
MULTIDIMENSIONAL SEMANTICS WITH
UNIDIMENSIONAL GLUE LOGIC

Gianluca Giorgolo and Ash Asudeh
Carleton University Carleton University &

University of Oxford

Proceedings of the LFG11 Conference

Miriam Butt and Tracy Holloway King (Editors)

2011

CSLI Publications

http://csli-publications.stanford.edu/

Abstract

We present an implementation of multidimensional semantics in Glue
Semantics. Our approach differs from the proposal of Arnoldand Sadler
(2010) by restricting multidimensionality to the meaning language and there-
fore avoiding the introduction of tensors in the compositional glue logic. We
use a construction from category theory — monads — to create structured
mappings from the algebra of unidimensional semantics to the multidimen-
sional case. Monads have already been successfully employed in theoretical
computer science to provide a denotational semantics of side effects. Here
we follow the suggestion of Shan (2001) to use monads to modelsemantic
phenomena and show how monads can be used to capture the analysis of
natural language expressions like appositives and expressives. We argue that
monads allow us to keep the simplicity of unidimensional composition while
also allowing the ability to track multiple meaning dimensions and to control
information flow between these different dimensions appropriately.

1 Introduction

Recently much attention has been paid to the semantic contribution conveyed by
a diverse group of expressions that includesexpressives, appositives, epithets and
non-restrictive relative clauses. The contribution to meaning of this type of expres-
sions regularly escapes the scope of logical operators suchas negation and question
forming elements. Consider for instance (1):

(1) Most fucking neighbourhood dogs pee on a damn hydrant on this street.

This sentence conveys the information that the majority of the dogs living in the
neighbourhood urinate on a hydrant in the contextually defined street. However,
the sentence also conveys a generally negative attitude towards dogs and/or their
urinating on the aforementioned hydrant. This effect is obtained in (1) by the use
of the two expressivesfucking anddamn(compare (1) with the more neutralMost
neighbourhood dogs pee on a hydrant on this street).

Nevertheless, the resulting interpretation is not just theconjunction of the two
contributions. If an interlocutor replies to (1) withNo, that’s not true, the interpre-
tation commonly associated with this reply can be paraphrased as “No, the neigh-
bourhood dogs don’t pee on a hydrant on this street”. The reply does not negate
the semantic contribution of the expressive. The same replyto something along the
lines ofMost neighbourhood dogs pee on a hydrant on this street and I hate dogs
and their urinary habitsor Most neighbourhood dogs pee on a hydrant on this street
and dogs and their urinary habits are detestablewould instead take scope over both
conjuncts, thus also potentially targeting the negative attitude towards dogs.

The mini dialogue in (2) exemplifies the same behavior.

†This research is supported by an Early Researcher Award fromthe Ontario Ministry of Research
and Innovation and NSERC Discovery Grant #371969. The authors thank Doug Arnold, Mary Dal-
rymple, Dag Haug, Louisa Sadler and the audience at LFG11 fortheir comments and questions.

(2) A:John Lee Hooker, the bluesman from Tennessee, appeared in The Blues
Brothers.

B: No, that’s not true.
⇒ No, John Lee Hooker did not appear inThe Blues Brothers.
6⇒ No, John Lee Hooker was not from Tennessee.

B’s reply does not target the information about the birth place of John Lee Hooker,
conveyed by A with the appositivethe bluesman from Tennessee. The only strategy
available to B to correct A’s utterance is the one illustrated in (3):1

(3) B: True, but actually John Lee Hooker was born in Mississipi

In (3) the information conveyed by the main clause is first acknowledged and only
then the appositive contribution is amended.

Potts (2005, 2007) introduces a unified analysis of these diverse expressions in
terms of two parallel semantic levels, usually called ‘dimensions’. According to
this view, there are two different dimensions of meaning to which expressions can
contribute, the ‘at-issue’ dimension and the ‘side-issue’dimension, also called the
‘conventional implicatures dimension’ or ‘CI dimension’.

Contributions to theat-issue dimension represent that part of meaning that
speakers present as ‘under discussion’. At-issue contributions are sensitive to logi-
cal operators and, in a communicative setting, they enter the common ground only
after being (possibly silently) acknowledged by the other communicative agents.
In (1) the at-issue contribution corresponds to the information about the urinary
habits of the neighbourhood dogs.

Expressions contributing to the CI dimension mainly conveyinformation that
the speaker presents asuncontroversial. Moreover the information is presented
asperipheral and notunder discussion. Very often, as in the case of expressives,
meaning contributed to the CI dimension is speaker orientedand implicitly ex-
presses the mental state of the speaker. In this sense it enters the common ground
in a different way, as the speaker’s choice of words indicates that she is the relevant
source of truth regarding the propositions contributed (asis always the case for
speaker-oriented material). As illustrated above, CI material regularly escapes the
scope of logical operators such as negation and question forming operators.

Potts formalizes these intuitions in a type logic based on the addition of a sec-
ond kind of propositions,CI propositions. The logic is set up in such a way that
expressions contributing to the CI dimension denote a pair of values, the first one
of the type usually associated with the syntactic category they belong to (e.g. a
function from sets to sets in the case of a noun-modifying expressive), and the sec-
ond one, which is always of the CI propositional type. The logic is also structured
in such a way that the information can only flow from the at-issue dimension to
the CI dimension, in the sense that at-issue meaning components contribute to the
CI dimension, while CI material cannot contribute to the at-issue dimension during
the compositional phase.

1John Lee Hooker was in fact born in Mississippi.

Arnold and Sadler (2010) expand on Potts’s proposal and givean implementa-
tion of the analysis in LFG (Kaplan and Bresnan, 1982; Bresnan, 2001; Dalrymple,
2001) with Glue Semantics (Glue; Dalrymple et al., 1993; Dalrymple, 1999, 2001).
Their starting point is the intuition that, from a resource-logical point of view, ex-
pressions contributing to the CI dimension create a pair of resources, one at the
at-issue level and one at the side-issue one. To do so, Arnoldand Sadler use a
tensor pair as the resulting resource produced by a CI-contributing expression. The
paired resources that are produced by the compositional process are then split and
the at-issue material is used subsequently in the proof, while the side-issue material
is only collected at the end of the compositional process.

