Math 453
Final Exam
4:00-7:00 pm, May 8, 2020

EXAM ID NUMBER : \qquad

- The exam consists of 5 questions.
- Please read the questions carefully.
- Show all your work in legibly written, well-organized mathematical sentences.
- GOOD LUCK !!!

1. (20 pts) Define an atlas on the cylindrical surface

$$
M=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=r^{2}, 0<z<h\right\}
$$

where $h, r \in \mathbb{R}^{+}$.
2. (20 pts) a) State the Inverse Function Theorem.
b) Let $f:(0, \infty) \times \mathbb{R} \rightarrow \mathbb{R}^{2}$ be a function defined by $f(x, y)=\left(x, y^{3}+x y\right)$. Is f a diffeomorphism?
3. (20 pts) Consider the vector fields on \mathbb{R}^{2} :

$$
X=x \frac{\partial}{\partial x}+4 x y \frac{\partial}{\partial y}, \quad Y=2 y \frac{\partial}{\partial y}
$$

and let ω be the differential form on \mathbb{R}^{2} given by $\omega=\left(x^{2}+y\right) d x+\left(2 x+y^{2}\right) d y$. Show that ω satisfies the relation $d \omega(X, Y)=X \omega(Y)-Y \omega(X)-\omega([X, Y])$, between the bracket product and the exterior differential.
4. a) State the Frobenius Theorem.
b) Consider the vector fields on \mathbb{R}^{2} :

$$
X=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}, \quad Y=x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}
$$

Do they span an involutive distribution? Is this distribution (completely) integrable?
5. (20 pts) Calculate the de Rham cohomology groups, $H_{D R}^{k}\left(S^{2}\right)$, of the two-sphere S^{2} for all k. Justify your answers. (you can use the Mayer-Vietoris sequence, but you don't have to).

