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REGULAR ARTICLE

(Early) context effects on event-related potentials over natural inputs
Shaorong Yana and T. Florian Jaegerb

aDepartment of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA; bDepartment of Brain and Cognitive Sciences,
Department of Computer Science, University of Rochester, Rochester, NY, USA

ABSTRACT
Language understanding requires the integration of the input with preceding context. Event-
related potentials (ERPs) have contributed significantly to our understanding of what contextual
information is accessed and when. Much of this research has, however, been limited to
experimenter-designed stimuli with highly atypical lexical and context statistics. This raises
questions about the extent to which previous findings generalise to everyday language
processing of natural stimuli with typical linguistic statistics. We ask whether context can affect
ERPs over natural stimuli early before the N400 time window. We re-analyse a data set of ERPs
over ∼700 visually presented content words in sentences from English novels. To increase
power, we employ trial-level ms-by-ms linear mixed-effects regression simultaneously modelling
random variance by subject and by item. To reduce concerns about Type I error inflation
common to time series analyses, we introduce a simple approach to model and discount auto-
correlations at multiple, empirically determined, time lags. We compare this approach to
Bonferroni correction. Planned follow-up analyses employ Generalized Additive Mixed Models to
assess the linearity of contextual effects, including lexical surprisal, within the N400 time
window. We found that contextual information affects ERPs in both early (∼200 ms after word
onset) and late (N400) time windows, in line with a cascading, interactive account of lexical access.
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Introduction

During language understanding, comprehenders infer
meaning and intentions from the language input
guided by the preceding linguistic (and non-linguistic)
context. The time course of this information integration
has received substantial attention in psycho- and neuro-
linguistic research. A large body of research has investi-
gated when – or where in the brain – different types of
contextual information are accessed with regard to the
onset of an input (for reviews, see Kuperberg, 2016;
Van Petten & Luka, 2012). Answers to the questions
have informed theories about the architecture of the
cognitive and neural systems underlying language com-
prehension, for example, with regard to the relative
degree of information encapsulation between “stages”
of language processing (McClelland & Elman, 1986; for
discussion, see Norris, McQueen, & Cutler, 2015; Seiden-
berg & MacDonald, 1999; Tanenhaus, Spivey-Knowlton,
Eberhard, & Sedivy, 1995).

Here we employ a paradigm that has been influential
in revealing the time course of information access during
language understanding: event-related potentials (ERPs)
over electroencephalograph recordings (Dambacher,
Kliegl, Hofmann, & Jacobs, 2006; Hauk, Davis, Ford,

Pulvermüller, & Marslen-Wilson, 2006; Hauk, Pulvermül-
ler, Ford, Marslen-Wilson, & Davis, 2009; for a recent
review, see Laszlo & Federmeier, 2014). Some ERP
studies suggest that contextual information affects later
time window, e.g. the N400 (a negative-going ERP com-
ponent that peaks around 400 ms after word onset), but
not in earlier time windows (e.g. Dambacher et al., 2006).
This would stand in contrast with context-independent
lexical information, such as word frequency and form-
related predictors, that affects ERPs as early as about
100 ms after word onset (Hauk et al., 2006, 2009; Laszlo
& Federmeier, 2014). However, other studies have
found that contextual information affects ERPs as early
as ∼200 ms after word onset (Federmeier, Mai, & Kutas,
2005; Frank & Willems, 2017). This time window is
argued to reflect the processing of form-related infor-
mation, e.g. the orthographic form of a word (Laszlo &
Federmeier, 2014). Some studies have even found con-
textual effects during perceptual processing as early as
100 ms after word onset (Grainger & Holcomb, 2009),
although these effects seem to be confined to highly
constraining contexts and words that are short (Kim &
Lai, 2012; Penolazzi, Hauk, & Pulvermüller, 2007) or fre-
quent (Lee, Liu, & Tsai, 2012). If contextual information
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can affect ERPs as early as lexical information can, this
can been taken to rule out architectures in which
lexical and contextual information are processes at
different, strictly serially organised, stages (for review,
see e.g. Dell & O’Seaghdha, 1992; Laszlo & Federmeier,
2014; McClelland & Elman, 1986).

However, research on this topic has almost exclusively
employed stimuli that are non-randomly selected or inten-
tionally designed by the experimenter. Such stimuli tend
to exhibit linguistic statistics that deviate strongly from
those observed in natural sentences. This is particularly
true for several design properties that are common in
ERP research: (1) focusing on only one or two predictors
of interest while aiming to hold constant other predictors
known to affect ERPs; (2) dichotomising continuous pre-
dictors into “bins” of high and low values, e.g. to facilitate
factorial designs; (3) using designs in which strong
expectations are repeatedly violated; (4) using stimuli
with nonce words (e.g. to assess effects of lexicality,
Hauk et al., 2006; Laszlo & Federmeier, 2014) or incongru-
ent sentences (e.g. to asses effects of congruency, Payne,
Lee, & Federmeier, 2015). Each of these common prac-
tices is well motivated and typically serves a purpose.
Yet, the almost exclusive reliance of ERP studies on
experimenter-designed stimuli comes with potential
risks. In particular, it raises questions about the extent
to which findings from these works generalise to every-
day language processing of natural stimuli with typical
statistics (for relevant discussion, see Dambacher et al.,
2006; Hauk et al., 2006; Smith & Kutas, 2015b).

