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A central topic in work on ellipsis is the parallelism between missing VPs
and their antecedents. There is evidence that parallelism is conditioned both
syntactically and semantically. This has resulted in complex hybrid princi-
ples that regulate both syntactic structures and their interpretations (e.g., Fox
1995, 2000). We present an alternative, unified account based on parallelism
of semantic derivations (i.e., proofs) in Glue Semantics (Dalrymple 1999,
2001). Our proposal captures the insights of hybrid accounts, but is con-
ceptually simpler and empirically superior. It is also theoretically important,
as it constitutes an implicit argument for a level of semantic representation,
favoring indirect translation (Montague 1973) over direct model-theoretic in-
terpretation (Montague 1970).

The empirical focus of the paper is scope parallelism in ellipsis in general
(Sag 1976, Williams 1977), and the problem of “Canadian flag” sentences in
particular (Hirschbühler 1982). Sag (1976) noticed that a scopally ambiguous
sentence seems to be disambiguated to surface scope when it is the source
sentence for VP-ellipsis, as in (1).

(1) A rhino sat in every corner. Babar did, too.

Hirschbühler (1982) subsequently noticed that if the subject of the target el-
lipsis sentence is also quantificational, as in (2), both inverse and surface
scope are possible for the source and target sentences.

(2) A rhino sat in every corner. An elephant did, too.

However, the scope of source and target must be parallel: either both sur-
face or both inverse. These issues have been resurrected in important recent
work by Fox (1995, 2000), but his analysis has faced conceptual, theoretical,
and especially empirical challenges in recent work (Asher et al. 1997, 2001,
Jacobson 1998, Johnson and Lappin 1997, 1999).

1. Fox’s Theory

Fox (1995, 2000) proposes the Ellipsis Scope Generalization (ESG):

(3) A sentence
�

will disambiguate its syntactic image
���

(in favor of surface
scope), whenever

�
is semantically equivalent under surface and inverse

scope (i.e, whenever
�

is scopally uninformative). (Fox 2000:34)

Notice that the ESG makes predictions that are in line with Sag’s and
Hirschbühler’s observations. On the assumption that proper names are not
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scopally ambiguous, the ellipsis target in (1) is semantically equivalent under
surface and inverse scope, and the ellipsis source is predicted to have only sur-
face scope. But in (2) the target is not semantically equivalent under surface
and inverse scope, and the source is predicted to allow inverse scope.

There are several counterexamples to the ESG in the literature (Lap-
pin 1993, Shieber et al. 1996). In reaction to the counterexamples, Fox
(1995) proposes that the stage-/individual-level distinction between pred-
icates (Kratzer 1989, 1995) is crucial, and that the ESG only holds for
individual-level predicates. However, Asher et al. (1997, 2001), Jacobson
(1998), and Johnson and Lappin (1997, 1999) showed that there are coun-
terexamples even with individual-level predicates.

Furthermore, it is easy to construct pairs of otherwise identical sentences
that alternate between a stage- and individual-level predicate, such that both
sentences allow inverse scope readings. Consider a context in which the
speaker is talking about a prestigious annual dinner; at the latest dinner, each
table was served by not just one, but several waiters and in fact the chef made
the rounds of the tables, too. In addition, this dinner has been held at the
same restaurant several times. In such a context, both (4) and (5) easily allow
inverse scope readings:

(4) Several waiters served at every table. Chef Pierre did too.

(5) Several waiters knew every customer. Chef Pierre did too.

Serve is a stage-level predicate and know is an individual-level predicate.

2. Need for a Preference Mechanism

The counterexamples to Fox’s theory show that it rules out attested read-
ings; in other words, the theory is too narrow in its coverage and too strong in
its predictions. But other theories simply allowing both surface and inverse
scope are too weak. They have little so say about the observed fact that, while
not impossible, it is hard to give an inverse scope reading to an ellipsis source
if the parallel element in the target is a name.

What is required is some principled way of calculating preferences for
interpretation. The surface scope readings for sentences like (1) are preferred
over inverse scope readings, but inverse scope readings are nonetheless gen-
erally available.

