This is an open notes prelim.

Problem 1. Suppose \(\{X_n\}_{n=1}^\infty \) are iid random variables such that \(\mathbb{E}[|X_1|] = +\infty \).
Show
\[
\lim_{n \to \infty} \frac{S_n}{n} = +\infty \tag{1}
\]
where \(S_n = \sum_{i=1}^n X_i \).
Hint: Consider the inequality \(|X_n| \leq |S_n| + |S_{n-1}|\) and first see what happens to \(\lim \frac{|X_n|}{n} \). Is \(|X_n|/n \) large fairly regularly?

Problem 2. Suppose \(\{X_n\}_{n=1}^\infty \) are iid Cauchy random variables with density
\[
f(x) = \frac{1}{\pi(1 + x^2)} \quad x \in \mathbb{R}
\]

1. Compute \(\mathbb{E}[|X_1|] \), and find \(\lim_{n \to \infty} S_n/n \).
2. Compute the characteristic function \(\phi(t) \) of \(X_1 \).
 Hint: Consider using the residue theorem or computing the inverse Fourier transform of \(e^{-|t|} \).
3. Does \(S_n/n \) have a weak limit?

Problem 3. Construct a sequence such that \(X_n \to X \) in distribution but \(X_n \not\to X \) in measure.

Suppose \(F_n(t) \to F(t) \) for all \(t \neq c \), where \(F_n \) is the cumulative distribution function of \(X_n \) and \(F \) is the cdf given by
\[
F(t) = \begin{cases}
1 & t \geq c \\
0 & t < c
\end{cases}
\]
where \(c \in \mathbb{R} \). Show that \(X_n \to c \) in measure.

Problem 4. Let \(Y_1, Y_2, \ldots \) be nonconstant, nonnegative, iid random variables with \(\mathbb{E}Y_m = 1 \).

1. Show that
\[
X_n = \prod_{m \leq n} Y_m
\]
defines a martingale with respect to the filtration \(\mathcal{F}_n = \sigma(Y_1, \ldots, Y_n) \).
2. The martingale convergence theorem tells us that there is an \(X_{\infty} \) such that \(X_n \to X_{\infty} \) \(\mathbb{P} \) a.s. Determine \(X_{\infty} \).
 Hint: Consider using the law of large numbers.

Problem 5. Let \(p \) be a fixed number in \([1, \infty]\). Let \(X_n \) be a sequence of random variables such that for every \(\epsilon > 0 \), there exists an \(N \) such that for all \(n, m \geq N \),
\[
\mathbb{E}[|X_n - X_m|^p] < \epsilon
\]
Show that there is an \(X \) such that \(X_n \to X \) in probability.