One a priori reason for further research on this ques-
tion is provided by studies on implicit adaptation or
learning during sentence processing (e.g. Chang, Dell,
& Bock, 2006; Fine, Jaeger, Farmer, & Qian, 2013;
Kaschak & Glenberg, 2004). There is now mounting evi-
dence that deviation from typical statistics can lead com-
prehenders to change their processing behaviour,
sometimes even within the course of a single experimen-
tal session (e.g. Arai & Mazuka, 2014; Creel, Aslin, &
Tanenhaus, 2008; Domahs, Klein, Huber, & Domahs,
2013; Fine & Jaeger, 2016; Fine et al., 2013; Kurumada,
Brown, & Bibyk, 2014; for recent reviews, see Dell &
Chang, 2014). This suggests that experiments with lin-
guistic statistics that strongly deviate from natural text
risk confounding processing effects with adaptation
effects (for related discussion, see Fine et al., 2013;
Jaeger, 2010, pp. 52–54). Indeed, there are examples
where strong deviation from typical statistics masks
effects that are visible if that deviation is avoided (see
Farmer, Monaghan, Misyak, & Christiansen, 2011 in
response to Staub, Grant, Clifton, & Rayner, 2009). Simi-
larly, ERP studies have sometimes found changes in
effect sizes between earlier and later parts of an

experiment (e.g. Elston-Güttler, Gunter, & Kotz, 2005;
Macizo & Herrera, 2011). This can undo effects that are
present at the beginning of the experiment (for an
example, see Hanulíková, van Alphen, van Goch, &
Weber, 2012). Findings like these point to a need for
further research on ERPs over natural sentences.

This motivates the present study. Our primary goals
are to (1) examine when different types of contextual
information come to affect language processing during
the reading of natural stimuli, and (2) contribute to the
methodological advance of this type of study.

With regard to the first goal, we investigate whether
context can affect ERPs as early as non-contextual infor-
mation can (e.g. lexical frequency). We know of only one
ERP study that speaks to the time course of contextual
effects in reading over natural stimuli (Frank & Willems,
2017; but see, Broderick, Anderson, Di Liberto, Crosse,
& Lalor, 2018 on contextual effects in speech processing).
Frank and Willems focused effects of lexical surprisal and
semantic association during the N400 time window. Par-
ticipants read sentences from three novels (UCL corpus
of reading times, Frank, Fernandez Monsalve, Thompson,
& Vigliocco, 2013). Lexical surprisal and semantic associ-
ation were estimated from computational language
models. Regression analyses found independent effects
of the two predictors during the N400 time window.
Though not the target of their planned analyses, Frank
and Willems also observe evidence for early effects
around the P2 window (∼200 ms after word onset).

Interestingly, the only other study that has used some-
what comparable stimuli has come to a conflicting con-
clusion about early effects of contextual predictors.
Dambacher et al. (2006) investigated ERPs over a
reading corpus with lexically and syntactically hetero-
geneous sentences (Kliegl, Grabner, Rolfs, & Engbert,
2004). The sentences from this corpus were not
sampled from natural text, but rather were exper-
imenter-designed with “the goal to represent a large
variety of grammatical structures around a set of target
words […] for which length and frequency are uncorre-
lated across the sentences” (Kliegl et al., 2004, p. 267).
This differs from the sentences employed by Frank and
Willems (2017), which were extracted from natural text
and thus exhibited strong correlations between word
length and frequency (see Figure 1 below). Critically,
Dambacher and colleagues did not find reliable contex-
tual effects during the P2 time window, instead finding
contextual effects only during the N400 time window.

The two studies differ in a number of other methodo-
logical aspects. Crucially, this includes differences in the
statistical analyses that are likely to have affected the
Type I error rates and power. Specifically, Dambacher
and colleagues identified two time windows, the P2
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window (140–200 ms from word onset) and the N400
window (300–500 ms). For each word within each
subject, mean EEG amplitudes over each time window
were calculated (collapsing across all ERP samples and
selected electrodes for the components). The effect of
contextual predictability and other factors was estimated
separately within each subject, and significance was
determined by analysing the distribution of effect sizes
across subjects (following Lorch & Myers, 1990). This
approach is now outdated, as it unnecessarily discards
information (e.g. any uncertainty about the subject-
specific effect size), which can reduce statistical power.
In contrast, Frank and Willems (2017) employed linear
mixed-effects regression with crossed random effects
for subjects and items (words) to separately analyze
the ERP signal from each time sample (every 4 ms). The
use of mixed-effects regression has the advantage that
it avoids discarding data, while still recognising the
repeated measures structure of the data. However, ana-
lysing each ERP sample separately fails to account for
auto-correlations between temporally adjacent ERP
samples. Such correlations are a widely acknowledged
problem (for discussion, see Guthrie & Buchwald, 1991;
Piai, Dahlslätt, & Maris, 2015), and failure to correct for
them can result in anti-conservativity and inflated Type
I error rates.

In other words, Dambacher and colleagues did not
find early context effects and had arguably lower
power, whereas Frank and Willems found early context

effects but likely had inflated Type I error rates with
regard to this test (we note that primary purpose of
the study by Frank and Willems was not to assess time
course and that the potential problem we focus on
here is unlikely to affect the conclusions with regard to
their question of interest). The present study seeks to
address this issue by introducing a method for modelling
and discounting auto-correlations between ERP samples
at various, empirically-determined time-lags. By analys-
ing auto-correlation-corrected ERPs, we can maintain all
the advantages of the regression-based approach over
time series data (see Hauk et al., 2006; Smith & Kutas,
2015a) while avoiding anti-conservativity. Specifically,
we present separate mixed-effects analyses over uncor-
rected and auto-correlation-corrected ERPs from the
time series data in Frank and Willems (2017). We
compare the two analyses against each other, and
against a more general, but potentially conservative
(for discussion, see, e.g. Narum, 2006), Type I error correc-
tion (Bonferroni). We also compare this type of
regression-based time series analysis against the more
common approach of analysing aggregate ERPs over
specific time windows. Specifically, we use the same
two time windows as in Dambacher et al. (2006) and
compare the results of this analysis to the time series
analysis.

Further contributing to our first goal, we address
another important caveat on the interpretation of pre-
vious studies on this topic: the lack of controls for word

Figure 1. Correlation between word form properties of the critical word tokens that entered analyses.
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form properties, such as orthographic neighbourhood
density or orthographic probability. This is problematic
if one seeks to assess the existence of early context
effects because form-related properties are known to
affect early ERPs (Hauk et al., 2006; Laszlo & Federmeier,
2014), including during the P2 time window. Our ana-
lyses thus include control for form-related effects.