In this paper we present an alternative treatment of Potts’sanalysis in LFG
that starts from the proposal of Arnold and Sadler (2010) butstrives for more gen-
erality and for a simpler treatment of multidimensional semantics. At the same
time our approach allows for finer control of the flow of information between the
two dimensions. In fact, although Arnold and Sadler (2010)’s implementation cor-
rectly restricts the flow of information only from the at-issue dimension to the CI-
dimension during the compositional phase, at the same it lacks enough structure to
model a class of interdimensional meaning interactions that Potts (2005, 2007) and
AnderBois et al. (2010) discuss.

Our proposal is based on the suggestion made by Shan (2001) ofusingmonads
to uniformly model a large number of semantic phenomena. In general, a monad
allows us to reproduce the structure of a certain compositional algebra in a more
complex but related setting. We will show how the monadic approach allows us to
retain a compositional interface based only on functional application and functional
abstraction, even in the case of a multidimensional semantics. At the same time,
the monadic machinery allows us to combine different semantic phenomena and to
control how they interact. This will also allow us to shed light on the restrictions
that can be observed in the kind of inter-dimensional meaning interactions that are
not directly related to the compositional process.

The paper is structured as follows. In Section 2, we discuss the proposal of
Arnold and Sadler (2010) and motivate our version on the basis of the aforemen-
tioned data that illustrate more complex patterns of interactions between dimen-
sions. In Section 3, we introduce the concept of monads and discuss how we
can use them to give structure to linguistic meanings. Section 4 provides a fully
worked out example of how the monadic approach can be used in Glue Semantics
to characterize multidimensional meanings and how monads can help us to model
the interaction between the dimensions in cases involving non fully compositional
phenomena. Section 5 concludes and presents directions forfuture research.

2 Arnold and Sadler (2010)

In this section we briefly review the proposal of Arnold and Sadler (2010), placing
it in the context of Potts’s analysis and identify the pointsof departure of our ap-

proach with respect to theirs. Subsequently we review a number of circumstances,
initially discussed by Potts (2005, 52ff.), and more recently by AnderBois et al.
(2010), in which at-issue content seems to require access toside-issue content,
which would be precluded by Potts’s type theory. We claim that this form of inter-
action also calls for an analysis based on monads.

Arnold and Sadler (2010) start their analysis from the assumption that expres-
sions like appositives, non-restrictive relative clausesand expressives are fully in-
tegrated in the constituent and functional structures of the sentences to which they
contribute, a view we fully agree with. All these constructions contribute to mean-
ing as adjuncts and compose with the rest of the linguistic material following the
standard projection architecture of LFG. The focus of theirproposal is on the com-
positional rules that govern the interactions between dimensions.

The implementation they discuss is based on the analysis of Potts (2005) and,
in particular, on a suggestion made by Potts (2005, 85ff.) for a resource-sensitive
implementation of the theory. As discussed above, the idea of Potts is that each
linguistic expression denotes a pair of objects: the at-issue contribution, of the type
usually associated with the expression, and a possibly empty side-issue contribu-
tion, always of typetc, a distinct CI propositional type. The meaning of linguistic
expressions is composed according to the structure of a semantic tree derived from
a syntactic tree using two different modes of composition. The first one involves
only the at-issue dimension and corresponds to functional application:

(4)
〈α(β), 〉

〈β, 〉 〈α, 〉

〈α(β), 〉

〈α, 〉 〈β, 〉

In these rules, the at-issue meaning, the first component of the pairs, is composed
via functional application. The CI dimension is left untouched and Arnold and
Sadler particularly stress that it is not percolated up the tree. There is then another
form of composition, specific for CI meaning:

(5)
〈β, α(β)〉

〈β, 〉 〈α, 〉

〈β, α(β)〉

〈α, 〉 〈β, 〉

Here the at-issue material is combined and transferred to the CI dimension (the
second component of the pairs). At the same time theβ component is duplicated
and copied in the at-issue part of the meaning. These types ofrules regulate the
flow of information between the dimensions. In particular the type theory is set up
so that values can only travel from the at-issue dimension tothe side-issue one. The
interpretation process is then completed by an additional step that collects all the
CI propositions and conjoins them with the propositional content of the at-issue di-
mension. These rules break the resource sensitivity assumption of Glue Semantics
(Asudeh, 2004, 2012), which is grounded in the use of linear logic (Girard, 1987),
a resource logic, for semantic composition. In both cases the argument valueβ is
used two times: it is first copied to the at-issue dimension but it is then reused as
the argument of the functionα in the side-issue dimension.

Arnold and Sadler follow and extend the suggestion of Potts of considering
CI-contributing lexical items as objects producing apair of resources, one for the
at-issue dimension and one for the side-issue dimension. So, in general, the glue
term describing the compositional behavior of these expressions will have a return
type composed by two resources, one of the CI propositional type, combined with
the tensor⊗. This is reflected in the meaning terms for these expressions, as they
will result, after all their arguments have been saturated,in a pair of objects.

However only the at-issue resource is going to be further used in the Glue proof,
as the CI material must be inaccessible once it has been created. Therefore Arnold
and Sadler introduce a rule to split the tensored pair into two resources. They call
this ruleat-issue-ci-split; we repeat it here in (6)

(6)
〈m,m′〉 : r ⊗ rtc

m : r m′ : rtc

Any CI resource obtained by the split rule is not used in the inferential process,
as there are no linguistic expressions that consume a resource of that type. Nev-
ertheless, to obtain the final interpretation, the CI propositions must be collected.
To this end, Arnold and Sadler use the ‘of course’ operator, ‘!’, which allows the
term that it takes scope over to be used any number of times, thus relaxing resource
sensitivity. This operator is then used for the meaning constructor of a silent lin-
guistic operator applied to the root of the derivation. The silent operator simply
scans the derivation, collects the CI propositions and conjoins them with the at-
issue proposition. The silent operator would need to be different in case of other
types of utterances, for instance in the case of questions, as in these cases the CI
contribution cannot just be conjoined with the at-issue content of the speech act.