In the following sections we will account for parallelism possibilities
and preferences within the framework of Glue Semantics (Dalrymple 1999,
2001). In this framework, syntactic analysis produces a collection of lexical
semantic premises. These premises are consumed in a linear logic derivation
to construct the semantic interpretation of the sentence. We will argue that the
linear logic derivation provides an appropriate level on which to define par-
allelism preferences. Our account shares certain insights with that of Asher
et al. (1997, 2001), but there are also important differences, which we briefly
discuss in section 5.4.
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3. Semantic Derivations as Linear Logic Proofs

The framework we assume, Glue Semantics (GLUE), is a modular theory
of the syntax-semantics interface. A variety of syntactic frameworks have
been coupled with GLUE — including Lexical Functional Grammar (Dal-
rymple 1999, 2001), Lexicalized Tree Adjoining Grammar (Frank and van
Genabith 2001), and HPSG (Asudeh and Crouch 2002) — and the mean-
ing language can be any logic for semantics with lambda terms; for example
there are existing versions of Glue Semantics using Montague’s IL, DRT, and
UDRT (Dalrymple et al. 1999b, Crouch and van Genabith 1999, van Genabith
and Crouch 1999).

In GLUE, meaning constructors for semantic composition are obtained
from lexical items instantiated in particular syntactic structures. Each con-
structor has the form � ��� , where � is a term from some meaning lan-
guage (e.g., IL, DRT, etc.) and � is a formula of propositional linear logic
(Dalrymple et al. 1999a). The colon is an uninterpreted pairing symbol. The
constructors are used as premises in a linear logic proof that consumes the
lexical premises to produce a sentential meaning. Note that linear logic (Gi-
rard 1987) is unlike traditional logic in being resource sensitive: premises are
literally used up in producing conclusions. The goal of a GLUE derivation is
to consume all the lexical premises to produce a single conclusion stating the
meaning of the sentence. Semantic ambiguity (e.g., scope ambiguity) results
when there are alternative derivations from the same set of premises.

The Curry-Howard Isomorphism (Howard 1980) ensures that the mean-
ing term constructed for the sentence is determined by the structure of the
linear logic proof (Dalrymple et al. 1999b). It does so by pairing each linear
logic proof rule with an operation in the meaning language. The two (Nat-
ural Deduction) proof rules we will be concerned with here are Implication
Elimination (modus ponens) and Implication Introduction (hypothetical rea-
soning), which correspond respectively to function application and lambda
abstraction in the meaning language (’ � ’ is linear logic implication):

(6) Implication Elimination Implication Introduction	 ��
��  ����
 ���	�� ������
� ������� �!!!" �$# �&%(' )* �,+ 	 ��
�� 

The following simple proof of -.� /102-3� / shows the interaction
of the proof rules and the meaning language:

(7)

� �������54 " �6��78# 7:9
(function application)"<; �>=?��# � %@' A (lambda abstraction)* �,+ 	�� ������
�� 
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In the first step, BC�D- is assumed (indicated by square brackets) and the as-
sumption is flagged with the superscript E . We take this assumption and com-
bine it with our one premise -3� / by elimination, which corresponds to
function application in the meaning language. The assumption is discharged
in the second step, re-introducing the assumed linear logic atom - . On the
meaning language side this corresponds to abstracting over the associated
variable, B .

Although the linear logic proofs are our main concern in this paper, it
is useful to present a couple of very simple examples to illustrate how GLUE
works (see Dalrymple (1999) for a fuller introduction). We will assume a
simplified LFG syntax (Kaplan and Bresnan 1982, Bresnan 2001) and a very
generic predicate calculus, for the sake of exposition. Consider (8) and its
lexical items (9):

(8) Gonzo smokes.

(9) Gonzo N
( F PRED) G ‘Gonzo’HDI6JLKMI �NFPO�Q smokes V

( F PRED) G ‘smoke’RTS�IMUPV � � F SUBJ �WO�Q�� FDO�X
The F meta-variable in the lexical entries refers (roughly speaking) to the
phrase of which the word is the lexical head. The second line of each entry
is its GLUE meaning constructor. The Y subscripts in the GLUE constructors
are functions that map syntactic phrases onto their corresponding semantic
resources. These resources are typed: Z for entity, [ for truth-value. The
resources are denoted by atomic linear logic propositions. (We will suppress
the Y and type subscripts on the linear logic atoms where convenient).

