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Abstract. We obtain a sharp local well-posedness result for an equation of

wave maps type with variable coefficients. The proof relies on a recent con-
struction ([2]) of curved versions for Xs,θ spaces.

1. Introduction

In this paper we study the low regularity well-posedness for a variable coefficient
wave maps type equation. This can be viewed as a continuation of recent work
([2]) that investigated the same question in the general class of quadratic nonlinear
wave equations on curved background.

A function u : R1+n → M , from the Minkowski space-time into a Riemannian
manifold (M,h), is called a wave map if it is a critical point for the Lagrangian

L(u) =
∫

R1+n
< ∂u, ∂u > dt dx

where
< ∂u, ∂u >= hJK∂αu

J∂αuK

in local coordinates on M, with ∂t = −∂t and ∂x = ∂x
1. The associated Euler-

Lagrange equation has the simplified form:

(1) �uI = ΓIJK(u)Q0(uJ , uK)

where � = ∂α∂
α = −∂2

t + ∆ is the wave operator, u = (u1, u2, . . . , uN ), ΓIJK are
the Christoffel symbols of M in the local chart, N = dimM and Q0 is the null
form

(2) Q0(v, w) = ∂αv · ∂αw = −∂tv · ∂tw +
n∑
i=1

∂iv · ∂iw

The initial value problem for (1) in Rn+1, subject to the initial data

(3) u(0, x) = u0(x), ∂tu(0, x) = u1(x)

is known to be locally well-posed for

(u0, u1) ∈ Hs(Rn)×Hs−1(Rn), s >
n

2
This range is optimal and it was obtained in a series of papers by Klainerman-

Machedon [4] (n ≥ 4), Klainerman-Selberg [8] (n ≥ 2), and Keel-Tao [3] (n = 1).

1Throughout this paper we assume the standard convention on summation.
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These results should be compared with the ones for general quadratic semilinear
wave equations (Ponce-Sideris [10], Foschi -Klainerman [1], Tataru [14])

(4) �u = qij(u)∂iu ∂ju

in which the Cauchy problem is known to be locally well-posed for

(5) s > max
{
n

2
,
n+ 5

4

}
The gap in regularity between the two equations, noticeable only for dimen-

sions 2 ≤ n ≤ 4, has to do with the improved cancellation properties of Q0. In
loose terms, the null form damps the parallel interactions of the two functions, but
preserves the transverse ones. One can see this by looking at its Fourier symbol

(6) Q̃0(τ, ξ, σ, η) = τσ − ξ · η =
(
(τ + σ)2 − |ξ + η|2

)
− (τ2 − |ξ|2)− (σ2 − |η|2)

which vanishes if both (τ, ξ) and (σ, η) are on the cone and collinear.
For a better motivation of our problem, let us consider also the associated quasi-

linear wave equation

(7) �g(u)u = qij(u)∂iu ∂ju

with �g = gij ∂i∂j (the summation occurs from 0 to n and the index 0 stands
for the time variable). To insure hyperbolicity, we assume that the matrix gij has
signature (1, n) and the time level sets {x0 = const} are space-like (i.e., g00 > 0).
For simplicity, we take g00 ≡ 1.

Sharp local well-posedness holds for (7) only in the 2 + 1 and 3 + 1 dimen-
sional cases (Smith-Tataru [12], Lindblad [9]; see also the results of Klainerman-
Rodnianski [5], [6], [7], for Einstein vacuum equations). For higher dimensions, it
is not known yet whether the range (5) applies to (7) too, or if one needs to impose
additional conditions on s.