Arnold and Sadler also propose an alternative implementation that departs from
Potts’s proposal by adding a new projection to the LFG architecture. The idea is
to avoid having to introduce a special propositional type for CI material distinct
from the other standard typet, and, at the same time, to avoid having to introduce
the of course operator. This new structure —CI-structure — is projected from
the functional structure and parallel to the semantic structure. In this way, Arnold
and Sadler can keep the resources separated, as they are instantiated from different
structures, without the need to introduce anad hoc type for CI propositions.

Our approach has points of contact with the implementation of Arnold and
Sadler but there are also some fundamental differences. We will present here our
account in an informal way but stressing the differences with Arnold and Sadler’s
system. In the next section we will give the formal details that justify our claims.

We start from the same assumption that linguistic constructions contributing
to the CI dimension are fully integrated in the syntactic andfunctional structure
of the sentence they appear in. We also share Potts’s intuition that the denota-
tion of linguistic expressions corresponds to a pair (or more generally, a tuple) of
values. However, in our case the CI dimension is representedby a collection of
propositions (the CI contributions made so far) rather thana single propositional
value. This also means that in our analysis the CI content is percolated through

the semantic tree/proof. However the process of combining and percolating the CI
component is built into the compositional process and is notaccessible to lexical
resources. This means that the CI material remains accesible only locally and only
to those lexical items that operate on it by adding new propositional content.

Given that the compositional process is in a sense “aware” ofthe paired nature
of meanings, we can uniformly treat them as atomic resources. Therefore we do not
replicate the asymmetry present in Arnold and Sadler’s system in which all expres-
sions denote a pair, but where, at the level of the resource logic, some of them are
represented as atomic resources while others are represented as pairs of resources.
This also means that we do not need a special rule to split the resources and then
recombine them, nor do we need to postulate a special type forCI propositions.
In our derivations, the CI component is implicitly kept separated from the at-issue
material and threaded through the compositional process inthe background. As a
result the proofs we obtain easily satisfy a strict version of resource-sensitive com-
position, as we do not need an operator like of course, !, which, with its possibility
of repeated application, breaks down resource sensitivity.

By exploiting the paired nature of denotations we can also avoid introducing
a special propositional type for the CI dimension, while simultaneously avoiding
the introduction of a new kind of semantic structure. The twodimensions are in
fact identified completely by the position they occupy in thepair. In this way
we distinguish not between two different types of proposition but rather between
two different modalities with which propositions are introduced in the common
ground, a very similar distinction to the one proposed by Arnold and Sadler with
the projection to the CI-structure.

Finally the monadic approach can be seen as more parsimonious from a the-
oretical point of view. Shan (2001) in fact shows how the organizing principles
of monads can be used to model a wide range of semantic phenomena. He lists
among the possible applications of monads phenomena such asfocus, question
formation, and intensionality. Giorgolo and Unger (2009) show how monads can
also model dynamic phenomena like anaphora. This is particularly relevant for
parenthetical constructions as they seem to interact with these type of phenomena
in non-trivial ways. In particular, dynamic effects have raised some interest as they
seem to create contexts in which the flow of information between dimensions is
less constrained than we would predict on the basis of Potts’s theory. Potts (2005,
52ff.) himself and AnderBois et al. (2010) present a number of cases in which in-
formation flows from the CI dimension to the at-issue dimension. All these cases
have in common the fact that they involve some form ofuncertainty in the meaning
they denote. We list here some examples of “unruly” contexts:

1. Presupposition

(7) Mary, a good drummer, is a good singer too.

2. Anaphora

(8) Jake1, who almost killed a woman2 with his1 car, visited her2 in
the hospital.

3. VP ellipsis

(9) Lucy, who doesn’t help her sister, told Jane to.

4. Nominal ellipsis

(10) Melinda, who won three games of tennis, lost because Betty won
six.

What we see is that, in order to resolve the uncertainty introduced in the at-issue
dimension by these constructions, we need to take into consideration the CI dimen-
sion. For instance in the case of (7), the presupposition triggered bytoo is resolved
by the information that Mary has some additional musical talent beside singing, a
fact we are informed of by the appositivea good drummer. Similarly in the case
of anaphora and ellipsis, the unstated referent/property in the matrix clause is in-
troduced in the CI contribution. The possibility of modeling multidimensionality
and dynamic phenomena using the same theoretical apparatusseems to us a good
reason to propose an alternative approach to Arnold and Sadler’s.

3 Monads

The concept of a monad arises in category theory (Barr and Wells, 1984). It has
found many applications in theoretical computer science asa model for the de-
notational semantics of side-effecting computation (Moggi, 1989, 1990) and in
functional programming as a way to structure and compose side-effects (Wadler,
1992a,b). Here we try to provide the main intuitions behind monads and how they
can be used in the context of natural language semantics.

The first intuition behind monads is that they are a way to reproduce a certain
algebraic structure, in our case the algebra of meaning composition, in a richer
setting that carriesmore information. The idea is that if we have a collection of
functions and values that represent our meanings we can map them to new ob-
jects that contain the original information plus some additional meaning material.
The monadic mapping allows us to maintain in the new richer setting the same
compositional configurations we started with. The additional information varies in
different types of monadic mappings, but in all cases we are able to reconstruct the
original compositional configurations.

The characteristic of a monadic mapping is that the originalmeanings are as-
sociated with some kind of default information. In this way we obtain an object of
the correct enriched type without committing to any particular enriched informa-
tion. For example, in the case of multidimensionality, the meanings of linguistic
expressions that contribute only to the at-issue dimensionare mapped from the tra-
ditional unidimensional collection of meanings to a collection of paired meanings,

and the objects they are mapped to consist of the original meaning and a vacuous
CI contribution.