Parsing (8) both constructs the f(unctional)-structure (10) and instantiates
the lexical entries so that the F meta-variables refer to nodes within (10), in-
stantiating the lexical premises as in (11) (bearing in mind that (s SUBJ) G g).

(10)
s

\]
PRED ‘smoke’

SUBJ g ^ PRED ‘Gonzo’_
`a

(11) HDI6JLK�I � H ONQRbS�IMUPV � H O�Q,� R O�X
The formulas in (11) are used as premises in a linear logic derivation. This
must consume all the premises to produce a single conclusion stating the
meaning paired with the head resource of the sentence ( R O ). In this case the
derivation is straightforward: the two premises combine through one instance
of introduction elimination, which is function application in the meaning lan-
guage:

(12)
HPINJcK�I � HPd RTS,I�U�V � HPd � Rbe �1�RTS�IMUPV � HPINJcK�I �>� R e
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The second simple example will illustrate quantification. It also shows that
quantifier scope ambiguity is handled in the GLUE derivations, without posit-
ing an ambiguous syntactic representation. Consider the following sentence,
f-structure, and instantiated lexical items:1

(13) Most presidents speak at least one language.

(14)

s

\fffffffff]
PRED ‘speak’

SUBJ p

\]
PRED ‘presidents’

SPEC ^ PRED ‘most’ _
`a

OBJ l

\]
PRED ‘language’

SPEC ^ PRED ‘at least one’ _
`a
`hggggggggga

(15)
*ji + S�I$RTk �ml(n VoRTprq�VsJtkou i ��� �ml d � v e ��� v e*xw@*xy + R l VbzMU � y u w �{�t| d � l d � Rbe* B}+ ALO

� | z6JcH w zMHPVPu B~��� � | d � � e ��� � e
The meaning terms

*ji + S,I6Rbk ��l(n VTRTprq�VsJtksu i � and
* B�+ ALO

� | z6JDH w zsHDVPu B~�
are standard generalized quantifier expressions, which we will henceforth ab-
breviate as MP and ALOL. Reading the types from the linear logic formulas,
it can be see that both are of the (familiar) semantic type ���rZ u [�� u [�� . The up-
per case variables, ��� and �@� , denote arbitrary type [ atomic resources that
the quantifiers could take as their scope.2 Essentially, the two quantifiers can
apply to any type [ clause that depends on the meaning of the subject �x� or
the object �r� , and discharge this dependency by scoping the quantitifier.

From the three premises in (15), there are two distinct derivations � � .
Both have the same initial derivation (16), producing the semantic resource � �
dependent on both ��� and �5� . The derivations then fork, depending on which
of these dependencies are discharged first via scoping a quantifier. ((17) for
surface scope and (18) for inverse scope).

(16) � � �M���m�
������� �54 �@�L�@�P�h�5�P���o  ; �D¡o�L=¢�$��7�£}7¥¤ 7 9�@�D�¦�5�P���o  ; �P¡s�N=?�§£}7¨¤ � �R l VbzMU � � us© �ª�P�

1. We have combined the quantifiers with their restrictions for simplicity’s sake.
2. In Dalrymple et al. (1999a) these variable resources are explicitly quantified —
we omit this detail here for the sake of readability.
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(17)

MP
� ; £�7¬«�=�7«

ALOL
� ; ��7¬®~=x7¯® �5�P���o  ;r° ¡o��=¢�6¤ 7²±D³ 4�@�c�¦�5�P���o  ;r° ¡s�N=?�$��7¨¤ 7:9P´jµt¶

ALOL
; �@�c�¦�5�P���o  ;r° ¡o��=�=¢�$¤ 7²±P³ ·� ° �

ALOL
; �@�c�¦�r�P���o  ;r° ¡o��=�=¢�§£}7¥¤ 7:9N¸ µ�¶

MP
; � ° �

ALOL
; �@�c�¦�5�P���o  ;r° ¡s�N=�=�=?�6¤

(18)

ALOL
� ; ��7¬®<=�7¯®

MP
� ; £}7¬«�=�7« �5�P���o  ;r° ¡o��=?�$¤ 7²±D³ ·� ° �¦�5�P���o  ;r° ¡M��=¢��£¹7º¤ 7:9�¸ µ�¶