A first step in answering this question was taken in [2], where the related semi-
linear problem on a curved background

(8) �gu = qij(u)∂iu ∂ju

was investigated. It was shown that for metrics satisfying ∂2g ∈ L2
tL
∞
x

2, the
Cauchy problem for (8) is locally well-posed in

Hs(R4)×Hs−1(R4), s >
9
4

matching the above range, (5).
In this article we consider the variable coefficient version of (1), namely

(9) �gu
I = ΓIJK(u)Qg0(uJ , uK)

where the corresponding null form Qg0 is defined as

(10) Qg0(u, v) = gαβ∂αu∂βv =
1
2

(�g(uv) − u�gv − v�gu)

We are able to prove that in certain dimensions, under reasonable regularity
conditions for the metric g, the local well-posedness theories for (1) and (9) coincide:

2We make the convention in the sequel that LpLq = LptL
q
x, while Lp = Lpt,x, with the exception

of fixed time estimates.
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Theorem 1.1. Let 3 ≤ n ≤ 5 and assume ∂2g ∈ L2L∞. The Cauchy problem
associated to (9) is locally well-posed in Hs(Rn)×Hs−1(Rn) for s > n

2 .

Remark 1.2. The hypothesis on the regularity of the metric g is related to the fact
that, for both (8) and(9) , we have to control Xs,θ norms, which are in fact L2L2

norms. A typical cross term to estimate is

‖∂2g · u‖L2L2 . ‖∂2g‖L2L∞‖u‖L∞L2

One needs to compare this with the optimal regularity, ∂2g ∈ L1L∞ (Tataru [15]),
required for the wave operator �g to have the full range of Strichartz exponents. It
is interesting to note that these regularities infer that g is global Lipschitz.

Remark 1.3. The more challenging case of dimension n = 2 is current work in
progress, and will be addressed in a subsequent paper. An argument based only on
techniques contained in this article yields local well-posedness of the initial value
problem in Hs(R2) for s > 11

8 .

The proof of Theorem 1.1 is based, as it is usually the case for these problems,
on a fixed point argument that exhibits a considerable amount of similarities with
the one in [2]. To be precise, all that is needed new for (9), in comparison to (8),
is one new estimate and several extensions of previous ones to different settings.

Due to (10), and modulo the standard reduction to the case of small initial data
and time interval set to [−1, 1], our result can be inferred from the following set of
inequalities:

‖S(u0, u1)‖X . ‖(u0, u1)‖Hs×Hs−1(11)

‖�−1
g H‖X . ‖H‖Y(12)

‖�gu‖Y . ‖u‖X(13)

‖u · v‖X . ‖u‖X‖v‖X(14)

‖Γ(u)‖X . C(‖u‖L∞)(1 + ‖u‖5X)(15)

‖u · w‖Y . ‖u‖X‖w‖Y(16)

where C = C(‖u‖L∞) is a constant that depends solely on the dimension n and
‖u‖L∞ , X and Y are suitably chosen Banach spaces, while S(u0, u1) and �−1

g are
respectively the homogeneous and inhomogeneous solution operators

�gS(u0, u1) = 0, S(u0, u1)(0) = u0, ∂tS(u0, u1)(0) = u1(17)

�g(�−1
g H) = H, (�−1

g H)(0) = 0, ∂t(�−1
g H)(0) = 0(18)

Remark 1.4. 1. The new estimate which is needed in our analysis, but was absent
in the one for equation (8), is (13).
2. Based on (10), (13), (14), and (16), one can infer immediately that

‖Qg0(u, v)‖Y . ‖u‖X‖v‖X
This is the variable coefficient version of a certain null-form estimate of Klainerman-
Machedon, which has been previously obtained by Sogge [13], Sogge-Smith [11], and
Tataru [16], under various regularity assumptions for the metric g.

Remark 1.5. 1. (11)-(12) have already been proved in [2], in the context of our
problem (i.e., for 3 ≤ n ≤ 5).
2. [2] contains the proof of (14)-(16) for the 4+1 dimensional case; here we extend
them to 3 + 1, respectively 5 + 1 dimensions.
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In the next section, for completeness, we will reintroduce the notations, defini-
tions, and results from [2] that will be needed in our analysis, while in the last
section, we will discuss the estimates mentioned in the above remarks.

