
J. LE(t, y)|>dt=< Z I |F(y+t, y)[*dt
T

T<y=2T
8,(vy=a ~M2L

5+(y)/2L

+ ¥ | IFwreypatom,
T<y=<2T
8.(y)>x ~87(M/2L
‘2T
< AT [ IFG )P a
T
8+(v)/2L.
+ % | rwreprarom,

T<y=2T __
S, (y)>x — (v)/2L

so that

8+(v)/2L

L[ Farsyra

T<y<2T __
8.(v)>r —3 (V)/2L

2T

=(1-mEnAT) | F@y)Pd- o).

T

Applying Cauchy’s inequality to the left-hand-side above shows it to be

bounded by
. , 2T .
(2 (2 s (] Feyra).
T

T<y=<2T T<y=<2T
31(v)=A

* Such a function will be called “normal”.
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Thus, if F,n and A are chosen such that h,(F,n,A)<1, we have, as
T_—)OO 2Tl l2 4
F(t, y)"dt
-h E s)\aT -o(1 4 ( j >
5 1 0hERAD oW A @
i (3oaer) (T Feyre)

T<vy=<2T

The rest of the paper is devoted to the evaluation of the expressions in
(3) and (4), with a suitable choice of the function F.

§3
We will take F to be a Dirichlet polynomial,
F(t,y)=F(®)= Y f(mn*
n=sy

where y = T", 1 =3— ¢ and the coefficients f(n) will be specified later. By
the mean-value theorem for Dirichlet polynomials,

2T
[ IForat=+006) T I )

Also, assuming RH, we can show that

Y IFe+yP=TL X |f(n)|2_I Re ¥ A(k)f(n)f(nk)k"
T<v=2t n=y T nk=y k=
+ O<yL Z lf(n)‘z) (6)
for |t|« L. Then ¥
/2L L
Y |Fly+tPdt=aT Y If0)P-T % AWK)f(n)f(nk)g (k)
—egpr, TEY=2T - nsy nk=<y kz
+0(y I lfmP), -
where v
g(n)= 2 sin (a(llog n)/(2L)) ,
wlogn
so that
AK)F()f(nk)g(k
hy(E,m, e, T) == (zs IO LLEG) /(; (F@l)+ 0T

(8)
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(For details see Conrey, Ghosh, and Gonek [1], or Montgomery and
QOdlyzko [6].)

Recalling the remark after (3), we choose the coefficients f(n) so that F
is “normal”. The simplest choice is to have f(n)=0 if n is not 1 or a
prime. Then, the optimal choice of coefficients (by Cauchy’s inequality) is
f(1)=1, f(p)=+Cg(p)p~tlog p for a constant C>0 to be specified later.
The ambiguous sign is taken to be + when dealing with small gaps (3)
and — for large gaps (4). Then

» AR F)f (ke (k) _ |, y (&@!logp)®

nk=y k% p=y p
4 in*
—sct ¥ sin® (a(log p)/(2L)) . ©)
ko pP=y p

By the prime number theorem and Stieltjes integration this is seen to be
(after a change of variables)

=]

=4 —
C'rr2

0

where 8 = B(y)=(alog y)/(2L). Similarly,

sin® v
v

dv+o(1)

8
4 in®
Y fmP=1+C*= j o). (10)
ey w4
The optimal choice for C is clearly
8
4 (sin®v  \2
o= [ 5 2w)
) > v (11)

0

whence the left side of (9) is =+C '+0(1) and Y |f(n)?=2+0(1).
Thus, =y

. |
1 fsin?o 3
(e m e T = ([ 222 a0) 4 o(1) (12)
0

since y = o(T). We remark that with n =1 (i.e. y = T%), so that 8 = ma, it
can be easily calculated that

hy(F,, %077, T)>1+0(1) (13)
and
h(F_, 3 1.33, T)<1+o0(1). (14)

Next we estimate h, and the mean fourth power of F. Although it is not
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difficult to give asymptotic formulae for these, it is even easier to give
upper bounds which suffice to prove our theorem. Since we do not
compute explicit bounds for D*(a) we choose the latter course. By the
mean-value theorem for Dirichlet polynomials,

2T 2T

[ 1For ac= | rerrar
T T
~a+oe?) I | T femrm|.  as

The sum on N is

= Y fm)fm)f(n)f(n)

miny<y?
many=<y?
min;=mohy

< Y Ifmfm)P

mn=<y?
myn,=y?
by Cauchy’s inequality and this is
<2 Y |fm)f(n)f®

~2( lfoP)

since f(m)=0 if m>y or if m has more than one prime factor. There-
fore,

2T

[ IFor ar<ar+ o) I )
T =

s@-@ ( T \F()P dt)z. (16)
T

Now we give an upper bound for h, by applying Cauchy’s inequality to
the estimate (8). If a is bounded then g(k)« L™, so that

Ak K)|?

If(n)| : Y If(nk)P(k) '
hiFma T)<|a|+ nk<=y k ) k =y )

Y Ifm)P?

n=sy

+O(®y/T)
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(2281 3 iror) ( X Ifompiogm)
<1+ = n<y m=y +O(y/T)
Y Ifm)P

n=y

«1

provided only that y = T" = o(T). Since this estimate holds for an arbit-
rary F, we conclude that for our particular F with 7 =1_¢g,

hZ(E n, &, ﬂ = h’l(F2: 271, a, T) <1 (17)
Finally, we remark that

Y Sy« TL (18)

T<y=2T

follows directly from a result that can be found in Fujii [3].
Our theorem is now a consequence of (3), (4), (16), (17), and (18).
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