MP
; � ° �¦�5�P�W�T  ;r° ¡o��=�=¢�N¤ 7²±D³ 4�@�c�

MP
; � ° �¦�5�P���o  ;r° ¡o��=�=¢�$��7¨¤ 7:9 ´�µ�¶

ALOL
; �@�c�

MP
; � ° �h�5�P���o  ;r° ¡o��=�=�=¢�N¤

Note that the two scopings for the sentence arise solely from alternative linear
logic derivations from premises to conclusion, using standard rules of infer-
ence. No syntactic ambiguity needs to be posited, and no special assumptions
need to be made about the meaning terms.

4. Identity Criteria for Proofs

There is a strong tradition within proof theory, (e.g. Girard 1987), that
views logical proofs as interesting objects in their own right. It is not only
interesting to ask whether conclusion » follows from premises

	
, but also

to ask how it follows, and whether it can follow in more than one way. We
have just seen this perspective at work in connection with quantifier scope
ambiguity. It is not only interesting to prove that a semantic interpretation
can be derived from the premises in (15). How it is derived is also important,
since different derivations construct different meanings.

For proofs to be regarded as first class objects, they need to come
equipped with interesting, non-trivial identity criteria. These identity crite-
ria need to guard against the following problem: although we may be inter-
ested in proofs, we do not have direct access to the underlying proof objects.
All we have are marks on paper, i.e. derivations, showing how proofs can be
represented in a particular formal system such as natural deduction. What
is required is a way of showing how syntactically distinct derivations can
be mapped onto a canonical representation corresponding to the underlying
proof.

For certain logical systems, including the fragment of linear logic used in
Glue Semantics, there are two convergent ways of stating the required identity
criteria: via the Curry-Howard isomorphism (Howard 1980), and via proof
normalization (cut elimination) (Prawitz 1965). To illustrate both of these,
consider the question: how many distinct ways are there of deriving  from
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¼�  and 
 ? Here are two possible derivations, both corresponding to
the same underlying proof:

(19) (a)

 
½�  � � (b) 


� �¾� 4 �¿7À# 7:9# 7²±P³ 4��78# � �
The second derivation introduces a “detour”: it eliminates the implication
Á�  only to immediately re-introduce exactly the same implication, and
then re-eliminate it. The first derivation avoids this detour. Proof normaliza-
tion provides a set of rules for expunging certain detours from a derivation.
The rule for expunging a Â -detour of an introduction immediately followed
by an elimination is shown in (20). This rule normalizes (19b) to (19a).

(20) 

� ��� �!!!# 7 ±D³ ��¿78#


ÃG�Ä 
ÆÅÅÅ

We will focus on derivations with expunged Â -detours, though Ç -detours of
eliminations immediately followed by introductions will be permitted.

The motivation for the nomenclature Â - and Ç -detour becomes apparent
if the formulas in the two derivations above are paired with proof terms via
the Curry-Howard isomorphism:

(21) (a) È ��
 �É�P
��Ê � �� � È ���D (b) È ��

� Ë,�6��� 4 £,���¹7# 7 9£ ; Ë�=Ì�6# 7 ±D³ 4�DË(� £ ; Ë�=Ì�$�¹7¬# �1�� *tÍ + � � Í ��� � È �ª�P

Note that the two resulting
*

-terms, � � È � and
� *�Í + � � Í ��� � È � , are equivalent viaÂ - and Ç -reduction. The

*
-terms motivate the following terminology. The

(a) derivations are in Â -normal form, and the (b) derivations are in Ç -long
normal form. In Ç -long normal form, all implicational formulas are paired
with explicit

*
-abstractions, making their functional nature overt. Although it

appears more verbose, Ç -long normal form is widely used in automated proof
search (Jay and Ghani 1995) and also corresponds to derivations produced
via proof nets (Girard 1987), a special purpose proof method for linear logic.