2. Curved Xs,θ spaces: definitions, notations and properties

We introduce first the Banach spaces that will be used in our argument:

(19) X = Xs,θ Y = Xs−1,θ−1

where

Definition 2.1. (Definition 2.1 in [2])
For 0 < θ < 1 and s ∈ R, Xs,θ is the space of functions u ∈ L2(−1, 1;Hs(Rn))

for which

(20) ‖u‖2Xs,θ = inf

{ ∞∑
λ=1

λ∑
d=1

‖uλ,d‖2Xs,θλ,d ; u =
∞∑
λ=1

λ∑
d=1

Sλuλ,d

}
<∞

with λ, d taking dyadic values and

(21) ‖uλ,d‖Xs,θλ,d = λsdθ‖uλ,d‖L2 + λs−1dθ−1‖�g<√λuλ,d‖L2

We define negative index spaces by setting, again for 0 < θ < 1 and s ∈ R, the
Xs−1,θ−1 norm to equal

‖f‖2Xs−1,θ−1 = inf

{
‖f0‖2L2Hs−1 +

∞∑
λ=1

λ∑
d=1

‖fλ,d‖2Xs,θλ,d ;

f = f0 +
∞∑
λ=1

λ∑
d=1

�g<√λSλfλ,d

}
<∞

(22)

Remark 2.2. Sλ, S<λ and S≥λ are the usual multipliers associated with a Littlewood-
Paley decomposition. All but one frequency localizations are with respect to the spa-
tial variables (i.e., Sλ = Sλ(Dx)). The exception is the localization of the metric
g, which is truncated using space-time multipliers. For this to work, we extend g to
have similar properties in all of Rn+1. In this case, Sλ = Sλ(Dt,x).

We start by recording

Lemma 2.3. (Lemma 2.4 in [2])
The following estimate holds:

(23) λs−1dθ‖∇Sλu‖L2 + λs−1dθ−1‖�g<√λSλu‖L2 . ‖u‖Xs,θλ,d

This result allows us to replace the Xs,θ
λ,d norm in the Definition 2.1 by

(24) ‖u‖X̃s,θλ,d = λs−1dθ‖∇u‖L2 + λs−1dθ−1‖�g<√λu‖L2

and to assume, without any restriction in generality, that the functions uλ,d and
fλ,d, appearing in the above definition, are localized at frequency λ. The presence
of the gradient in this new, equivalent norm, is easier to handle in the context of
the wave equation. An immediate consequence of this is the following
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Lemma 2.4. (Corollary 2.8 in [2])
For θ > 0 the following energy inequality takes place

(25) λs−1dθ−
1
2 ‖∇Sλu‖L∞L2 . ‖Sλu‖X̃s,θλ,d

As a result, for θ > 1
2 :

(26) ‖u‖L∞Hs + ‖ut‖L∞Hs−1 . ‖u‖Xs,θ

The next important issue to address is the truncation in frequency of the metric
g. This is achieved by

Lemma 2.5. (Lemma 2.9 in [2])
If S̃λ is a spatial multiplier with slightly larger support (i.e. SλS̃λ = Sλ), 0 ≤ s ≤

3, and the metric g has regularity ∂2g ∈ L2L∞, the following fixed time estimate is
true:

(27)
∞∑
λ=1

λ2(s−1)‖S̃λ(g>√λu)(t)‖2L2 . (M(‖∂2g‖L∞x )(t))2‖u(t)‖2Hs−2

with M being the maximal function with respect to time. The dual estimate also
holds:

(28) ‖
∞∑
λ=1

g>
√
λ(t)S̃λfλ(t)‖2H2−s .

∞∑
λ=1

λ2(1−s)‖fλ(t)‖2L2

As it turns out, the results listed so far are the only tools needed to prove the
estimates for the homogeneous and inhomogeneous solution operators (i.e., (11)
and (12)). We are left to investigate (13)-(16).