We make another contribution that focus on the
“shape” of contextual effects. Some previous work has
reported non-linear effects of context on ERPs (Damba-
cher et al., 2006; see Parviz, Johnson, Johnson, & Brock,
2011 for related findings using MEG). We thus assess
the (non)linearity of all three contextual predictors we
consider. This is relevant for methodological reasons:
assuming a non-linear effect to be linear can increase
the Type I error and decrease power (for discussion,
see Baayen, Vasishth, Kliegl, & Bates, 2017). Understand-
ing the “shape” of an effect can thus inform the design
future studies. We assess linearity by means of general-
ized additive mixed models (GAMMs, Wood, 2006). This
method has been previously used to assess assumptions
about the linearity of, e.g. surprisal effects on reading
times (Smith & Levy, 2013), and is now increasingly
used within ERP analyses (e.g. Hendrix, Baayen, &
Bolger, 2017; for introductions directed at ERP research-
ers, see Smith & Kutas, 2015b; Tremblay & Newman,
2015).

Methods

EEG data

We used the same dataset of EEG recordings as used in
Frank and Willems (2017), shared by the first author of
the study. In the study, 24 subjects read sentences
drawn from a natural corpus (for details, see Frank,

Otten, Galli, & Vigliocco, 2015). Sentences were pre-
sented word by word using an RSVP paradigm, with
stimulus onset asynchrony (SOA) manipulated as a func-
tion of word length. We took the ERPs of each word
epoched between −100 and 700 ms time-locked to
word onset (down sampled to 250 Hz, i.e. 200 time
points per word). Since we are interested in effects of
context, we follow Frank and Willems and excluded the
first content word of each sentence. This left ERPs for
670 content word tokens per subject (399 different
word types).

Predictors of lexical properties (control variables)

Table 1 summarises the statistics of all predictors we con-
sidered. Note all of these predictors were entered into
the analysis. As we described below, we used principal
component analysis to extract the three most important
dimensions of the various word form properties in
Table 1.

Word frequency
We used the same word frequency measurement used
by Frank and Willems (2017). They used log-transformed
(relative) word frequency in the COW14 corpus (Schäfer,
2015).

Word form
Table 1 lists the word-form-related predictors we con-
sidered. All predictors were obtained from the English
Lexicon Project, Balota et al., 2007). Specifically, we con-
sidered variables that reflect word length (number of
characters, number of syllables, number of phonemes),
neighbourhood density (number of orthographic neigh-
bours, mean Levenshtein distance from a word to its 20
closest orthographic neighbours, mean log-transformed

Table 1. Summary statistics for the properties of the words that entered our analyses (aggregated over word types or token).
by word token by word type

Predictor name Range Mean SD Mean SD

Word frequency (relative, log-transformed) (−12.85, −3.93) −8.70 1.79 −9.34 1.58
Word length (2, 10) 4.80 1.57 5.19 1.63
Number of phonemes (2, 9) 3.86 1.23 4.15 1.35
Number of syllables (1, 4) 1.30 0.54 1.42 0.61
Number of orthographic neighbours (0, 34) 9.47 7.53 7.74 7.10
Number of phonological neighbours (excluding homophones) (0, 58) 19.98 15.38 17.19 14.97
Number of phonological neighbours (including homophones) (0, 64) 21.18 16.50 18.35 15.88
Mean Levenshtein distance to 20 closest orthographic neighbours (1.00, 3.85) 1.64 0.48 1.75 0.53
Average frequency of orthographic neighbours (3.87, 10.69) 7.98 0.93 7.78 0.93
Mean Levenshtein distance to 20 closest phonological neighbours (1.00, 4.80) 1.47 0.52 1.56 0.58
Average frequency of phonological neighbours (4.44, 11.89) 8.35 1.08 8.11 1.08
Mean letter bi-gram frequency (1, 396) 187.20 113.75 197.80 114.63
Lexical surprisal (0.33, 14.77) 6.67 2.98 – –
Semantic distance (−0.82, −0.064) −0.28 0.11 – –
Word position (2, 14) 5.68 2.62 – –

Note: Contextual properties, which constitute the focus of the present study, are highlighted by gray shading. Contextual predictors and word position are token-
based predictors.
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frequency of orthographic neighbours, and the phonolo-
gical equivalent of all these measures) and orthographic
probability (mean letter bi-gram frequency). We chose
these measures because they all have been found in pre-
vious work using experimenter-designed stimuli to affect
early time windows (Hauk et al., 2006, 2009; Laszlo & Fed-
ermeier, 2014).

One of the challenges to be expected for stimuli with
typical statistics are high correlations among predictors.
This was the case for the different types of word-form-
related predictors in the present study (Figure 1), with
particularly high correlations between word length and
neighbourhood density measures (we address corre-
lations of form-related predictors with other types of pre-
dictors below). Here we are interested in controlling for
potential confounds due to any type of form-related
effect on the analysis of contextual effects, rather than
to tease apart different types of form-related effects.
There is thus little advantage to be gained from including
all form-related predictors in our analysis. To reduce the
number of parameters required to control for these
effects, we performed a principal component analysis
(PCA) over all form-related predictors (see also Hauk
et al., 2006). PCA identifies orthogonal (uncorrelated)
dimensions out of a cluster of correlated variables. This
allows researchers to balance the complexity of their
models (the number of predictors and degrees of
freedom in the model) against the ability to capture
effects.

All form-related predictors were centred and standar-
dised before being entered into the PCA. The loadings of
the first three factors on form-related predictors are
shown in Table 2; they account for 83.2% of the variance

among form-related predictors. We include these top
three components as predictors in our main analysis to
control for potential form-related effects. Although the
loadings of these components are not of primary interest
to the present study, we note similarities with the PCA
analysis of Hauk et al. (2006) for experimenter-selected
words. For example, we find that the first principal com-
ponent loads on word length and neighbourhood
density, and the second component loads onto ortho-
graphic probability. We found no component that
clearly distinguishes between word length and neigh-
bourhood density. This replicates the findings of Hauk
and colleagues for experimenter-selected words, and is
thus not necessarily a limitation specific to natural
stimuli.

