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Abstract

In this paper we look at the well known phenomenon of con-
junction fallacies (Tversky & Kahneman, 1983) from a lin-
guistic perspective. We are particularly interested in under-
standing the impact of this phenomenon on our understanding
of compositionality, a core assumption of contemporary lin-
guistic theories about language meaning. We will argue that
contra Hertwig, Benz, and Krauss (2008), conjunction falla-
cies do not arise because of the ambiguity of coordinating con-
junctions such as and, but rather because there are two different
strategies available for computing the composite likelihood of
a collection of events. Crucially, in our analysis the two strate-
gies are two variants of the same underlying general structure
that simultaneously allows subjects 1. to reason in purely logi-
cal terms; 2. to follow the rules of probability and 3. to commit
fallacies depending on the conditions under which they evalu-
ate linguistic expressions relating uncertain events. We will
explain the choice between the two strategies in terms of cog-
nitive/computational economy and the consequences of over-
estimating the likelihood of an event.
Keywords: conjunction fallacy, natural language semantics,
probability, category theory

Introduction
Conjunction fallacies have been an active area of research
in cognitive science for more than three decades now. The
phenomenon was first discussed by Tversky and Kahneman
(1983). They noticed that in a task asking for ratings of the
relative likelihoods of different events, the majority of the
subjects consistently rated the likelihood of the conjunction
of two events as higher than the likelihood of one of the con-
joined events.

One of their examples is the well-known “Linda paradox”.
Subjects were given the following statement and, as part of
the experimental task, where asked to rank the probability that
various statements were true of Linda; the resulting ranking
for the relevant cases is given below the context.

(1) Linda is 31 years old, single, outspoken and very bright.
She majored in philosophy. As a student, she was deeply
concerned with issues of discrimination and social jus-
tice, and also participated in anti-nuclear demonstrations.

Linda is active in the feminist movement. [F(eminist)]
Linda is a bank teller and is active in the feminist move-
ment. [T&F]
Linda is a bank teller. [T(eller)]

The context is obviously designed to bias towards the label
Feminist and it is unproblematic and unsurprising that the rel-
evant proposition is ranked most likely, but the result that the
joint probability T&F is ranked higher than T is interesting,

1. . . and in the darkness ? them.

and constitutes an instance of conjunction fallacy: a conjunc-
tion of two propositions is reported by subjects to be more
probably than the probability of one of the two propositions
on its own.

This result disagrees with the rules of probability, as the
probability of the conjunction of two events, being the inter-
section of the two events, cannot be higher than the likelihood
of any of the two events, formally for any two events A and
B:

P(A and B)≤ P(A),P(B) (2)

These results have been replicated by many studies that have
investigated different ways in which this apparently fallacious
response can be elicited (Yates & Carlson, 1986; Tentori,
Bonini, & Osherson, 2004).

The original explanation of these results by Tversky and
Kahneman (1983) was in terms of representativeness. The au-
thors claimed that the observed responses are due to the fact
that subjects do not operate in terms of probabilistic reason-
ing, but rather use a representativeness heuristic. According
to Tversky and Kahneman (1983), subjects check the degree
of correspondence between the events and a certain model of
reality and select those event that are closer to what the model
predicts as being the more likely events. Representativeness
tends to covary with frequency but not necessarily. A crucial
point of Tversky and Kahneman (1983)’s analysis is that this
heuristic operates on the conjunction as whole, or as they put
it:

the judged probability (or representativeness) of a con-
junction cannot be computed as a function (e.g., product,
sum, minimum, weighted average) of the scale values of
its constituents. (Tversky & Kahneman, 1983, p. 305)

This last property is rather problematic if we intend to in-
tegrate their observations with current linguistic theories of
meaning composition. In fact, a core hypothesis of modern
semantic theory is the principle of compositionality (Janssen,
2011, among many others), ultimately based on the philoso-
phy of language of Frege (1891/1952). This principle states
that the meaning of a composite expression is determined by
the meaning of its constituents. This is in clear contradic-
tion with the analysis of Tversky and Kahneman. However
compositionality has proven a very important tool in linguis-
tic research, in theoretical semantics and in the philosophy of
language, representing the semantic counterpart of linguistic
productivity. Moreover compositionality seems to be a per-
vasive, and indeed quite successful, strategy in human cogni-
tion. Therefore we should be careful before discarding it.