To go further, one needs to identify the link between the Xs,θ spaces of positive
and negative indices:

Lemma 2.6. (Lemma 2.13 in [2])
For 0 < θ < 1

2 we have the following duality relation

(29) X−s,−θ = (Xs,θ + L2Hs+θ)′

The next natural step is to relate the Xs,θ spaces to spaces relevant to Strichartz
estimates. We have the following:

Lemma 2.7. (Corollary 3.2 in [2])
a) For θ > 0 and (σ, p, q) verifying

σ = −n
2

+
1
p

+
n

q
,

2
p

+
n− 1
q
≤ n− 1

2
, 2 ≤ p ≤ ∞, 2 ≤ q <∞

we have

(30) ‖Sλ∇u‖LpLq . λ1−s−σd
1
2−θ‖u‖Xs,θλ,d

If additionally θ > 1
2 then

(31) ‖Sλ∇u‖LpLq . λ1−s−σ‖u‖Xs,θ

b) If instead
2
p

+
n− 1
q
≥ n− 1

2
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then

(32) ‖Sλ∇u‖LpLq . λ1−s−σ+ 1
2 ( 2
p+n−1

q −
n−1

2 )d
1
2−θ−

1
2 ( 2
p+n−1

q −
n−1

2 )‖u‖Xs,θλ,d

Remark 2.8. In the above embeddings , one can use also the index q = ∞. We
will rely in particular on the triplets

(−n
2
,∞,∞) (−n− 1

2
, 2,∞)

noting that for n = 3 and (σ, p, q) = (−1, 2,∞), one loses in the previous bounds
either a lnλ or λε, with ε > 0 arbitrary small. However, this loss is harmless
because it is covered by the strict inequalities imposed on the exponents. Therefore
we can ignore it.

For a finer analysis, that is needed in the last section, we introduce also the norm
(see section 3 in [2])

(33) ‖u‖2
X̃s,θλ,<d

= inf

{
d∑

h=1

‖uh‖2X̃s,θλ,h ; u =
d∑

h=1

uh

}
≤ ‖u‖2

X̃s,θλ,d

For d = λ we use instead the notation X̃s,θ
λ . A straightforward calculation yields

(34) ‖u‖2Xs,θ = inf

{ ∞∑
λ=1

‖Sλuλ‖2X̃s,θλ ; u =
∞∑
λ=1

Sλuλ

}
In this new context, for θ > 0 and (σ, p, q) as in part a) of Lemma 2.7, we also

have (Corollary 3.4 in [2]):

(35) ‖Sλ∇u‖LpLq . λ1−s−σ max{1, d 1
2−θ} ‖u‖Xs,θλ,<d

Finally, we make the following

Remark 2.9. All the results mentioned in this section are proved in [2], indepen-
dent of dimension n.

3. Conclusion: Proof of the estimates (13)-(16)

We start by proving (13), which, as mentioned in the first section, is one of the
novelties of this paper, being specifically needed for our problem, (9):

Proposition 3.1. For θ > 1
2 and 0 ≤ s ≤ 3, the following mapping holds:

(36) �g : Xs,θ → Xs−1,θ−1

Proof. We use the decomposition

(37) u =
∞∑
λ=1

λ∑
d=1

Sλuλ,d =
∞∑
λ=1

Sλuλ

with

uλ =
λ∑
d=1

uλ,d
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Then one can write

�gu =
∞∑
λ=1

�g>√λSλuλ +
∞∑
λ=1

λ∑
d=1

�g<√λSλuλ,d

Using Definition 2.1, Lemma 2.5, and (26), we can infer

‖�gu‖2Xs−1,θ−1 . ‖
∞∑
λ=1

�g>√λSλuλ‖
2
L2Hs−1 +

∞∑
λ=1

λ∑
d=1

‖uλ,d‖2Xs,θλ,d

.
∞∑
λ=1

‖∇Sλuλ‖2L∞Hs−1 + ‖u‖2Xs,θ . ‖u‖
2
Xs,θ

�

For (14)-(16), at this moment, our arguments for 3+1, respectively 5+1 dimen-
sions do not stray far from the 4 + 1 dimensional proof, given in [2]. This is why
we discuss here only the relevant differences and the corresponding numerology.