Contextual predictors (predictors of primary
interest)

Research on experimenter-designed stimuli often uses
cloze norms to estimate the predictability of target
words, or the constraint of the preceding context. This
method can tap into the parts of language users’ implicit
knowledge that are explicitly retrievable. Cloze estimates
thus take into account many (unknown) sources of infor-
mation that might affect the subjective predictability of a
word. Cloze norms have also sometimes been employed
in studies over natural stimuli (Luke & Christianson,
2016), including in ERP studies over experimenter-
designed stimuli with heterogeneous contextual proper-
ties (Dambacher et al., 2006).

Here, we took a different approach. Following Frank
and colleagues, we used computational models to
obtain multiple different measures of contextual infor-
mation (Frank et al., 2015; Frank & Willems, 2017). This
made it possible to test what types of contextual infor-
mation affect ERPs and when. The two measures we
employed were inherited from Frank and Willems
(2017), and are part of their shared data set.1

Lexical surprisal
Our first predictor is intended to capture the information
contained in the sequential order of words in the preced-
ing context. The surprisal values came from mixture of a
5-gram model and a “skip bi-gram” model, both trained
by Frank and Willems (2017). Both models and the
optimal mixture weights between them were fit to a
corpus containing English text collected from the web
(COW14; Schäfer, 2015). The best performing model
had a weight of 0.98 for the 5-gram model and 0.02 for
“skip bigram”, so that the estimate of lexical probability
in context primarily reflects the 5-gram model. Lexical

Table 2. Loadings of the top three factors of the principal
component analysis over word-form-related measures.

Loadings

Predictor name
Factor
1

Factor
2

Factor
3

Word length −0.333 −0.083 0.201
Number of phonemes −0.327 −0.098 0.200
Number of syllables −0.280 −0.160 0.482
Number of orthographic neighbours 0.305 −0.217 0.158
Number of phonological neighbours
(excluding homophones)

0.318 −0.124 0.503

Number of phonological neighbours
(including homophones)

0.314 −0.117 0.535

Mean Levenshtein distance to 20 closest
orthographic neighbours

−0.326 0.147 0.141

Average frequency of orthographic
neighbours

0.311 0.047 −0.052

Mean Levenshtein distance to 20 closest
phonological neighbours

−0.320 0.094 0.108

Average frequency of phonological
neighbours

0.309 0.031 −0.124

Mean letter bi-gram frequency −0.099 −0.921 −0.269
Proportion of Variance Explained
(for a total of 83.2%)

67.5% 9.1% 6.6%
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surprisal is the log-transformed reciprocal of the lexical
probability estimate.

Behavioural research on language processing now
predominantly assesses contextual effects in terms of
lexical surprisal (or, equivalent except for the sign, log-
transformed contextual probability; for a recent review
and discussion, see Kuperberg & Jaeger, 2016).This con-
trasts with most ERP studies, which typically employ
untransformed cloze rate in the analyses (Nieuwland
et al., 2018; but see Delaney-Busch, Lau, Morgan, &
Kuperberg, 2019; Frank et al., 2015; Frank & Willems,
2017; Yan, Kuperberg, & Jaeger, 2017). This is an impor-
tant difference, both for theoretical and for methodologi-
cal reasons. For example, research on reading has
found that lexical surprisal is a better linear predictor of
reading times than raw untransformed contextually-
conditioned lexical probability (Goodkind & Bicknell,
2018; Smith & Levy, 2013). This has been taken as
evidence for specific models of incremental information
gathering during visual word recognition (see Smith &
Levy, 2013).

While computational models of ERP components
that would be sufficiently specific to be subject to
such arguments are largely still lacking (for notable
exceptions, see Brouwer, Crocker, Venhuizen, & Hoeks,
2017; Delaney-Busch et al., 2019; Rabovsky, Hansen, &
McClelland, 2018), questions about the functional
relation between contextual probability and the
amplitude of ERP components also has methodological
consequences. Namely, if an ERP component’s amplitude
of interest is linear in surprisal – thus log-linear,
rather than linear, in contextual probability – this
unduly emphasises differences among relatively unpre-
dictable words (the difference between p = .5 or 1.0
corresponds to 1 bit of surprisal; so does the difference
between .0039 and .00195). But this stands in stark
contrast to most ERP studies which have focused on
the contrast between highly predictable and unpredict-
able words.

Planned follow-up analyses in the present study thus
test whether lexical surprisal or probability is a better
linear predictor of the N400 amplitude, while controlling
for other factors known to affect N400 amplitude. This
contributes to preliminary evidence that surprisal is a
better linear predictors of N400 amplitude over exper-
imenter-designed stimuli (Delaney-Busch et al., 2019;
Yan et al., 2017).

Semantic association
To capture the effects of semantic association between a
preceding context and a target word, Frank and Willems
(2017) trained a skip-gram model (Mikolov, Sutskever,
Chen, Corrado, & Dean, 2013) on COW14 corpora

(Schäfer, 2015). This creates a vectorised representation
of word semantics based on word co-occurrence in
both preceding and following contexts. The vector rep-
resentation of the context is calculated by adding the
word vectors of all content words in the context (see
Figure 2). The semantic association between a word
and its context is represented by the cosine distance
between the two vectors, i.e. the negative cosine
between the vector representations of each content
word and its context (for further details, see Frank &
Willems, 2017).

Assessing the feasibility of ERP analyses over
natural stimuli: correlation among predictors

One potential limitation of ERP analyses over natural
stimuli originates in correlations between the variables
of interest. Such correlations can affect analyses in at
least two ways. First, if a predictor is highly correlated
with other predictors, caution is required when interpret-
ing the effect of this predictor when the correlated pre-
dictors are not included in the model as control
variables. Second, high correlation between predictors
can potentially cause multi-collinearity when including
these predictors in the same model, which reduces the
power to detect effects for the collinear predictors, and
can limit the interpretability of the estimated effect of
the correlated predictors (Baayen, Feldman, & Schreuder,
2006). Hence, examining the correlation structure among
predictors can inform us as to whether one can statisti-
cally tease their effects apart within this or similar data
sets with typical statistics.