Tversky and Kahneman’s explanation has been challenged
by a number of researchers. In particular Hertwig (Hertwig
& Gigerenzer, 1999; Mellers, Hertwig, & Kahneman, 2001;
Hertwig et al., 2008) has proposed that conjunction fallacies
are not real errors, but rather emerge because of the intrinsic
ambiguity of linguistic operators such as the conjunction and.
Another important contribution of this line of research has
been the demonstration that in certain contexts conjunction
fallacies do not arise that easily. This is particularly true of
contexts in which subjects are in some way primed to reason
in terms of frequencies; for instance, if subjects are presented
with a scenario that explicitly introduces frequencies, or if
subjects are required to express explicitly their judgements
regarding the likelihood of different events in terms of numer-
ical estimates rather than implicitly by ordering the events in
terms of likelihood. A similar reduction in the number of fal-
lacies measured can be obtained by “raising the stakes”, for
example by asking subjects to bet on their estimates.

In what follows we try to reconcile these different point of
views on the basis of the data reported in the literature and our
goal of combining the results with the notion of composition-
ality. Our model is similar in some way to the one proposed
by Yates and Carlson (1986). They argue that conjunction fal-
lacies arise because subjects use different strategies to evalu-
ate the combination of multiple uncertain events. They model
the strategy that generates the fallacies with what they call a
“signed summation” model. The idea is to substitute proba-
bilities with a different likelihood measure λ that takes values
in the entire R line. Likely events are assigned a positive
number as their likelihood measure, whereas unlikely events
are assigned a negative one. According to this model the joint
likelihood of two events is the sum of their likelihoods:

λ(A and B) = λ(A)+λ(B) (3)

Our model starts from the same assumption that there are
multiple strategies that are employed by subjects when eval-
uating the likelihood of conjoined uncertain events. But in-
stead of assuming that unrelated computational processes un-
derpin the different strategies, we will show that it is possible
to assume a single uniform process that computes the likeli-
hood of the conjunction of two events from their two relative
likelihoods, but it does so by using different but related rep-
resentations of uncertainty, expressed as alternative algebraic
structures. More specifically we will demonstrate how we
can explain the results reported in the literature in terms of an
algebraic structure known as a semiring. This mathematical
object is at the heart of a specific instance of a mathematical
structure known as a monad, which has independently been
shown to be a good model for the composition of complex
meanings in natural language semantics (Shan, 2001).

In our model the observation made in the literature
(Hertwig & Gigerenzer, 1999) that conjunction fallacies
arise only under specific conditions and can be cancelled if
other conditions are imposed is explained in terms of cogni-
tive/computational economy. In fact the same computational

structure, the monad, can be used together with a number of
different underlying semirings, one of them being the proba-
bility semiring. We predict that, in general, if the subjects are
presented with a task where there are “no stakes” they will
base their judgement on the basis of a reasoning modeled us-
ing a representation corresponding to a semiring defined over
a relatively simple set with generally simple operations. Us-
ing this strategy will generally lead subjects to make overcon-
fident estimations, which tend not to correspond to the reality
of things. If, on the other hand, subjects are forced to evaluate
the consequences of their judgements, such as in the context
of a gaming scenario, or if explicitly primed to think in fre-
quentist terms, then we will observe a switch to a more com-
plex representation, with properties that better approximate
those of probability theory.

Crucially, in our model, logical operators such as and or or
maintain their core logical meaning, while the probabilistic
behaviour is determined by the context in which they operate.
In this sense, with respect to Hertwig et al. (2008)’s analysis,
we switch the ambiguity to the context rather than assuming
that a word like and has multiple meanings. This is in fact
a problem with Hertwig et al. (2008)’s analysis, which effec-
tively treats and as ambiguous, i.e. truly polysemous. We
instead follow the standard Gricean approach (Grice, 1975):
we treat and unambiguously like logical conjunction but al-
low it to derive additional “implicatures” depending on the
context of use. In this sense we recuperate Grice’s funda-
mental intuition that despite the fact that the same words are
used with different meanings, speakers are not necessarily
confused about the semantic meaning, as linguistic expres-
sions are always evaluated with respect to a context (Grice,
1975). Moreover the different meanings are often explain-
able as contextual modification of a core meaning.