Proof normalization and the Curry-Howard isomorphism converge in that
normalizing a proof corresponds to

*
-reducing its proof term. It is the exis-

tence of these normalization / reduction techniques that lead to interesting
identity criteria for proofs. We can view normal form derivations (for a given
choice of normal form) as standing for the underlying proofs.
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4.1. Identity Criteria for Semantic Compositions

Within Glue Semantics, semantic composition is modeled as linear logic
proof. We can therefore take over the identity criteria for proofs to stand
as identity criteria for semantic compositions. As a result, we can regard
semantic compositions as first class objects in linguistic theory, separate from
but linked to syntactic structures on the one hand, and to model theoretic
interpretations of sentences on the other hand. The modularity of GLUE with
regard both to the syntactic framework (e.g. LFG, HPSG, TAG), and to the
meaning language (e.g. IL, DRT) indicates that GLUE proofs are a way of
reifying the syntax-semantics interface.

Positing composition as a level of semantic representation goes against
the direct model-theoretic interpretation approach of Montague (1970). This
says that nothing should sit between syntactic structure and model-theoretic
interpretation. Composition as a level of representation also goes against the
perspective of much work in categorial and type-logical grammar, which oth-
erwise shares with GLUE the use of the Curry-Howard isomorphism. This
claims that there is no real level of syntactic structure (beyond categorial
derivations). The GLUE account allows for both syntactic structure and
model-theoretic interpretation, with a significant level of representation in be-
tween. We believe that this level of representation is invaluable in accounting
for parallelism phenomena in ellipsis.

The basic intuition lying behind most accounts of ellipsis is that the
source material is reconstructed in some way so as to make the minimal
changes necessary to incorporate the explicit parallel material in the target.
Intuitions differ, however, as to whether ellipsis interpretation is conditioned
by syntax (e.g. Fiengo and May 1994, Fox 1995, 2000) or by semantics (e.g.
Dalrymple et al. 1991, Hardt 1993, 1999, Shieber et al. 1996, Asher et al.
1997, 2001). There is evidence that both levels are significant (Lappin 1996,
Merchant 2001). Framing ellipsis resolution at the syntax-semantics interface
is therefore an attractive option.

Our approach is inspired by the equational approach to ellipsis resolution
of Dalrymple et al. (1991) and the earlier GLUE approach of Crouch (1999),
which used constraints to describe derivations.3 We assume the equational
approach (Dalrymple et al. 1991), reformulated for GLUE.4 In the next section
we will just focus on how parallelism preferences between ellipsis source and
target can be formulated at the level of GLUE derivations.

3. The constraint / description approach is also shared by the work on ellipsis in the
Constraint Language for Lambda Structures (CLLS) framework (Egg et al. to appear,
Egg and Erk 2002, Erk and Koller 2001).
4. Space prohibits details about this reformulation, which in any case are yet to be
fully worked out. In outline, the original equational approach relied on using higher-
order unification to solve equations relating meaning expressions. The reformulation
uses higher-order unification to solve equations relating proof terms of GLUE deriva-
tions.
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5. Parallelism and Scope in Ellipsis Resolution

Ellipsis is interpreted by taking the source derivation and replacing
source premises by corresponding target premises. This yields a target deriva-
tion that differs minimally from the source derivation only insofar as it is
necessary to incorporate the new target premises.

In the case of overt quantified NPs in both source and target (e.g. Cana-
dian Flag sentences, section 5.1), this predicts exact scope parallelism. But
in cases where a non-quantificational NP in the source (target) is matched by
a quantificational NP in the target (source) it turns out that this allows both
surface and inverse scope for the quantificational NP. However, to maximize
the degree of parallelism between source and target derivations, there is a
preference for the quantified NP to scope wide (section 5.2).

5.1. Quantifier-Quantifier Parallelism

Consider the Canadian Flag example (2), with source premises (22).
From these premises we get derivations (23) and (24).

(2) A rhino sat in every corner. An elephant did, too.