A key ingredient of this analysis is to have good Xs,θ control on bilinear struc-
tures that involve functions localized at different frequencies. The 4+1 dimensional
case is handled by lemmas 3.5 and 3.6 in [2]. Another contribution of our paper
is that it optimizes that argument (i.e., we obtain improved bounds for some esti-
mates), allowing for these results to be written in a more compact form.

Lemma 3.2. Let θ > 0 and n ≥ 3.
i) The following estimates hold

‖∂ttSλu‖L2L∞ . λ
n+3

2 −sd
1
2−θ‖u‖X̃s,θλ,d(38)

‖∂ttSλu‖L2L∞ . λ
n+3

2 −s max
{

1, d
1
2−θ
}
‖u‖X̃s,θλ,<d(39)

ii) For µ ≤ d ≤ λ, we have

‖Sµv Sλu‖X̃s,θλ,d .
(
‖Sµv‖L∞ + min

{
d−1‖∇Sµv‖L∞ , d−

1
2 ‖∇Sµv‖L2L∞

}
+

+ λ−1d−
1
2 ‖∂ttSµv‖L2L∞

)
‖Sλu‖X̃s,θλ,d

. µ
n
2−s max

{
1, µ

1
2−θ
}
‖Sµv‖X̃s,θµ ‖Sλu‖X̃s,θλ,d

(40)

iii) For µ ≤ λ, we have

‖Sµv Sλu‖X̃s,θλ,µ .
(
‖Sµv‖L∞ + max

{
µθ−1, µ−

1
2

}
‖∇Sµv‖L2L∞+

+ max
{
µθ−2, µ−

3
2

}
‖∂ttSµv‖L2L∞

)
‖Sλu‖X̃s,θλ,<µ

. µ
n−1

2 +θ−s max
{

1, µ1−2θ
}
‖Sµv‖X̃s,θµ ‖Sλu‖X̃s,θλ,<µ

(41)

Proof. The main tools used in this proof are the energy estimate (25) and the
embeddings contained in Lemma 2.7.

For (38) and (39), we combine (30) and (35) with the observation, based on
g00 ≡ 1, that

(∂tt −�g<√λ)Sλ ≈ λ∇Sλ
(40) and (41) have similar arguments. The strategy is to estimate the L2 norm

of the cross terms arising from Leibnitz’s rule either by a L∞L2 ·L2L∞ product or
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a L2L2 ·L∞L∞ one. We focus on (41). The first two cross terms can be estimated
directly, using (35):

λs−1µθ‖∇Sµv · Sλu‖L2 .
max{µθ, µ 1

2 }
λ

‖∇Sµv‖L2L∞‖Sλu‖X̃s,θλ,<µ
λs−1µθ‖Sµv · ∇Sλu‖L2 . max{µθ, µ 1

2 }‖Sµv‖L2L∞‖Sλu‖X̃s,θλ,<µ
More delicate terms appear when �g<√λ acts on the product SµvSλu. The first

two are easier to estimate than the one involving �g<√λSµv:

λs−1µθ−1‖Sµv ·�g<√λSλu‖L2 . ‖Sµv‖L∞‖Sλu‖X̃s,θλ,<µ
λs−1µθ−1‖g<√λ∇Sµv · ∇Sλu‖L2 . max{µθ−1, µ−

1
2 }‖∇Sµv‖L2L∞‖Sλu‖X̃s,θλ,<µ

For the last term, let us consider the decomposition

u =
µ∑
h=1

uh

as in the definition of the X̃s,θ
λ,<µ spaces. We can infer as follows

λs−1µθ−1‖�g<√λ(Sµv) · Sλu‖L2

. λs−1µθ−1(‖∂ttSµv‖L2L∞ + µ‖∇Sµv‖L2L∞) ‖Sλu‖L∞L2

.
µθ−1

λ
(‖∂ttSµv‖L2L∞ + µ‖∇Sµv‖L2L∞)