As shown in Figure 3, there are only moderate cor-
relations between our predictors. Log-transformed
word frequency correlates with lexical surprisal (r =
−0.58) and the first form-related PCA factor. Both cor-
relations are to be expected. More frequent words on
average have higher n-gram probability, and hence
lower surprisal.2 Additionally, the first PCA factor
loads strongly on to word length (Table 2), which is
known to be negatively correlated with word fre-
quency (Zipf, 1949). Second, word order negatively
correlates with semantic distance (r = −.39). This
makes intuitive sense: sentences with typical statistics
(and thus without semantic anomalies) tend to
become increasingly constraining as the sentence
unfolds, with words towards the end of the sentence
fitting more closely into the semantic context (Payne
et al., 2015). None of these correlations are sufficiently
high to cause concerns about collinearity (cf. Baayen
et al., 2006). Follow-up analyses reported in Appendix
C confirm that none of the results we report below is
affected by collinearity.

6 S. YAN AND T. F. JAEGER



Analysis approach

Below we present both millisecond-resolution time
series analysis and analyses based on a priori defined
time windows. This allows us to compare the effect of
the different approaches on the same data set. This
comparison also might provide an explanation for the
seemingly conflicting results of Frank and Willems
(2017) and Dambacher et al. (2006). Specifically, it is
possible that the effects that are found in time series
analyses are sometimes non-detectable in time
window analyses. This provides a possible explanation.
For the window-based analyses, we also entertain non-
linear effects of context, as observed in some previous
studies (e.g. Dambacher et al., 2006). In particular, we
test whether lexical surprisal or lexical probability is a
better linear predictor of the N400 amplitude, as this
amplitude has been linked to the unexpected infor-
mation associated with lexical processing (for reviews,

see Kuperberg, 2016; Kutas & Federmeier, 2011; Van
Petten & Luka, 2012).

Before we present the results of these different ana-
lyses, we briefly discuss different approaches to time
series analyses (over ERP or other data), and motivate
the choices we made in this study. This leads us to intro-
duce an approach to modelling and discounting auto-
correlations that might hold promise for research on
ERPs or similar types of signals, regardless of whether
they are elicited over natural stimuli.

Pros and cons of different approaches to time
course analyses

There are at least three broad classes of approaches for
analysing ERP time series data (Hauk et al., 2009; Smith
& Kutas, 2015a). The first and most common approach
defines time-windows based on either a priori consider-
ations (e.g. based on theory or previous findings) or after
visual inspection of the data. ERPs are then typically aver-
aged over that time window, and the averages are sub-
mitted for analysis (for discussion, see Burns, Bigdely-
Shamlo, Smith, Kreutz-Delgado, & Makeig, 2013). One
downside of this approach is that it makes assumptions
about the relevant time windows, rather than detecting
the relevant time course in exploratory analyses. On
the upside, this approach reduces the risk of inflated
Type I errors due to correlations between ERPs at
different time points.

A second approach is to use methods for linear or
non-linear time series modelling. While this approach
has been under-explored in ERP analyses (but see
Baayen, van Rij, de Cat, & Wood, 2016), it has been
increasingly influential in, for example, eye-tracking ana-
lyses for visual world experiments (Mirman, Dixon, &
Magnuson, 2008; Nixon, van Rij, Mok, Baayen, & Chen,
2016). In the initial stages of this project, we employed
Generalized Additive Mixed Models (GAMMs, Wood,

Figure 2. Measuring the semantic association between a word and its context (for details, see Frank & Willems, 2017).

Figure 3. Correlations between predictors in main analysis. Blue
colours indicate positive correlations and red colours indicate
negative correlations.
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2006) to analyze the time series data from each elec-
trode. One advantage of this approach is that it provides
an elegant and powerful way to model non-linear effects
of predictors on ERPs over time. There are, however, also
downside to this approach. GAMMs offer researchers a
large number of degrees of freedoms (e.g. the choice
of basis function, number of knots, knot locations; for
an overview, see Baayen et al., 2017), and the conse-
quences of those choices for ERP analyses are not yet
known. Another potential downside of this approach is
that it requires additional analysis steps (based on the
initial GAMM results) if the researcher’s primary interest
is to determine when an effect emerges. The downside
that eventually convinced us to explore another
approach is that currently available implementations of
GAMM are limited in their ability to model auto-corre-
lations (but see additional auto-correlation models in,
e.g. the brms library, Bürkner, 2017). A failure to
account for such correlations will inflate Type I error
rates. We note though that the patterns detected by
both approaches were very similar for the present
study. Our choice to switch methods was purely based
on methodological considerations.

Another approach, and the one that we present here,
involves separate analyses for the ERP signal at each
point in time (e.g. Frank & Willems, 2017; Groppe,
Urbach, & Kutas, 2011; Smith & Kutas, 2015a). This
approach detects, rather than assumes, the emergence
of ERP components related to different processes over
time. However, the approach also has two interrelated
critical downsides. First, it has the potential to inflate
Type I error by running multiple comparisons. For
example, the present study requires 200 separate linear
mixed models (LMMs) for each electrode given the
time window of interest and sampling rate. While this
does not inflate the Type I error rate of each individual
model, it makes it harder to interpret the presence of sig-
nificances (as an average of 10 spuriously significant
effects per electrode is expected by chance). The
second weakness is that this approach assumes that
each of the 200 analyses are independent. As discussed
in the previous paragraph, this assumption that is
wrong: it is well known that ERPs exhibit strong auto-cor-
relations (Guthrie & Buchwald, 1991).

To address these issues, we performed two additional
analyses aimed to correct the false positive rate of our
results. The first of these employs Bonferroni correction.
Given that we are conducting 200 regressions on
each electrode, we used an alpha level of 0.00025 =
0.05/200. Bonferroni correction can, however, be conser-
vative (for discussion, see e.g. Narum, 2006). Here we use
this correction as a lower bound of what effects are the
most reliable and trust-worthy. The second additional

analysis explores a new approach to more directly esti-
mate and discount the general autocorrelation (AC) struc-
ture on the EEG signal. This approach is described in the
next section.