(22)
*ji + z ��n�Î pmJ(I�u i ��� � H � vÉ��� vRbpmk - pmJ � Î � H �ÐÏ* B�+ V y V n © �§Ñ I n J(V n u B~��� �ÒÎ � �<��� �

(23) Surface Scope Source ( ÓPÔ )

�5Õ � �Ö�,� �
;5× 78®~=~78®

� Ø6� · � × �54 × 7ÙØÚ7ÜÛØÚ7ÜÛÛ 7²±P³ 4× 7ºÛÛ 7 ±P³ ·ØÝ7ÜÛÞ
(24) Inverse Scope Source (Ô�Ó )

�àß � �á��� �
; ØÝ78«�=<7Ù«

� Ø6� · � × � 4 × 7ÙØÚ78ÛØÉ7ºÛÛ 7 ±D³ ·ØÉ7ºÛÛ 7 ±P³ 4× 7ºÛÞ
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The semantic derivation of the target sentence is obtained by replacing the
source subject’s premise with the target subject’s premise:

(25)
*ji + z � V | V l�Î z6J@kou i ��� � H � � vÉ�,� v

All instances of H in the source derivation are replaced by H �
in the target

derivation. With these minimal changes to the source derivation to obtain
a target derivation, we obtain exact scope parallelism between source and
target. Whichever of surface or inverse scope is chosen for the source, the
same choice will be imposed on the target.

5.2. Quantifier-Name / Name-Quantifier Parallelism

Now consider sentences like (1), which prefer surface scope due to the
subject of the ellipsis target being a proper name:

(1) A rhino sat in every corner. Babar did, too.

The surface and inverse scope derivations for the source sentence in (1)
were just shown in (23) and (24). We replace the premise for a rhino in the
source derivation with the premise for Babar (the parallel item in the target):

(26) â z â z n � H �
Depending on which of the surface or inverse scopings ((23) or (24)) are
chosen for the source, this replacement leads to two target derivations

(27) Target from Surface Scope Source ( ÓPÔ )

â z â z n � Õ �
;5× 78®ã=<78®

� ØNä¦� · � × � 4 × 7ÀØ ä 7ºÛØNä�7ÜÛÛ 7 ±P³ 4× 7ÜÛÛ 7 ±P³ ·Ø ä 7ºÛÞ
(28) Target from Inverse Scope Source (Ô�Ó )

�àß � �}��� �
å � å �sæ~��Ø ä

� Ø ä � · � × � 4 × 7ÙØ ä 7ºÛØ ä 7ºÛÛ 7 ±D³ ·Ø ä 7ºÛÛ 7 ±D³ 4× 7ºÛÞ
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Note, however, that neither of these derivations is in normal form. Elimi-
nating Â -detours via the rule (20) to reduce the derivations to their canonical
form shows that the two derivations correspond to the same underlying proof:

(29) Normalized target (scopally unambiguous)

�àß � �}��� �
å � å �sæã�MØNä � × �54 × 7 ; ØNä�7ÜÛL=ØNä�7ºÛÛ 7 ±D³ 4× 78ÛÞ

Comparing the ( Â -normal) derivation (29) to the surface scope source ( Â -
normal) derivation in (23), we can see that (29) is a subproof of (23). By con-
trast, when we compare (29) to the inverse scope source ( Â -normal) derivation
in (24), we see that the proofs diverge after the third line. In other words (29)
and (23) are parallel to a greater degree than (29) and (24) are, and the surface
scope reading for ellipsis source in sentence (1) is the preferred reading for
maximizing the degree of parallelism.

Thus, either surface or inverse source scoping is permissible on the GLUE
approach, both leading to a scopally unambiguous target derivation. How-
ever, in terms of maximizing the degree of parallelism between source and
target derivations, there is a preference for the source to have surface scope,
where the quantified subject scopes wide.

It is important that the calculation of degree of parallelism compares nor-
mal form derivations. It is the underlying proofs that need to be compared,
not the way in which they happen to be written down, with or without detours.

Let us now consider what happens when a non-quantified source subject
is replaced by a quantified target subject, as in (30):

(30) Babar sat in every corner. A rhino did, too.

Here we predict that either scoping is available for the target, but with a pref-
erence for surface scope / wide scope subject.