The principles behind this intuitive view of monads continue to apply when
we consider monads as models of computations. According to this perspective, a
monad is a computation that yields a value while at the same time producing some
side effects, like modifying some global environment or communicating with the
“real world”. Also in this case we can assume that we start from pure — i.e. side-
effect free — functions and values and map them to computations with possible
side effects that yield the starting object as the result of running. A monadic map-
ping will map a pure value/function to a computation that hasno side effect and that
only returns the original value when run. The computationalperspective also ex-
poses another important property of monads that makes them an interesting model
of natural language meaning. The notion of side effects is intimately connected to
the idea of sequentiality. For instance, the order in which we access a file by read-
ing from and writing to it is fundamental in determining whether the computation
fails or not. Monads can be composed to create larger computations from more
elementary ones and the monadic approach requires the specification of a fixed or-
der of evaluation. This property is particularly relevant for the non-compositional
phenomena that we discussed above, in which we need to keep track of the linear
order of appearance of the various expressions in order to predict the licit patterns
of anaphora, presuppositions and ellipsis.

We formalize these intuitions by defining a monad as a triple:〈M,η, ⋆〉.2 M

can be understood as the mapping that tells us to which type ofenriched collections
of values/functions we are lifting our unidimensional meanings.M can also be in-
terpreted as a name for this specific collection. We will use the notationM α to
indicate the type of objects that result from the application of the mappingM to ob-
jects of typeα. η (pronounced ‘unit’) is the operation that brings us from theorig-
inal, information-poor collection of meanings to the information-rich collection. It
does so by encapsulating each object in the source collection in a “container” that
also stores default, vacuous information.⋆ (pronounced ‘bind’) is a binary oper-
ation that performs both the role of creating new monads fromsimpler ones and
imposing an evaluation order for their computation.⋆ takes a monad and a function
from the type of the result yielded by the monad to another monad of the same kind.
The operation runs the first monad, passes the result to the function and creates a
new monadic computation. In the background, the side-effects/enriched informa-
tion from the first monad and the second one are run sequentially/accumulated. In
this way, the resulting monad creates a new value using the value produced by the
first one and combines the side-effects/enriched information of the two monads.
In order to obtain the properties we ascribed to monadic mappings above, the two

2We use here the definition normally found in the computer science literature (Moggi, 1989;
Wadler, 1992b). This particular definition allows us a more natural description of the meaning of the
expressions contributing to the CI dimension. The categorical definition is normally given in terms
of a different triple (Barr and Wells, 1984); this is in any case completely equivalent to the one used
here.

operations must satisfy the following laws for allx, f, g andm:

η(x) ⋆ f = f x (11)

m ⋆ η = m (12)

(m ⋆ f) ⋆ g = m ⋆ (λx.f x ⋆ g) (13)

Laws (11) and (12) characterizeη as the left and right identity with respect
to the composition of monads. This is a way to requireη to couple the lifted
value with vacuous information/no side-effect. Law (13) states that⋆ behaves as
an associative operator. This is relevant for us because it guarantees us that the
ordering of the side effects is independent of the order of composition.

The specific monad we are going to use to model multidimensional semantics
is known in the functional programming tradition as theWriter monad. TheWriter
monad maps values and functions to a pair composed by the value/pair and an
element of amonoid. A monoid is an algebra with a single binary associative
operation and an element that is the left and right identity of the operation. In our
case the underlying set of the monoid is a set of sets of proposition (i.e. the possible
collections of CI contributions), the binary operation is set union and the identity
element is the empty set.3 In the Writer monad the identity element corresponds
to the vacuous information and the binary operation describes the way in which
information is accumulated.

In our case the mappingWriter sends an object of typeα to an object of type
〈α, p → t〉, a pair of an object of typeα and a set of propositions. Typep is a
quite conservative extension to the standard type theory based one andt. p in fact
represents the set of names of propositions. In this senset can be seen as a subtype
of p, namely the domain containing only the names{⊤,⊥}.

Having definedWriter in this way we have, for example, that the interpretation
of an intransitive verb, an object of typee → t, will be mapped to an object of type
〈e → t, p → t〉, or more compactlyWriter (e → t). η pairs every object with the
empty set:

η(x) = 〈x, { }〉 (14)

⋆ is instead defined as follows:

〈x, P 〉 ⋆ f = 〈π1(f x), P ∪ π2(f x)〉 (15)

whereπ1 andπ2 are respectively the first and second projection of a pair. Inwords,
⋆ is a binary function that takes 1) an input pair of a value and acollection of
propositions and 2) a functionf that produces a computation using the first value
of the input pair.⋆ produces a new computation whose value is the value of the
computation produced byf and a new collection of propositions that is the union

3By using set union we make our monoid commutative. In the applications described in this paper
this is not of particular relevance, but in certain cases it may be necessary to use a non-commutative
operation to keep track of the order in which the propositions are combined.

of the input collection of propositions with the collectionof propositions produced
by f . The step involving the union of the collections of propositions is the one that
allows us to use theWriter monad as a kind of logging system.

Notice that we have not added to the term language anything besides pairs
and projections. The monoid structure in the second component of our monads
is already expressible in the simply typed lambda calculus that we use for our
meaning constructors. The identity element corresponds infact to the function
λt.⊤ and union can be expressed in terms of disjunction:λs.λr.λt.s t ∨ r t.

We still need to see how we can integrate the monadic approachwith the LFG
framework. Our solution, again inspired by Shan (2001), is to give a new Curry-
Howard isomorphism interpretation of the elimination and introduction rules for
the glue implication⊸. We will however also need to introduce a new kind of
implication in order to give an interpretation to the expressions contributing to the
CI dimension.

Our goal is to be able to reproduce the unidimensional compositional config-
uration at the monadic level. This means that, starting fromat-issue only lexical
items and lifting them to the monadic level viaη, we want to able to saturate a
predicate of typeWriter (α → β) with an argument of typeWriterα. Notice how
we cannot simply use functional application because we are dealing here with two
pairs. The solution proposed by Shan (2001) is to use the⋆ operator to define a
general notion of functional application for monadic meanings. The definition of
this new form of functional application, which we callA following Shan (2001), is
given in (16):

A(f)(x) =def f ⋆ λg.x ⋆ λy.η (g y) : M (α → β) → M α → M β (16)

The monad encapsulating the function is run via⋆ and its result (the function)
is bound to the variableg. Similarly the argument monad is run and the result is
bound toy. As a final step a new monad is created that returns the result of applying
the functiong to the argumenty, without adding any additional information/side
effect. In the background, the⋆ operator takes care of threading the additional
information (in our case the collection of CI propositions).