The three main analyses reported below include all
the predictors described above: word frequency, the
three PCA factors over form-related measures, and our
two predictors of interest (lexical surprisal, semantic dis-
tance). Following Frank and Willems (2017), we also
included three control predictors in each analysis, includ-
ing the ERP baseline3 (the average amplitude between
−100 and 0 ms before word onset), trial order (the
order of presentation in the experiment), and word pos-
ition (word position within a sentence). To facilitate the
comparison of effect sizes across different predictors
and with previous work (Frank & Willems, 2017), we z-
scored all predictors. All models also included random
intercepts by subject and by word token. We treated
word tokens, rather than types, as random effects
because this is conservative with regard to our question
of interest: context effects vary between the random
intercepts for word tokens. Because contextual effects
mostly affect centro-parietal electrodes, we focused our
analyses for each time point of 3 midline electrodes
(Fz, Cz, Pz).

All analyses were performed using the lmer function
(Bates, Mächler, Bolker, & Walker, 2015) for linear
mixed-effects regression from the lme4 package in the
statistical software R core team, (2016).

Auto-correlation (AC)-corrected ERPs

An overview of our procedure to obtain AC-corrected
ERPs is given in Figure 4. The goal of this procedure is
to capture the general autocorrelation structure across
all time points. We repeated the following process
1,000 times. For each electrode of each subject, we first
randomly sampled 10,000 EEG samples across the
whole recording session (excluding EEG during inter
stimulus intervals, i.e. only including EEG that were
recorded during stimulus presentation). We refer to this
as the training data. We then extracted the preceding
EEG at lag 1 (4 ms earlier) to lag 30 (120 ms earlier) for
each of these 10,000 time points (EEG from the first
120 ms of a recording session were excluded from this
procedure). This allows us to capture correlations due
to oscillations between ∼8 and 25 Hz. This matrix of 30
lag predictors over 10,000 data points was submitted
to a principal component analysis (PCA). The top 5 PCA
factors – capturing most of the auto-correlational struc-
ture of the 10,000 data points – were then used to
predict the 10,000 ERP data points (R2fit mean over by-
subject means = 78%; SD = 7%).
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Next2, we assessed the reliability of the coefficients
from this analysis. For each of the training data sets,
we randomly sampled another 10,000 time points
(held-out test data). We used the PCA loadings derived
from the training data to and assessed how well they
predicted the EEG activity from the test data (R2held-out
mean over by-subject means = 78%; SD = 7% [sic]) and
calculated the different between R2fit− R2held-out (mean =
0.004%; SD = .002%).

We selected the PCA loadings that minimised the
difference between R2held-out and R2fit. We used these
PCA loadings together with corresponding coefficients
derived from the regression over the held-out sample
to predict the EEGs analyzed in the main analyses. The
residuals of this prediction constitute the AC-corrected
ERPs.

The loading of the five factors for the AC-correction
from the Pz electrode of Subject 1 are shown in Figure

5. Although nothing in our approach constrained load-
ings to be cyclic, the loadings reflect oscillations at
various frequencies (e.g. 10 Hz for the top panel).
Figure 6 shows that AC-corrected ERPs exhibit substan-
tially less variance, and less extreme amplitudes.

Next, we report the results from the analyses over the
whole ERP time series. These constitute the core of our
analyses. Then we report the results of the time
window analyses. Finally, we turn to the question of
whether lexical surprisal or untransformed lexical prob-
ability is a better linear predictor of N400 amplitude
over natural stimuli.

Results of time course analysis

We first present the results for the two contextual predic-
tors of interest (lexical surprisal and semantic associ-
ation). Then we present the results for the control

Figure 4. Illustration of the procedure employed to onbtain autocorrelation-corrected ERPs.
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predictor that are moderately correlated with these con-
textual predictors (word frequency and word position).
The time course of frequency effects is of particular rel-
evance, as it provides a baseline for the effects of the
contextual predictors. Recall, for example, that Damba-
cher et al. (2006) argued against the existence of early
contextual effects on ERPs because they found effects
of frequency on P2 (140–200 ms after word onset), but
no effects of cloze scores during the same time
window. Word-form-related predictors and additional
controls (word position and ERP baseline) are reported
in the appendix. We note that we found early word
form effects for both AC-corrected and uncorrected

ERPs around 100, 150, and 200 ms after word onset, as
well as highly significant effects at later time points
(e.g. ∼350 ms). These results resemble previous
findings from experimenter-designed stimuli (e.g. Hauk
et al., 2006, 2009; Laszlo & Federmeier, 2014). Of note is
that we found these effects on electrodes that were
selected because of our focus on context effects, and
they differ from the electrodes for which previous litera-
ture suggests the strongest form-related effects. This
validates the need to account for form-related controls
in research on the time course of context effects.

Lexical surprisal

Figure 7 shows the effect of lexical surprisal on ERP
amplitudes as a function of time. In the left panel, the
y-axis shows the coefficient of lexical surprisal – i.e. the
change in ERP amplitudes with 1 unit change in the
scaled lexical surprisal. For a more intuitive interpretation
of the results, we also plotted the model predicted ERP
amplitudes for high (90th quantile) and low (10th quan-
tile) lexical surprisal (Figure 7, right panel). Following con-
ventions in the field, we plotted ERP with negative values
up. We will present the same type of plots for all the pre-
dictors we discuss.

Before we discuss the significant patterns, we make
two observations about the relation between the main
analysis and the two approaches to Type I error correc-
tion that we present. First, the corrections are more con-
servative, as intended. Second, the two types of
correction approaches seem to differ in how they relate
to the uncorrected analysis. The analysis of AC-corrected
ERP tends to find significances that align with the onset
of significances in the uncorrected ERPs. This suggests
that later significances in the uncorrected ERPs are
explained by autocorrelations with earlier ERPs. We
take this to be a desirable property, in particular, for
time course analyses. Bonferroni corrected analyses, on
the other hand, tend to attribute the significances to
the centre of the time range that exhibits significant
effects in the uncorrected analysis (i.e. alignment to the
peaks in ERP). These patterns hold across the other pre-
dictors presented below, and thus might be a general
property of these two types of Type I error correction
for time series analyses over ERP data.

