1 Algebra II

1. Prove that a Dedekind domain R is a UFD if and only if it is a PID.
2. Prove that $x^{4}-2$ is solvable in two ways: first by showing the splitting field is a radical field extension of \mathbb{Q}, and next by showing its Galois group is solvable.
3. Let R be a local ring and $h: R \rightarrow S$ a ring homomorphism. Prove that the image $h(R)$ is a local ring.
4. Recall Noether's normalization theorem: if B is a finitely generated k algebra, where k is a field, then there exists a subset $\left\{y_{1}, \ldots, y_{r}\right\}$ of B such that the y_{i} are algebraically independent over k and B is integral over $k\left[y_{1}, \ldots, y_{r}\right]$.
Prove Zariski's lemma: Let A be a finitely generated k-algebra. If I is a maximal ideal of A, then A / I is a finite extension of k. (One approach is to use Noether normalization on A / I.)
5. Let G be an abelian group. Prove that any irreducible representation of G is of order 1 .

2 Complex Analysis

1. Let $f, g: D \rightarrow \mathbb{C}$ be two holomorphic functions defined on a domain $D \subset \mathbb{C}$ such that

$$
f(z)+\overline{g(z)} \in \mathbb{R}, \quad(\forall) z \in D
$$

Show that there exists necessarily a constant $A \in \mathbb{R}$, with

$$
f(z)-g(z)=A, \quad(\forall) z \in D
$$

2. Determine, with proof, whether there exist functions f which are holomorphic in a neighborhood of 0 and satisfy

$$
n^{-5 / 2}<\left|f\left(\frac{1}{n}\right)\right|<2 n^{-5 / 2}, \quad(\forall) n \geq 1
$$

3. For $a>0$ fixed, compute, using the residue theorem and explaining all steps,

$$
\int_{0}^{\infty} \frac{x^{2}}{\left(x^{2}+a^{2}\right)^{3}} d x
$$

4. Prove that for all $\lambda>1$ the equation

$$
z=\lambda-e^{-z}
$$

has precisely one root in the half-plane $\operatorname{Re} z \geq 0$.
6. Find a conformal transformation $w=f(z)$ which maps the angle $|\arg z|<$ $\pi / 4$ into the unit disk $|w|<1$ and verifies

$$
f(1)=0, \quad \arg f^{\prime}(1)=\pi .
$$

3 Geometry

1. a) Explain why you need at least two coordinate charts to cover a compact manifold.
b) Check whether the following maps are local diffeomorphisms. Are they also global diffeomorphisms ? Explain why.

- $F(x, y)=\left(\sin \left(x^{2}+y^{2}\right), \cos \left(x^{2}+y^{2}\right)\right)$
- $F(x, y)=\left(e^{x} \sin y, e^{x} \cos y\right)$
- $F(x, y)=\left(5 x, y e^{x}\right)$

2. Let (r, θ) be the polar coordinates defined on \mathbb{R}^{2} outside of the origin.
a) Write the 1 -forms $d r, d \theta$ in terms of the ordinary coordinates x, y.
b) Write the volume form $d x \wedge d y$ in terms of $d r$ and $d \theta$. (hint: use the pullback of differential forms.)
3. Show that the Laplacian Δ has the following properties :
a) $* \Delta=\Delta *$. (Show also that this property implies that if ω is a harmonic form, so is $* \omega$).
b) Δ is self-adjoint, that is $\langle\Delta \omega, \eta\rangle=\langle\omega, \Delta \eta\rangle$.
c) A necessary and sufficient condition for $\Delta \omega=0$ is that $d \omega=0$ and $d^{*} \omega=0$.
d) Let M be connected, oriented, compact Riemannian manifold. Then a harmonic function on M is a constant function. Also if $n=\operatorname{dim} M$, then a harmonic n-form is a constant multiple of the volume element $d v o l_{M}$. (hint: use part (c))
4. (Proof of Hodge Theorem) Show that an arbitrary de Rham cohomology class of an oriented compact Riemannian manifold can be represented by a unique harmonic form. In other words, show that the natural map $\mathbb{H}^{k} \rightarrow$ $H_{D R}^{k}(M)$ is an isomorphism. Here \mathbb{H}^{k} denotes the set of all harmonic k-forms on M and $H_{D R}^{k}(M)$ denotes the k-dimensional de Rham cohomology group of M.
(hint: use Hodge decomposition theorem which says that on an oriented compact Riemannian manifold, an arbitrary k form can be uniquely written as the sum of a harmonic form, an exact form and a dual exact form.)
5. (20pts) It is well known that the 4 -sphere \mathbb{S}^{4} has trivial $k^{\text {th }}$ de Rham cohomology except for $k=0$ and $k=4$. Let α be a closed two-form on \mathbb{S}^{4}. Prove that $\alpha \wedge \alpha$ vanishes at some point.
6. Consider the two form $\omega=x d y \wedge d z+y d z \wedge d x+z d x \wedge d y$ and the vector field $v=-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}$. Show that the Lie Derivative of ω in the direction of v is zero. This means that ω is invariant under the flow of ϕ_{t}, the one parameter group of transformations generated by v.