To obtain an isomorphism between the proofs in Glue Semantics and the mon-
adic meaning terms we need to define a notion offunctional abstraction. The
definition of abstraction for monads is less mathematicallypleasant and depends
more heavily on its use in Glue proofs than the definition of monadic functional
application. A is in fact just a function operating on values. The corresponding
abstraction cannot be defined in the same way but makes use of the specific shape
of the meaning language we use to decorate our proofs. The definition is given in
(17).

η(x) ⊳ m =def m ⋆ λb.η (λx.b) : M α → M β → M (α → β) (17)

The termη(x) ⊳ m indicates the monadic abstraction of a valuex in the computa-
tion represented by the monadm. The interpretation of the term is close to that of

a classical abstractionλx.t, in the sense that⊳ signals a hole inm calledx in the
same way thatλ signals a hole int calledx. The precise definition is however a bit
more involved. In (17),η(x) is assumed to be a hypothesis introduced in the proof.
x must be a fresh variable. The hypothesis allows us to deduce the computation
corresponding tom from which we then discard the hypothesisη(x) via this form
of abstraction. We extract the value yielded bym, bind it to b and return a new
computation that returns the abstractionx overb.

In (18) we give the elimination and introduction rules for the glue logic impli-
cation,⊸, using the newly defined monadic functional application andfunctional
abstraction.

x : A f : A⊸ B
⊸ E

A(f)(x) : B

[η(x) : A]i
...

m : B
⊸ Ii

η(x) ⊳ m : A⊸ B (18)

The mode of composition just outlined is not powerful enoughto describe how
certain expressions move information from the at-issue dimension to the CI one. In
fact the class of objects composable with⊸ is restricted to those that operate on the
two components independently. To understand why this is so,consider the case of
an expressive, likefucking in (1). This expressive takes an argument, a noun, and
contributes to the at-issue dimension by returning its argument untouched, which
means that it encapsulates the identity function as its at-issue meaning, and to the
CI dimension by applying the predicate⌢ to its argument.4 Given its at-issue
contribution the type we would assign to its denotation isWriter ((e → t) → (e →
t)). However an object of this type would not be able to apply the predicate⌢ to
its argument. If we take a look at the definition of monadic application we can see
that the functional value is actually applied to its argument outside of the original
monad. The monad is in fact run and its return value collected, but only at the end
is it combined with its argument. This means that the denotation for the expressive
would not be able to access its argument to generate a CI contribution.

In order to properly generate the CI contribution, we need toassign to expres-
sions likefucking a denotation that corresponds to a function that is “aware” of
the monadic context in which it is evaluated. The idea is to have these types of
expressions take monads as arguments, in our case pairs of at-issue and side-issue
meaning material. The type we will assign to an expression like fucking is there-
fore Writer (e → t) → Writer (e → t). This is the type of function that takes a
monadic object encapsulating a predicate and returns another monadic object also
encapsulating a predicate. In the case of the expressive, the function will return a
monad containing the same predicate but paired with the CI proposition expressing
a negative judgment about it.

To keep track of which type of composition it is necessary to introduce in the
glue logic a new implication,⊸∗. This new implication behaves exactly like the

4The frown symbol,⌢, is meant to evoke the idea of a negative judgement.

original one and comes equipped with its own notion of functional application and
functional abstraction. By a slight twist of logic, application and abstraction for
this new connective corresponds to standard application and abstraction, as we use
them in traditional Glue Semantics, as shown by the term to the left of the colon in
the following:

A∗(f)(x) =def f x : (M α → M β) → M α → M β (19)

x ⊳∗ m =def λx.m x : M α → M β → (M α → M β) (20)

In (21) we give the Curry-Howard isomorphism for respectively elimination and
introduction of⊸∗ and this additional type of monadic functional applicationand
abstraction.

x : A f : A⊸∗ B
⊸∗ E

A∗(f)(x) : B

[x : A]i
...

m : B
⊸∗ Iix ⊳∗ m : A⊸∗ B (21)

In the next section we show how the formal machinery introduced here can be
used to analyse expressions involving side issue contributions.

4 Monads in action

In this section we present the details of our proposal. We start by working out in
some detail the analysis of the contribution to the CI dimension of an expressive.
We then move to another example illustrating the interaction between dimensions
in the case of presupposition. This example allows us to see how the monadic
approach controls the information flow in the desired manner.

Consider the sentence in (22).

(22) John loves goddamn Marilyn Manson.

We assume a standard constituent structure and associated functional structure. In
particular we take it thatgoddamnworks as a regular modifier that contributes
to theADJUNCT feature ofMarilyn Manson. In Table 1 we present the meaning
constructors that form our lexicon.

Lexical entries that contribute only to the at-issue dimension are assigned a
meaning term very similar to the standard one. The one difference is in the ‘lifting’
of their meaning term to the monadic level by means of theη mapping. The expres-
sivegoddamnis instead given an interpretation that makes full use of themonadic
setting. First of all the glue term associated with it denotes the fact that the ex-
pressive composes with the surrounding lexical material ina way that produces a
contribution to the CI dimension. The expressive takes the NPMarilyn Mansonas

WORD MEANING TERM + GLUE TERM

John η(j) : j
loves η(love) : m⊸ j ⊸ l

Marilyn Manson η(m) : m
goddamn λx.x ⋆ λy.write(⌢(y)) ⋆ λ .η(y) : m⊸∗ m

Table 1: Lexicon forJohn loves goddamn Marilyn Manson.