Monads and uncertainty
In what follows we will introduce two different mathemati-
cal structures, semirings and monads. For reason of space we
will only sketch their definitions, trying to provide the reader
with an intuitive understanding of their importance. The in-
terested reader can find more details concerning semirings in
any introductory text about algebra, and similarly monads are
discussed in most recent textbooks about category theory.

A semiring is a set A with two distinguished elements 0 and
1 and equipped with two binary operations + and ·, satisfying
the following axioms, for all x,y and z ∈ A

(x+ y)+ z = x+(y+ z) (4)
x+ y = y+ x (5)
x+0 = 0+ x = x (6)
(x · y) · z = x · (y · z) (7)
x ·1 = 1 · x = x (8)
x ·0 = 0 · x = 0 (9)
x · (y+ z) = (x · y)+(x · z) (10)
(x+ y) · z = (x · z)+(y · z) (11)



In the case of the probability semiring, A is the real interval
[0,1], with 0 and 1 representing the two units and + and ·
defined in the usual way.2

Monads are a mathematical structure that arises in cate-
gory theory in the study of the algebra of the functors from a
category to itself (Awodey, 2010). They have found success-
ful application in the semantics of programming languages
(Moggi, 1989; Wadler, 1992) and more recently they have
been proposed in the linguistic literature as a method to model
phenomena that challenge traditional formal models of mean-
ing (Shan, 2001; Unger, 2011; Giorgolo & Asudeh, 2012a,
2012b). In this paper we use monads as a mathematical de-
vice to model uncertainty in natural language meaning, and
how uncertainty is combined and propagated in composed
expressions, such as the conjunction of two propositions or
predicates.

Intuitively we can think of monads as ways to map between
different types of objects, in particular as a way to map simple
objects into more complex ones. Monads are special map-
pings because they represent the canonical way to map the
simple space of objects to a more complex one in such a way
that important properties that link the simple objects are pre-
served under the mapping.

The fact that probability distributions form a monad in the
category of measurable spaces was an early discovery in cat-
egory theory (Lawvere, 1962; Giry, 1982). Here we use a
slightly different characterisation based on the use of mon-
ads in functional programming to model probabilistic calculi.
In our case, the space of simple objects is represented by the
collection of different semantic types of natural language ex-
pressions, e.g. expressions that refer to an individual, such as
proper names, expressions that denote some truth about real-
ity, such as propositions, and expressions that denote a col-
lection of individuals, such as common nouns. The mappings
between these objects are expressed by similar expressions
that “bring” us from one type of expression to another: for
example we take a predicate expressed by a verb as a way
to map the individual denoted by the subject expression to a
truth value (when uttering John sleeps the verb sleeps maps
the individual John to truth if John is indeed asleep and to
false otherwise). The probability monad lifts these simple ob-
jects to probability distributions over inhabitants of the types,
and so the mappings are transformed so that they relate dif-
ferent probability distributions (in our previous example the
predicate would map from the probability distribution corre-
sponding to the denotation of the subject, one that possibly
assigns the entire probability mass to the individual John, to
the probability distribution over the truth values, effectively
giving us an estimate of the likelihood of the event that John
is asleep).

Formally our monad is defined by the triple 〈P,η,?〉. P
is a functor that operates in the way described above: it maps

2These definitions allow the result of summing two probability
measures to be higher than 1, but our system normalizes all proba-
bilities such that the sum is less than or equal to 1.

our semantic types to probability distributions over the inhab-
itants of the type and lifts the mappings between the types so
that they operate between probability distributions. η, pro-
nounced “unit”, is an operation that creates a special type
of probability distribution that corresponds to a categorical
judgement, i.e. assigning the entire probability mass to a sin-
gle element of a semantic type. Basically this is a way to
integrate certainty into our model of uncertainty. Formally
we define it as follows (where we represent probability dis-
tributions as functions from types to the interval [0,1], or in
general to any base set of a semiring):

η(x) := y 7→

{
1 if y = x
0 otherwise

(12)

where x represents an element of any semantic type (e.g. an
individual, a truth value, a collection of individuals).