Similar to Frank and Willems (2017), we found an
early effect of lexical surprisal prior to the N400 time
window, around 200 ms after word onset. We found
this effect while controlling for word form predictors.
Lexical surprisal has a positive effect on ERP amplitudes
in this time window. However, this effect does not
survive Bonferroni correction. The most robust effect
of lexical surprisal is found in the (late) N400 time

Figure 5. Loadings of the five factors that went into the auto-cor-
relation correcting step from the Pz electrode of Subject 1.
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window. Lexical surprisal has a negative effect on ERP
amplitudes in this time window, i.e. less predicted
words elicit a larger N400. This effect is also significant
after Bonferroni correction.

Semantic distance effect

Figure 8 shows the effect of semantic distance on ERP
amplitude as a function of time. Similar to lexical surpri-
sal, there is an early effect of semantic distance prior to

Figure 6. Grand average ERPs on the Pz electrode of subjects. Shaded areas represent ±1 standard error over critical trial. Left panel:
ERPs before auto-correlation correction. Right panel: ERPs after auto-correlation correction.

Figure 7. Lexical surprisal effect over time (−100 to 700 ms from word onset). Left panel: Coefficients from mixed-effects models for
uncorrected ERPs. Shaded areas represent estimated 95% confidence intervals. Dots highlight time points where the effect of frequency
is significant. Black dots: significant with an alpha level of .05. Blue dots: significant for AC-corrected ERPs. Red dots: significant for
uncorrected ERPs after Bonferroni correction. Right panel: Model predicted ERP amplitudes at High (90th percentile, dotted line)
and Low (10th percentile, solid line) lexical surprisal. Following conventions in the field, we plot ERPs with negative values up (the
same is true for all the other ERP graphs we are plotting in this paper).

LANGUAGE, COGNITION AND NEUROSCIENCE 11



the N400 time window, around 250 ms after word onset.
Semantic distance has a positive effect on ERP ampli-
tudes in this time window, i.e. words that are semanti-
cally more distant from the context elicit a larger
positivity. However, this effect is not significant after
either of our Type I error corrections. The most robust
effect of semantic distance is found in the (early) N400
time window. Semantic distance has a negative effect
on ERP amplitudes in this time window, i.e. words that
are semantically more distant from the context elicit a
larger a larger N400. This effect is significant for AC-cor-
rected ERPs but not significant after Bonferroni correc-
tion. There is also a late effect of semantic distance
around 550 ms after word onset. This effect is significant
for AC-corrected ERPs on electrode Fz and Cz but not
after Bonferroni correction. To our knowledge, this
effect is unexpected and not previously reported.

Frequency effect

Figure 9 shows the effect of word frequency on ERP
amplitudes as a function of time. The earliest frequency
effect that is significant for both corrected and uncor-
rected ERPs occurs around 100 ms after word onset on

Cz. Frequency positively correlates with ERP amplitudes,
i.e. increases in frequency predict increases in ERP ampli-
tudes, replicating the time course and direction of pre-
vious findings (e.g. Hauk et al., 2006; Sereno, Posner, &
Rayner, 1998). However, it is not significant after Bonfer-
roni correction. Between 200 and 300 ms from word
onset, frequency has a negative effect, in the same direc-
tion as previous findings in this time window (Hauk et al.,
2006) on Fz and Cz. It is not significant after Bonferroni
correction. The most robust frequency effect is found
around the N400 time window. Frequency has a positive
effect on ERP amplitudes, reflecting a smaller N400 for
more frequent words (Hauk et al., 2006; Van Petten &
Kutas, 1990). This effect is also significant after Bonferroni
correction.

Word position

Figure 10 shows the effect of word position on ERP
amplitudes as a function of time. Overall, there is a sus-
tained negativity effect, i.e. words appearing later in
the sentence elicit a larger negativity. The analysis of
AC-corrected ERPs seems to attribute much of this shift
to autocorrelation, leaving just a few inflection points

Figure 8. Semantic distance effect over time (−100 to 700 ms from word onset). Left panel: Coefficients from mixed-effects models for
uncorrected ERPs. Shaded areas represent estimated 95% confidence intervals. Dots highlight time points where the effect of frequency
is significant. Black dots: significant with an alpha level of .05. Blue dots: significant for AC-corrected ERPs. Red dots: significant for
uncorrected ERPs after Bonferroni correction. Right panel: Model predicted ERP amplitudes at High (90th percentile, dotted line)
and Low (10th percentile, solid line) semantic distance between a word and its context.
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significant. Only three time windows reach significance
after Bonferroni correction. Word position has a negative
correlation with ERP amplitudes around 150 ms and
around 400 ms after word onset on Fz, and around
700 ms on Cz.

Results of time window analyses

The results of the time series analysis broadly replicate
the time course of contextual effects observed by
Frank and Willems (2017). This includes evidence for
early effects of lexical surprisal and semantic association
that survives our AC-correction (but not Bonferroni cor-
rection). This raises the question of whether these
effects would also be visible in a time window analysis.
We address this question for the two time windows pre-
viously examined by Dambacher et al. (2006), i.e. P2 and
N400. We followed the time window and electrodes used
in their study. For P2, we averaged the ERP amplitudes
between 140 and 200 ms after word onset and averaged
across fronto-central electrodes (AFZ, FZ, F3, F4, FC3, FC4,
FC5, FC6, CZ, C3, C4). For N400, we averaged the ERP
amplitudes between 300 and 500 ms after word onset
and averaged across centro-parietal electrodes (CZ, C3,
C4, CP5, CP6, PZ, P3, P4, P7, P8, O1, O2).

