Two multi-level samplers (MW-1 and MW-2), 1 kilometer apart, are installed in a 40 meter thick unconfined sand and gravel aquifer that has a point source of contamination from leaking detergent tanks. The ports

(A,B,C) on the multi-level samplers are spaced at 10 meters apart with the first port (A) positioned at 10 meters below

the water table. The results of the analysis are summarized below.

	MW-1	MW-2
Water level (Elevation in meters)	45.000	40.000
Land Surface (Elevation meters)	50.000	50.000
³ H values(TU)		
Port A	20	22
Port B	28	22
Port C	26	24
³ He/ ⁴ He Values (as R/R _{AIR})		
Port A	1.274	1.310
Port B	2.118	1.794
Port C	3.8	3.7
Detergent Concentration (ppm)		
Port A	10	0.1
Port B	100	20
Port C	5	100
Porosity	0.3	0.3

A) Determine the age of water at each sampling port and plot age versus depth below the water table. Why does the lower sampling port fall off a line drawn between the two upper sampling ports? Determine the vertical groundwater flow velocities from the upper two ports and determine the annual recharge rate from these two ports extrapolated to the water table. Use the equations in the Cape Cod paper to calculate V_0 [Hint: If you rearrange the equation and plot the natural log of the depth (or B/B-z) vs. the age, then the slope of the line will be the recharge]. SHOW ALL WORK.

B) Using Calculations from the Vogel Model, calculate horizontal flow velocity(Vx) and horizontal hydraulic conductivity (Kx).

C) Calculate the V_X at the right hand boundary. Use the water balance (recharge in = flux out) to determine V_X . How does this V_X compare with the V_X from the Vogel Model?

Important constants:

[⁴He] in Water = $45\mu cc/kg$ ³He(pcc/kg) x (10⁻⁶) = ³He ($\mu cc/kg$) ³He(TU) = ³He (pcc/kg) x 0.402

Age (years) = $(1/\lambda) * \ln ((\text{Daughter/Parent})+1)$ (Units of Parent and Daughter must be the same (ie, TU))

 $\lambda = 0.0555$ years⁻¹

 $R_{AIR} = 1.39 \text{ x } 10^{-6}$ $R_{SOL} = 0.985 R_{AIR}$ $pcc = 10^{-12} cc$ $\mu cc = 10^{-6} cc$

The Vogel Model:

recharge = $V_z * Porosity$ $V_z = (B/t) * ln[B/(B-z)] \Delta X_f = \Delta X_1 / [([B - Z_1] * Z_2)/[((B - Z_2) * Z_1) - 1]]$

 $\Delta X_{d} = \Delta X_{f} * ((B - Z_{1}) / (Z_{1})) \quad Vx = (V_{z} * x) / B \quad x = \text{ distance from flow divide}$

How to Calculate a ³H/³He age

In order to determine the age for the sample it is necessary to calculate the amount of tritiogenic ³He (expressed as ³He*) within the sample. The amount of ³He within a sample can be shown as:

$${}^{3}\text{He}_{\text{tritium}} = {}^{3}\text{He}_{\text{total}} - {}^{3}\text{He}_{\text{SOL}} = {}^{4}\text{He}_{\text{MEASURED}} * [({}^{3}\text{He}/{}^{4}\text{He})_{\text{Total}} - ({}^{3}\text{He}/{}^{4}\text{He})_{\text{SOL}}]$$

This states that the total amount of ³He within a sample is a result of the amount of ³He contributed from solubility with air at the water table and the amount ³He from tritium decay (³He tot= ³He SOL+ ³He*_{tritum} or ³He*_{tritium} = ³He_{tot} - ³He_{SOL}). The amount contained of ³He dissolved in the water will be a function of the solubility at a given temperature. In this exercise, the ⁴He is at solubility equilibrium at 10°C (45 µcc/kg) for all samples.

To determine the amount of ${}^{3}\text{He}_{SOL}$ simply multiply the amount of 4He by the R_{sol}, this yields a number for ${}^{3}\text{He}_{sol}$ in units of $\mu cc/kg$).

We use the measured ratio normalized to the air value (1.39×10^{-6}) because air serves as the "standard gas". For the calculation you can use the "normalized ratio" (and then multiply by 1.39 x 10⁻⁶ as shown in the calculations) or convert all ratios to the absolute values by multiplying by the air ratio (e.g. 2.0 R_{AIR} = 2.78 x 10⁻⁶).