The second operation, ?, pronounced “bind”, is the way in
which we combine uncertainty. Its definition is based on the
definition of joint probability. It is important to notice that
the joint probability we are discussing here is not the one we
are trying to model in the case of a conjunction. The one
discussed here is much more primitive and is at the core of
the process that constructs the probability of an event from
the linguistic elements that describe it. The joint probability
that we will discuss in what follows arises as the byproduct
of a large number of interactions described by the bind oper-
ation. There is also another difference between the way the
bind operation is used and what we normally mean by joint
probability. While the joint probability of two events gives us
the likelihood of a third event (the occurrence of both atomic
events), bind returns the probability distribution of what we
can consider another atomic event. Bind is defined as in (13).

m? k := y 7→ ∑
x∈A

m(x) · k(x)(y) (13)

where A is the set of elements measured by the probability
distribution m. Bind takes two arguments, a probability distri-
bution (m) and a function (k) from elements of the domain of
the probability distribution m to probability distributions over
elements of (possibly) another set. The resulting probabil-
ity distribution is obtained by collecting all possible ways in
which we can obtain the various results from this second set,
and by scaling them (·) using the likelihood that they emerge
from the first distribution. The results are collected together
using addition.

It is quite clear that despite the fact that we have been talk-
ing about a probability monad, all operations involved in its
definition are those we have described for a semiring. This
means that we can use the same general structure we have
discussed here and replace the meanings of 0, 1, ·, and + with
constants and operations defined for other semirings. This is
precisely what we are going to do in the next section in which
we explain how we can reproduce the results reported in the
literature using our uncertainty monad.



Conjunction fallacies, compositionally
We show how we can reproduce the results reported in (Yates
& Carlson, 1986) using our monadic infrastructure. We use
their data as it is the only example in the literature where the
relative likelihood of the atomic events in conjunctions has
been (at least partially) controlled for. This gives us the possi-
bility of deriving the overall likelihood of the conjoined event
in a compositional fashion starting from the atomic events.

The first step is to define a suitable base for our semiring.
Yates and Carlson (1986) employ a discrete scale based on
the general prediction made by their summation model. Their
model does not take into consideration the extreme cases, i.e.
impossible and certain events. We want to include them in
our model as they are necessary in order to model what we
know about the logical entailment behaviour of the word and.
Tentori et al. (2004) showed that subjects that commit con-
junction errors correctly apply the rules of logic. Therefore
we will use a simple discrete set as the base for our semiring:
{I(mpossible), U(unlikely), P(ossible), L(ikely), C(ertain)}.
I and C correspond to 0 and 1 respectively. The only addi-
tional condition we need to impose so that I and C behave as
boolean values is that for all x in our set x+C =C. There are
sixteen possible well behaved semirings that we can define
for this set.

The next step is to select those semirings that reproduce
the results reported in (Yates & Carlson, 1986) and here sum-
marised in table 1. To do so we have to explain how we expect
the uncertainty attached to the two atomic events to propagate
to the conjunction. This is described formally by the function
in (14).3

〈p,q〉 7→ p? (x 7→ q? (y 7→ η(x∧ y))) (14)

This function takes a pair of probability distributions over
truth values (describing how likely an event is realised in the
real world) and constructs a new probability distribution over
the results of conjoining the truth value of the first event with
the one of the second. In this particular case there are three
ways in which the final result can be false, and only one in
which it turns out true (when both events are realized).

Using this schema we can evaluate how the sixteen semir-
ings match the simplified results in table 1. It turns out that
only one of the sixteen semirings satisfies the conditions in-
duced by the data. We show the one semiring in table 2. No-
tice that this semiring is not homomorphic to the probability
semiring, meaning that we cannot reproduce its behaviour us-
ing probability theory.

One process, two representations
As we have already explained, we assume that conjunction
fallacies are true errors, in the sense that they lead to overes-
timation of the likelihood of events, but at the same time they

3This function is actually generated in a completely composi-
tional fashion by the grammatical system. For details on how such
a system may work see Benton, Bierman, and de Paiva (1998) for
a logical perspective and (Giorgolo & Asudeh, 2012a) for a more
linguistic one.

+ I U P L C
I I U P L C
U U U P L C
P P P P L C
L L L L L C
C C C C C C

· I U P L C
I I I I I I
U I U U U U
P I U P P P
L I U P L L
C I U P L C

Table 2: The one semiring.