JJohnK : j

JlovesK : m⊸ j ⊸ l

JgoddamnK : m⊸∗ m JMansonK : m

A∗(JgoddamnK)(JMansonK) : m
A(JlovesK)(A∗(JgoddamnK)(JMansonK)) : j ⊸ l

A(A(JlovesK)(A∗(JgoddamnK)(JMansonK)))(JJohnK) : l

Figure 1: Glue Semantics proof forJohn loves goddamn Marilyn Manson.

its argument via the special implication⊸∗. In this way it can control the evalua-
tion of the meaning term corresponding to the NP and extract from it the necessary
information. The meaning term associated withgoddamnillustrates how this is
done: the expressive takes the NP as its firstx argument, extracts from it its value
(the referent of the NP) and, via the⋆ operator, passes in the background the side-
issue material that may have been computed by its argument (in this case none).
The referent is bound to the variabley and using an auxiliary operationwrite
the application of the predicate⌢ to y is logged to the CI dimension.write is
a simple function, taking a proposition as its argument and returning a pair of a
vacuous value and a collection of propositions containing only the argument. We
can therefore assign towrite the typet → Writer ⊥, where⊥ is a domain with
a single inhabitant also named⊥. write is defined as follows:

write = λp.〈⊥, {p}〉 (23)

The final step performed by the denotation ofgoddamnis to return the interpreta-
tion of its argument without any additional change to the collection of CI proposi-
tions. Notice that the value returned by thewrite operation is not used anywhere
in the lambda term and, following a common practice in programming languages,
we indicate this by binding it with an underscore.5

The Glue proof is shown in Figure 1. The proof makes one use of the new rule
for the elimination of⊸∗, which is reflected in the proof term by the use of the
special applicationA∗.

The resulting proof term encapsulates the instructions forcomputing the de-
notation of the utterance. The final result will be a pair whose first projection and
second projection represent respectively the at-issue andside-issue dimensions. As
discussed above,goddamnwill take the denotation ofMarilyn Mansonto create a

5We could have of course used any variable different fromy.

new computation whose result is the denotation ofMarilyn Mansonbut that con-
tributes a proposition to the CI dimension. The other applications are all instances
of standard functional application lifted to the monadic level: the monads corre-
sponding to the function and the argument are ‘run’, their values applied and, in
the background, the CI contributions are collected. To see how this happens we
will show the full expansion of the term. We will use the symbol to indicate a
reduction and decorate it with subscripts indicating whichsteps are taken: we will
use lex-def for the use of lexical postulates,η-def and⋆-def for the definition ofη
and⋆, A-def andA∗-def for the definition ofA andA∗, write-def for the defini-
tion of write, andβ for beta reduction (including the reduction of projectionsand
unions).

The term we are reducing is repeated in (24).

A(A(JlovesK)(A∗(JgoddamnK)(JMansonK)))(JJohnK) (24)

We start by reducing the subtermA∗(JgoddamnK)(JMansonK).

A∗(JgoddamnK)(JMansonK) lex-def+A∗-def

(λx.x ⋆ λy.write(⌢(y)) ⋆ λ .η(y)) 〈m, { }〉 β

〈m, { }〉 ⋆ λy.write(⌢(y)) ⋆ λ .η(y) ⋆-def

〈π1((λy.write(⌢(y)) ⋆ λ .η(y))m),

{ } ∪ π2((λy.write(⌢(y)) ⋆ λ .η(y))m)〉 (25)

The term(λy.write(⌢(y))⋆λ .η(y))m appears two times in (25); we show here
its reduction and plug the result directly in (25) below.

(λy.write(⌢(y)) ⋆ λ .η(y))m β

write(⌢(m)) ⋆ λ .η(m) write-def

〈⊥, {⌢(m)}〉 ⋆ λ .η(m) ⋆-def

〈π1((λ .η(m)) ⊥), {⌢(m)} ∪ π2((λ .η(m)) ⊥)〉 β+η-def

〈π1(〈m, { }〉), {⌢(m)} ∪ π2(〈m, { }〉)〉 β

〈m, {⌢(m)}〉 (26)

Substituting (26) for(λy.write(⌢(y)) ⋆ λ .η(y))m in (25) we obtain

〈π1(〈m, {⌢(m)}〉), { } ∪ π2(〈m, {⌢(m)}〉)〉 (27)

which, after computing the projections and the union, reduces to

〈m, {⌢(m)}〉 (28)

In words, the denotation of the NPgoddamn Marilyn Mansonis a pair whose first
projection is the individual Marilyn Manson and whose second projection is the
proposition stating a negative judgement about that individual.

We continue the reduction by plugging (28) in (24) and expanding the inner
application oflovesto goddamn Marilyn Manson.

A(A(JlovesK)(〈m, {⌢(m)}〉)(JJohnK) lex-def+A-def

A(〈love, { }〉 ⋆ λf.〈m, {⌢(m)}〉 ⋆ λx.η(f x))(JJohnK) (29)

As was the case before, the expansion of the⋆ operator requires us to compute the
same term(λf.〈m, {⌢ (m)}〉 ⋆ λx.η(f x)) love) twice. We reduce here indepen-
dently and plug it in (29) below.

(λf.〈m, {⌢(m)}〉 ⋆ λx.η(f x)) love β

〈m, {⌢(m)}〉 ⋆ λx.η(love x) ⋆-def

〈π1((λx.η(love x))m), {⌢(m)} ∪ π2((λx.η(love x))m)〉 β+η-def

〈π1(〈love m, { }〉), {⌢(m)} ∪ π2(〈love m, { }〉)〉 β

〈love m, {⌢(m)}〉 (30)

The first and the second projection of (30) are needed in the expansion of (29) as
show in the following reduction steps:

A(〈love, { }〉 ⋆ λf.〈m, {⌢(m)}〉 ⋆ λx.η(f x))(JJohnK) ⋆-def

A(〈π1(〈love m, {⌢(m)}〉),

{ } ∪ π2(〈love m, {⌢(m)}〉))(JJohnK) β

A(〈love m, {⌢(m)}〉)(JJohnK) lex-def+A-def

〈love m, {⌢(m)}〉 ⋆ λf.〈j, { }〉 ⋆ λx.η(f x) (31)

