Math 453 Final Exam 4:00-7:00 pm, May 8, 2020

EXAM ID NUMBER : _____

- The exam consists of 5 questions.
- Please read the questions carefully.

• Show all your work in legibly written, well-organized mathematical sentences.

• GOOD LUCK !!!

1. (20 pts) Define an atlas on the cylindrical surface

$$M = \{ (x, y, z) \in \mathbb{R}^3 : x^2 + y^2 = r^2, 0 < z < h \},\$$

where $h, r \in \mathbb{R}^+$.

2. (20 pts) a) State the Inverse Function Theorem.

b) Let $f: (0, \infty) \times \mathbb{R} \to \mathbb{R}^2$ be a function defined by $f(x, y) = (x, y^3 + xy)$. Is f a diffeomorphism?

3. (20 pts) Consider the vector fields on \mathbb{R}^2 :

$$X = x\frac{\partial}{\partial x} + 4xy\frac{\partial}{\partial y}, \quad Y = 2y\frac{\partial}{\partial y},$$

and let ω be the differential form on \mathbb{R}^2 given by $\omega = (x^2 + y)dx + (2x + y^2)dy$. Show that ω satisfies the relation $d\omega(X, Y) = X\omega(Y) - Y\omega(X) - \omega([X, Y])$, between the bracket product and the exterior differential. 4. a) State the Frobenius Theorem.

b) Consider the vector fields on \mathbb{R}^2 :

$$X = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}, \quad Y = x\frac{\partial}{\partial x} + y\frac{\partial}{\partial y}$$

Do they span an involutive distribution? Is this distribution (completely) integrable?

5. (20 pts) Calculate the de Rham cohomology groups, $H_{DR}^k(S^2)$, of the two-sphere S^2 for all k. Justify your answers. (you can use the Mayer-Vietoris sequence, but you don't have to).