− I U P L C
C L P U I

Table 3: Complement operation for the one semiring.

are correct applications of a different strategy for computing
the likelihood of composed events. Our explanation is given
in terms of cognitive/computational economy. If there are no
real stakes on the table, and therefore there is no incentive
in using a safer but costlier computational system, subjects
will employ a form of shortcut, represented in our model by a
simpler semiring. If on the other hand, subjects are pushed to
think about the consequences of their judgements, the more
expensive solution is selected.

The semiring described in table 2 is undoubtedly simpler
than the standard probability semiring. First of all it is based
on a simpler base set. But it also has another important prop-
erty: it is in fact possible to reconstruct the entire semiring
on the basis of only one of the two operations and a simpler
complement operation, −. If we define the complement as in
table 3 (which seems to be most intuitive way to define it, as
we just reverse the order of the relative likelihoods), then we
can observe that for all x and y in our base set we have that
x ·y =−(−x+−y) or alternatively x+y =−(−x ·−y).4 This
means that this particular encoding of uncertainty has much
lower representational costs than other competing possibili-
ties. Its symmetry makes it a particular simple and efficient
computational object.

From a processing perspective this means that we can posit
a single compositional process that computes the likelihood
of two conjoined events in a way that is completely blind
to the specific details of how uncertainty is encoded. We
just require that the encoding satisfies the axioms of a semir-
ing. Moreover we observe the same general process, here
formalized in terms of monads, at play in other areas of nat-
ural language meaning (Shan, 2001; Unger, 2011; Giorgolo
& Asudeh, 2012a, 2012b). The two encodings we have dis-
cussed are instead selected by the context under which the
description of the conjoined event is evaluated. If there are
no real risks and judgements have no real consequences, then
we predict that subject will select a computationally and rep-
resentationally cheap encoding (the one semiring), otherwise
they will apply the rules of probability, which require a much
higher degree of computation and are representationally more

4It is interesting to note that these laws correspond to De Mor-
gan’s Laws in the semiring of truth values.



Likelihood of event A Likelihood of event B Observed rating

U U P(A and B)≤ P(A),P(B)
U L P(A)≤ P(A and B)≤ P(B)
L L P(A),P(B)≤ P(A and B)

Table 1: Results reported by (Yates & Carlson, 1986)

costly. In terms of psychological heuristics, our proposal is
that conjunction fallacies involve the heuristic of satisficing
(Simon, 1956), either in addition to or instead of the heuristic
of representativeness (Tversky & Kahneman, 1983).

Conclusion
We have presented a uniform model that provides a uniform
model for the interpretation of uncertain conjoined events. In
particular, we have shown how it is possible to account for
the presence of conjunction fallacies in judgements related
to the likelihood of conjoined events, together with the cor-
rect application of the rules of probability theory. Our model
starts from the idea that linguistically described events are in-
terpreted starting from their linguistic description through a
compositional process. This process is blind to the specific
semantic content of the linguistic elements, in particular to
the representation of the measure of uncertainty. We take that
the context of evaluation has the effect of selecting one of
two possible representations. One is computationally less ex-
pensive, but has the side effect of generating over-confident
estimates for conjoined events. The other is computationally
more expensive, but leads to judgements that are closer to
the expected odds. We assume that the first representation is
selected if there are no real consequences in case of an er-
roneous estimate, while the second is preferred if a mistake
may have consequences.

The advantage of this approach over other previous models
is of bridging an important hypothesis in the study of natural
language semantics, compositionality, and a pervasive cog-
nitive illusion such as the conjunction fallacy. Our model
also explains why different strategies for evaluating uncer-
tain events are selected, based on a simple computational cri-
terion, and moreover the notion of cognitive/computational
economy that we formally capture can be understood in light
of the satisficing heuristic.

Our model also makes novel predictions that we plan to
study in future work. First of all, the purely compositional
nature of our model means that we can apply it, as it is, to
other cases that involve the combination of different events
via logical operators, such as the cases of disjunction (Carlson
& Yates, 1989) and implication. But our model predicts that
similar effects should also be observable in cases where the
conjunction of events is implicit, such as in the case of univer-
sally quantified sentences. One simple interpretation of such
examples is in fact in terms of an iterated conjunction over the
domain of quantification. If we observe conjunction fallacies
also in this cases, this should provide important evidence for
a compositional model. But our model suggests also novel

ways in which we can prime subjects to not commit reasoning
fallacies related to uncertainty. If we are correct in assuming
that subjects select the specific strategy for evaluating uncer-
tain events on the basis of the possible repercussions of their
choices, then we predict that we can force subjects to select
a frequency based style of reasoning by simply introducing
such consequences. Betting is of course one example, but
other possibilities include some kind of emotional or social
feedback to the judgements of subjects.