The (normal form) source derivation is unambiguously:

(31) Source derivation (scopally unambiguous)

�àß � �}��� �
å � å �sæã�MØ � × �54 × 7 ; ØÚ7ÜÛL=ØÉ7ºÛÛ 7 ±P³ 4× 7ÜÛÞ

At first sight it would appear that it is straightforward to replace the source
premise â z â z n � H by

*(i + z �Wn�Î pmJjILu i ��� � H � � vÉ�,� v to produce a tar-
get derivation. However, this replacement is misleadingly straightforward.
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It relies on the fact that we just happened to write the verb premise as* © * � + RoVbV � � uM© �{� Î � H �ÐÏ We could just as easily have written an
equivalent premise

* � * © + RoVbV � � uM© �{� H � Î �ÐÏ (by currying the func-
tion), in which case the source derivation would have been:

(32) �çß � ����� �
� × �54 å � å �sæ~�$è ØÉ7 ;5× 7ÜÛL=× 7ÜÛÛ× 7ºÛ � %@' AÞ

In this essentially equivalent derivation, it is not obvious how to replace H by� H � vÉ��� v to produce a valid derivation. Yet clearly such a replace-
ment should be possible. We therefore need to be clearer about what happens
when a source name is replaced by a target quantifier.

There is a difference between (i) replacing a source quantifier by a target
name and (ii) replacing a source name by a target quantifier. Case (i) works
out easily because a name GLUE constructor such as H always entails the cor-
responding quantifier constructor

� H � vÉ��� v , as the following (type
raising) derivation shows

(33)

� " �sØÚ7ÀËP�r4 éê�sØ"<; é{=?�MË �&%@' A* 	 + 	��rë �ª� �mÕ � Í ��� Í
This means that whenever we want to replace a quantifier by a name, we
always have the option of type-raising the name to a quantifier and replacing
it directly. But for case (ii) the reverse entailment does not hold: a quantifier
constructor cannot be type-lowered to entail a name constructor.

A general mechanism for replacing a name by a quantifier is instead to
(a) replace the name premise by an assumption, and (b) at a suitable point in
the derivation discharge this assumption and introduce the quantifier premise.
This leads to the following two possible target derivations from (31):5

(34) Wide Scope

�5Õ � � �ì�,� �
;5× 78®ã=<78®

� Ø ä � · � × �54 × 7 ; ØNä�7ºÛL=Ø ä 7ÜÛÛ 7²±P³ 4× 7ÜÛÛ 7²±D³ ·ØNä�7ºÛÞ
5. Source derivation (32) likewise gives rise to two possible target derivations.
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(35) Narrow Scope

�àß � �}��� �
; ØNä�78«�=<7À«

� ØNäh� · � × �r4 × 7 ; ØNä�7ÜÛL=ØNä�7ºÛÛ 7²±P³ ·ØNä�7ºÛÛ 7 ±P³ 4× 7ÜÛÞ
Comparing these normal form wide and narrow scope target derivations with
the normalized source derivation reveals that the wider scope target displays
a greater degree of parallelism to the source.

The preference for a quantifier replacing a name to scope wide is inde-
pendent of the way in which we happen to write the verb premise down.

5.3. Measuring Parallelism

In the preceding examples we have measured derivational parallelism
in terms of the degree of contiguous overlap between normal form source
and target derivations. Target derivations that recapitulate larger contiguous
chunks of source derivation are preferred. While intuitively natural, we do
not at present have any solid formal justification for this measure of paral-
lelism. Empirically, in terms of predicting scope preferences, this measure of
parallelism seems justified.

5.4. Conclusion

According to this theory, the amount of overlap between ellipsis source
and target derivations determines which scope readings are preferred. The
preferred reading is the one that maintains maximum overlap. Thus, we are
not ruling out inverse scope on the basis of the availability of surface scope.
This contrasts sharply with Fox’s economy approach. It also means that the
inverse scope readings for sentences (1) and (30) are available, although we
would still seek an explanation for why certain sentences resist inverse scope
in the source more strongly than others (for one possible explanation, see
Asher et al. 1997, 2001).

Asher et al. (1997, 2001) also consider ellipsis, scope, and parallelism
and state the need for a preference ordering on scope readings. Although
space restrictions prevent us from doing their account justice, it is useful to
enumerate some of the similarities and differences between our approach and
theirs. The two approaches are similar in their use of a logical form (GLUE
derivations vs. Segmented Discourse Representation Structures), provision
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of a preference ordering, and a symmetric account of parallelism (source can
influence target or vice versa). The differences, as we see them, are: (1)
the Asher et al. approach provides no normal form for their logical forms,
thus crucially relying on an intermediate representation without firm identity
criteria; (2) they postulate a specific parallelism between names and wide
scope existentials; (3) they require further modifications to their theory to
handle general scope parallelism.
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