(
µ∑
h=1

1
h2θ−1

) 1
2
(

µ∑
h=1

λ2sh2θ−1‖Sλuh‖2L∞L2

) 1
2

.
µθ−1

λ
max

{
1, µ

1
2−θ
}

(‖∂ttSµv‖L2L∞ + µ‖∇Sµv‖L2L∞)

(
µ∑
h=1

‖Sλuh‖2X̃s,θλ,h

) 1
2

which is obviously the right bound.
�

We are now ready to prove the remaining main estimates:

Proposition 3.3. Let n ≥ 3 and 1
2 < θ < s− n−1

2 . Then:

‖u · v‖Xs,θ . ‖u‖Xs,θ‖v‖Xs,θ(42)

‖u · w‖Xs−1,θ−1 . ‖u‖Xs,θ‖w‖Xs−1,θ−1(43)

‖Γ(u)‖Xs,θ . C(‖u‖L∞)(1 + ‖u‖5Xs,θ )(44)

Proof. We use decompositions identical with the ones in (37):

u =
∞∑
λ=1

λ∑
d=1

Sλuλ,d =
∞∑
λ=1

Sλuλ, v =
∞∑
λ=1

λ∑
d=1

Sλvλ,d =
∞∑
λ=1

Sλvλ

It follows that

uv =
∞∑
µ=1

∞∑
λ1=1

∞∑
λ2=1

Sµ(Sλ1uλ1Sλ2vλ2)

The nontrivial interactions in the above sum are only when λ1 ≈ λ2 & µ or
max{λ1, λ2} ≈ µ. These are handled by using (40) and (41) to claim
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‖SλuλSλvλ‖Xs,θµ,µ . µ
s+θ−2λ

n+3
2 −2s‖uλ‖X̃s,θλ ‖vλ‖X̃s,θλ(45)

‖SλuλSµvµ‖2X̃s,θλ . µ
n−1+2θ−2s‖vµ‖2X̃s,θµ

λ∑
d=1

‖uλ,d‖2X̃s,θλ,d(46)

It turns out that this is all that is needed to infer (42) (see also Proposition 3.7 in
[2]).

Using the duality relation (29) and the fact that s > n
2 , one can reduce (43) to

Xs,θ ·X1−s,1−θ ⊂ X1−s,1−θ + L2H2−s−θ

which is then treated by considering decompositions as above. In this case, there
are three possible interactions, one of which requiring a different analysis than the
one of Proposition 3.8 in [2]. This is the term Sµ(SλuλSλvλ) which needs to be
estimated in the space L2H2−s−θ.

For n ≥ 4, (35) allows us to show that

‖SλuλSλvλ‖
L2L

n−1
n−2
. ‖Sλuλ‖

L4L
2(n−1)
n−2
‖Sλvλ‖

L4L
2(n−1)
n−2

. λθ−1+ 1
n−1 ‖uλ‖X̃s,θλ ‖vλ‖X̃1−s,1−θ

λ

Sobolev embeddings can then be used to obtain

‖Sµ(SλuλSλvλ)‖L2H2−s−θ . µ2−s−θ+n(n−3)
2(n−1) λθ−1+ 1

n−1 ‖uλ‖X̃s,θλ ‖vλ‖X̃1−s,1−θ
λ

which agrees with the numerology included in the hypothesis.
The case n = 3 is a little more delicate and we need (32) to infer

‖SλuλSλvλ‖
L2L

2
1+2ε
. ‖Sλuλ‖

L4L
4

1−4ε
‖Sλvλ‖

L4L
4

1+8ε

. λ−ε‖uλ‖X̃s,θλ ‖vλ‖X̃1−s,1−θ
λ

Again by Sobolev embeddings we can conclude that

‖Sµ(SλuλSλvλ)‖L2H2−s−θ . µ2−s−θ+3ελ−ε‖uλ‖X̃s,θλ ‖vλ‖X̃1−s,1−θ
λ

The proof of (44) follows the same lines as the one in Proposition 3.9 from [2].
�
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