References
Awodey, S. (2010). Category theory (Second ed.). Oxford

University Press.
Benton, N., Bierman, G. M., & de Paiva, V. (1998). Compu-

tational types from a logical perspective. Journal of Func-
tional Programming, 8(2), 177–193.

Carlson, B. W., & Yates, J. F. (1989). Disjunction errors in
qualitative likelihood judgment. Organizational Behavior
and Human Decision Processes, 44(3), 368–379.

Frege, G. (1891/1952). Function and concept. In P. T. Geach
& M. Black (Eds.), Translations from the philosophical
writings of Gottlob Frege (pp. 22–41). Oxford: Black-
well. (Translation of Funktion und Begriff, in Der Jenais-
chen Gesellschaft für Medizin und Naturwissenschaft.)

Giorgolo, G., & Asudeh, A. (2012a). 〈M,η,?〉 Monads
for conventional implicatures. In A. Aguilar Guevara,
A. Chernilovskaya, & R. Nouwen (Eds.), Proceedings of
sinn und bedeutung 16 (Vol. 1, pp. 265–278). MIT Work-
ing Papers in Linguistics.

Giorgolo, G., & Asudeh, A. (2012b). Missing resources in
a resource-sensitive semantics. In M. Butt & T. H. King
(Eds.), Proceedings of the LFG12 conference (pp. 219–
239). Stanford, CA: CSLI Publications.

Giry, M. (1982). A categorical approach to probability theory.
In Categorical aspects of topology and analysis, Proc. int.
Conf., Ottawa 1981, Lect. Notes Math. 915, 68-85 (1982).

Grice, H. P. (1975). Logic and conversation. In P. Cole &
J. L. Morgan (Eds.), Syntax and semantics: Speech acts
(Vol. 3, pp. 41–58). San Diego, CA: Academic Press.

Hertwig, R., Benz, B., & Krauss, S. (2008). The conjunction
fallacy and the many meanings of and. Cognition, 108,
740–753.

Hertwig, R., & Gigerenzer, G. (1999). The “conjunction
fallacy” revisited: How intelligent inferences look like rea-
soning errors. Journal of Behavioral Decision Making, 12,
275–305.

Janssen, T. M. V. (2011). Compositionality. In J. van Ben-
them & A. ter Meulen (Eds.), Handbook of logic and lan-



guage (2nd ed., pp. 495–553). London: Elsevier.
Lawvere, F. W. (1962). The category of probabilistic map-

pings. (Seminar handout)
Mellers, B., Hertwig, R., & Kahneman, D. (2001). Do fre-

quency representations eliminate conjunction effects? an
exercise in adversarial collaboration. Psychological Sci-
ence, 12, 269-275.

Moggi, E. (1989). Computational lambda-calculus and mon-
ads. In Lics (p. 14-23). IEEE Computer Society.

Shan, C. (2001). Monads for natural language semantics. In
K. Striegnitz (Ed.), Proceedings of the ESSLLI-2001 stu-
dent session (pp. 285–298).

Simon, H. A. (1956). Rational choice and the structure of the
environment. Psychological Review, 63(2), 129–138.

Tentori, K., Bonini, N., & Osherson, D. (2004). The conjunc-
tion fallacy: a misunderstanding about conjunction? Cog-
nitive Science: A Multidisciplinary Journal, 28(3), 467–
477.

Tversky, A., & Kahneman, D. (1983). Extensional Versus In-
tuitive Reasoning: The Conjunction Fallacy in Probability
Judgment. Psychological Review, 90(4), 293–315.

Unger, C. (2011). Dynamic semantics as monadic computa-
tion. In M. Okumura, D. Bekki, & K. Satoh (Eds.), New
frontiers in artificial intelligence - jsai-isai 2011 (p. 68-
81).

Wadler, P. (1992). Comprehending monads. In Mathematical
structures in computer science (pp. 61–78).

Yates, J., & Carlson, B. (1986). Conjunction errors: Evidence
for multiple judgment procedures, including ”signed sum-
mation”. Organizational Behavior and Human Decision
Processes, 37, 230–253.