Also in this case we can avoid clutter in the derivation by reducing only once the

term(λf.〈j, { }〉⋆λx.η(f x)) (lovem) needed for the expansion of the⋆ operator:

(λf.〈j, { }〉 ⋆ λx.η(f x)) (love m) β

〈j, { }〉 ⋆ λx.η(love m x) ⋆-def

〈π1(λx.η(love m x) j), { } ∪ π2(λx.η(love m x))〉 β+η-def

〈π1(〈love m j, { }〉), { } ∪ π2(〈love m j, { }〉)〉 β

〈love m j, { }〉 (32)

We proceed by plugging (32) in (31):

〈love m, {⌢(m)}〉 ⋆ λf.〈j, { }〉 ⋆ λx.η(f x) ⋆-def

〈π1(〈love m j, { }〉), {⌢(m)} ∪ π2(〈love m j, { }〉)〉 β

〈love m j, {⌢(m)}〉 (33)

The first projection is the proposition that John loves Marilyn Manson and the
second projection is the proposition stating a negative judgement about Marilyn
Manson.

We mentioned in Section 2 that monads can also be used to modelother types
of semantic phenomena. We discuss here an example involvinga non-restrictive
relative clause and a presupposition trigger. Consider thefollowing sentence:

(34) John, who likes cats, likes dogs also.

The sentence contributes two propositions to the common ground: 1) the fact that
John likes cats and 2) the fact that John likes dogs. However the presupposition
trigger also additionally imposes a test on the structure of the common ground.
The speaker expresses with this item that in the common ground we must already
have some information corresponding to the fact that John likes something be-
sides cats. The information is indeed already present, as the non-restrictive relative
clause informs us that John likes dogs and it does sobefore the position in which we
are required to apply the test to the common ground. Our analysis will capitalize
on the fact that monads can be layered to create new types of monads that com-
bine their ability to enrich meaning. We will therefore create a monad that jointly
deals with multidimensionality and presupposition by composing the monad we
have described for multidimensional meaning with a monad tokeep track of pre-
suppositions. Fortunately, we can also use theWriter monad for the treatment of
presupposition.

To combine two monads we actually need to consider an additional construct:
monad morphisms. For our purposes it will be sufficient to understand monad mor-
phisms as monad “factories”. The idea is that a monad morphism can be instanti-
ated as a monad by specifying the monads we want it to combine with. The monad

WORD MEANING TERM + GLUE TERM

comma λjλl.j ⋆ λx.l ⋆ λf.write(f x) ⋆ λ .η(x) : j ⊸∗ (j ⊸ l)⊸∗ j

also λv.λo.λs.s ⋆ λx.v ⋆ λf.o ⋆ λy.lift(check(∃z.f z x ∧ z 6= y)) ⋆
λ .η(f y x) : (d⊸ j⊸ l)⊸∗ d⊸∗ j ⊸∗ l

John η(j) : j
who η(λP.P) : (j ⊸ l)⊸ (j ⊸ l)
likes η(like) : c⊸ j⊸ l

cats η(ιx.cat∗(x)) : c
likes η(like) : d⊸ j ⊸ l

dogs η(ιx.dog∗(x)) : d

Table 2: Lexicon forJohn, who likes cats, likes dogs also.

morphisms will provide some additional enrichment to the information stored in
the monad we wrap it around. In our case we simply take the monad morphisms to
add an additional component to our meanings. This means thatthe meanings we
will end up with will be formed by a pair whose first component is another pair.
To be able to use the functions defined for the internal monad we also need a way
to lift them to the level of the more complex monad. This can bedone in our case
using the following functionlift:

lift(m) = m ⋆ λx.η(〈x, { }〉) : Writerα → Writer (Writerα) (35)

where⋆ andη are the operator for the monad around which we wrap the mor-
phism.6

In Table 2 we list the relevant lexical entries. The entries for the at-issue-
only items are constructed in the same way discussed above, by applying theη
operator. The only difference here is thatη is the operator bringing us to the monad
composed by the multidimensional monad (which starts as a monad morphism)
together with the presuppositional one.commais a silent operator that we borrow
from Potts’s and Arnold and Sadler’s analysis of non-restrictive relative clauses.
Looking at the associated glue logic term we see thatcommatakes 1) the resource
corresponding to the NP to which the relative clauses is attached and 2) the relative
clause, and returns the NP resource. These resources are consumed via the second
monadic functional application, indicated in the term withthe special implication
⊸∗. Behind the scenes,commasaturates the denotation of the relative clause, a
one place predicate, with the denotation of the NP, stores the resulting proposition
in the CI storage using the now familiarwrite function and returns the denotation
of the NP as its final value.

The denotation ofalsointroduces the new presuppositional monadic level. As
was the case withcomma, its glue term is built using the special implication⊸∗,

6Notice that although we say that we wrap the monad morphism around the monad the result in
our case will be “inside-out”: the additional information expressed by the monad morphism will end
up in the internal pair, while the information coming from the simple monad will be collected in the
second component of the external pair.

a signal of the fact that this lexical item performs some additional work besides
returning a value. We analysealsoas a sentential operator that takes as arguments
the verb, the subject and the object of the sentence. The result type is the one corre-
sponding to the propositional value of the at-issue component of the sentence. The
meaning term describes the semantic operations corresponding to the evaluation of
also. The meaning of the verb, the object and the subject are extracted and bound
respectively to the variablesf , y andx. The next step is to perform a side-effect
in the presupposition monad. As stated earlier, the presupposition monad is really
just another instance of theWriter monad, again constructed as a pair of a value
and a set of propositions. The presupposition monad is defined in exactly the same
way as the multidimensional monad is. The function we see here,check, is really
just another name for the functionwrite, used here to clarify the levels at which
the operations take place.check adds the presuppositional condition that in the
model in which the sentence is evaluated there has to be an entity z such that the
subject (x) likes z but z is different from the object (y). This operation is lifted to
the level of the multidimensional monad vialift and the computation terminates
by returning the application of the verb to its arguments.

The resulting proof term is show in (36):

A∗(A∗(A∗(JalsoK)(JlikesK))(JdogsK))(A∗(A∗(JcommaK)(JjohnK))

(A(JwhoK)(A(JlikesK)(JcatsK)))) : l (36)

After reducing the term we obtain the following pair:7

〈〈like(j, ιx.dog∗(x)), {like(j, ιx.cat∗(x))}〉,

{∃z.like(j, z) ∧ z 6= ιx.dog∗(x)}〉 : l (37)

The first component is a pair containing the at-issue proposition that John likes
dogs and the side-issue proposition that John likes cats. The second component of
the outer pair lists the conditions that must be met to satisfy the presuppositions
triggered in the evaluation of the sentence. In this case, the only condition is that
there must be something else besides dogs that John likes. The proposition that
satisfies this condition can be found in the CI dimension.

5 Conclusion

In this paper we presented an analysis of multidimensional semantics based on a
monadic analysis of meaning. Our approach exploits the abstraction capabilities
of monadic mappings in order to maintain a largely standard,unidimensional glue
logic for composition while assigning more complex meanings to the linguistic
resources. The only innovation in the glue logic is the introduction of a new impli-
cation,⊸∗.

7We useιx.dog∗(x) andιx.cat∗(x) to denote respectively the contextually relevant plural dog
individual and the contextually relevant plural cat individual.

We started by discussing the proposal of Arnold and Sadler (2010) to model
multidimensional meaning in Glue Semantics by the use of a tensor conjunction.
While their approach is capable of accounting for the basic data, it does so at the
price of breaking the resource sensitive contract of linearlogic. Our approach does
not contravene this fundamental assumption of Glue Semantics. At the same time,
our approach seems more flexible and general, as it can be adapted to different sce-
narios, in particular if we decide to further differentiatenon-at-issue contributions.
Monads allows us to retain the simple, familiar compositional configurations in the
unidimensional case, while at the same time composing more complex objects on
the meaning side of the derivation. Another promising characteristic of the mon-
adic approach is the possibility of using the same abstractions to deal with different
semantic phenomena.

The analysis of example (34), presented in Section 4, pointsto the fact that the
interaction between dimensions may be more complex than previously theorized.
Here we have just started sketching a possible analysis in terms of layering of
monadic mappings. We leave for future work the study of the different varieties of
contexts that make the picture about meaning interactions more complex and how
these interactions can be reconstructed in terms of unifying principles.

References

AnderBois, Scott, Brasoveanu, Adrian and Henderson, Robert. 2010. Crossing the
Appositive/At-issue Meaning Boundary. In Man Li and David Lutz (eds.),Pro-
ceedings of SALT 20, pages 328–346.

Arnold, Doug and Sadler, Louisa. 2010. Pottsian LFG. In Miriam Butt and
Tracy Holloway King (eds.),Proceedings of LFG10, pages 43–63, Stanford,
CA: CSLI Publications.

Asudeh, Ash. 2004.Resumption as Resource Management. Ph. D.thesis, Stanford
University.

Asudeh, Ash. 2012.The Logic of Pronominal Resumption. Oxford: Oxford Uni-
versity Press, to appear.

Barr, Michael and Wells, Charles. 1984.Toposes, Triples, and Theories. Springer-
Verlag.

Bresnan, Joan. 2001.Lexical-Functional Syntax. Oxford: Blackwell.

Dalrymple, Mary (ed.). 1999.Semantics and Syntax in Lexical Functional Gram-
mar: The Resource Logic Approach. Cambridge, MA: MIT Press.

Dalrymple, Mary. 2001.Lexical Functional Grammar. San Diego, CA: Academic
Press.

Dalrymple, Mary, Kaplan, Ronald M., Maxwell III, John T. andZaenen, An-
nie (eds.). 1995.Formal Issues in Lexical-Functional Grammar. Stanford, CA:
CSLI Publications.

Dalrymple, Mary, Lamping, John and Saraswat, Vijay. 1993. LFG Semantics via
Constraints. InProceedings of the Sixth Meeting of the European ACL, pages
97–105, European Chapter of the Association for Computational Linguistics,
University of Utrecht.

Giorgolo, Gianluca and Unger, Christina. 2009. Coreference without Discourse
Referents: a non-representational DRT-like discourse semantics. In B. Plank,
T. Kim Sang and T. Van de Cruys (eds.),Computational Linguistics in the
Netherlands 2009, LOT Occasional Series, No. 14, pages 69–81, LOT.

Girard, Jean-Yves. 1987. Linear Logic.Theoretical Computer Science 50(1), 1–
102.

Kaplan, Ronald M. and Bresnan, Joan. 1982. Lexical-Functional Grammar: A For-
mal System for Grammatical Representation. In Joan Bresnan(ed.),The Men-
tal Representation of Grammatical Relations, pages 173–281, Cambridge, MA:
MIT Press, reprinted in Dalrymple et al. (1995, 29–135).

Moggi, Eugenio. 1989. Computational Lambda-Calculus and Monads. InProceed-
ings of the Fourth Annual Symposium on Logic in computer science, pages 14–
23, IEEE Press.

Moggi, Eugenio. 1990. An Abstract View of Programming Languages. Technical
Report, Laboratory for Foundations of Computer Science, Department of Com-
puter Science, University of Edinburgh, Edinburgh.

Potts, Christopher. 2005.The Logic of Conventional Implicatures. Oxford: Oxford
University Press.

Potts, Christopher. 2007. The Expressive Dimension.Theoretical Linguistics 33(2),
165–197.

Shan, Chung-chieh. 2001. Monads for Natural Language Semantics. In Kristina
Striegnitz (ed.),Proceedings of the ESSLLI-2001 Student Session, pages 285–
298, 13th European Summer School in Logic, Language and Information.

Wadler, Philip. 1992a. Comprehending Monads. InMathematical Structures in
Computer Science, pages 61–78.

Wadler, Philip. 1992b. The Essence of Functional Programming. In POPL ’92:
Proceedings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 1–14, New York, NY, USA.

	Introduction
	arnold;sadler10
	Monads
	Monads in action
	Conclusion