Because some previous work suggests that context
effects on aggregate ERP amplitudes can be non-linear
(including Dambacher et al., 2006), we used GAMMs to
examine the effects of the two context predictors
(lexical surprisal and semantic distance). For each predic-
tor, we first tested whether including the predictor as a
linear predictor in the model significantly increased
model fit against ERP amplitudes compared to when it
was not included. We then examined whether including
the predictor as a non-linear predictor in the model
further increases fit compared to when only the linear
predictor is included (along with all controls; for
models see Appendix E). All model comparisons
employed the CompareML function from the R package
itsadug (van Rij, Wieling, Baayen, & van Rijn, 2017), and
were based on maximum likelihood fits (as is rec-
ommended for comparisons of nested GAMMs that
differ in fixed effect structure, van Rij, 2016). The
GAMM analyses included the same controls and
random effects employed in the time series analysis.

P2 time window

In line with the results of the time series analyses, lexical
surprisal is a marginally significant linear predictor of P2

Figure 9. Frequency effect over time (−100 to 700 ms from word onset). Left panel: Coefficients from mixed-effects models for uncor-
rected ERPs. Shaded areas represent estimated 95% confidence intervals. Dots highlight time points where the effect of frequency is
significant. Black dots: significant with an alpha level of .05. Blue dots: significant for AC-corrected ERPs. Red dots: significant for uncor-
rected ERPs after Bonferroni correction. Right panel: Model predicted ERP amplitudes at High (90th percentile, dotted line) and Low
(10th percentile, solid line) frequency.
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amplitude (χ2 = 3.06, p = 0.08). Semantic distance is not a
significant linear predictor of P2 amplitude (χ2 = 0.50,
n.s). Including any context predictors as non-linear pre-
dictors does not improve model fit beyond their
inclusion as linear predictors (ps > 0.9).

N400 time window

In line with the results of the time series analyses, both
lexical surprisal and semantic distance are significant
linear predictors of N400 amplitude (lexical surprisal: χ2

= 8.92, p < 0.005; semantic distance: χ2 = 10.06, p <
0.001). Including lexical surprisal and semantic distance
as a non-linear predictor does not improves model fit
beyond their inclusion as linear predictors (ps > 0.9).

Summary

Thus, the window-based analyses are broadly in line with
the time series analyses we conducted. Both types of
analysis provide some support for early effects of
context. However, the window-based analysis seems
overall more conservative: even some of the patterns
that survived AC-correction in the time series analyses

did not reach significance in the window-based analyses
(p = 0.08). On the other hand, Bonferroni-correction of
time series data seems to be even more conservative
than the window-based analysis. (We note that our
comparison leaves open which analysis is more ade-
quate, as the ground truth – the time course of context
effects – is the object of inquiry here, rather than being
known.)

What predicts N400 amplitude? Lexical
surprisal vs. lexical probability

Finally, we turn to our last question – whether the ampli-
tude of the N400 is best described as a linear function of
lexical surprisal (i.e. log-transformed contextually-con-
ditioned lexical probability) or untransformed (contex-
tually-conditioned) lexical probability. The absence of
significant non-linearities in the effects of lexical surpri-
sal, reported in the previous section, provide initial
support for the hypothesis that the N400 is best
described as a linear function of lexical surprisal, rather
than lexical probability. However, it is also possible that
the absence of significant non-linear effects for lexical
is caused by lack of statistical power.

Figure 10. Word position effect over time (−100 to 700 ms from word onset). Left panel: Coefficients from mixed-effects models for
uncorrected ERPs. Shaded areas represent estimated 95% confidence intervals. Dots highlight time points where the effect of frequency
is significant. Black dots: significant with an alpha level of .05. Blue dots: significant for AC-corrected ERPs. Red dots: significant for
uncorrected ERPs after Bonferroni correction. Right panel: Model predicted ERP amplitudes at High (90th percentile, dotted line)
and Low (10th percentile, solid line) word position.
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To assess this possibility, we first repeated the analysis
of the N400 window reported in the previous section, but
this time substituting lexical probability for lexical surpri-
sal. Paralleling the results for lexical surprisal, we found
that including lexical probability as a non-linear predictor
does not improve model fit compared to when it is
included a linear predictor of N400 amplitude (χ2 = 0,
n.s.). That is, despite the fact that lexical probability is
exponentially related to lexical surprisal, the effects of
either predictor on N400 amplitude do not significantly
deviate from linearity.

Since it is not possible that both lexical surprisal and
lexical probability are linear predictors of the N400, we
assessed which of the two null effects for the non-linear-
ity test is more likely to reflect a true null effect (and thus
evidence for a linear relation of that predictor with the
N400). Figure 11 compares the predicted effects of
lexical probability and lexical surprisal on the N400
amplitude. Panel A plots predictions aligned with
lexical probability. This panel compares the predictions
from the GAMM in which lexical probability is allowed
to be non-linear (but, in fact, has a linear relation with
the N400) with the predictions from the GAMM with
lexical surprisal as a linear predictor transformed into
probability space. Panel B plots the predictions aligned
with lexical surprisal. Lexical probability values cluster
close to zero, leaving little power to detect deviation
from linearity where they are predicted. This contrasts
with lexical surprisal values which are distributed rather
uniformly across the entire interval over which we
make predictions. It is thus likely that we had substan-
tially more statistical power to detect deviation from lin-
earity for lexical surprisal (under the hypothesis that the
N400 is linear lexical probability), than we had to detect
deviation from linearity for lexical probability (under the
hypothesis that the N400 is linear in surprisal). This
makes the absence of evidence for non-linearity of
lexical surprisal more informative.

Finally, we examined whether including lexical surpri-
sal as linear predictor in the model can improve model fit
while lexical probability is already in the model and vice
versa. Adding lexical surprisal as a linear predictor to a
model with lexical probability does improve model fit
(χ2 = 5.00, p = 0.025), but not vice versa (χ2 = 0.036, n.s.).
This suggests that lexical surprisal is a better linear pre-
dictor of N400 amplitude than lexical probability.

Discussion

ERP has proven a powerful paradigm in advancing our
understanding of the time course of information proces-
sing during language understanding. With very few
exceptions, previous work has, however, almost

exclusively employed experimenter-designed stimuli.
Such stimuli differ in many ways from naturally occurring
language. ERP experiments on context effects often
present participants with equal (50/50) proportions of
“high” and “low predictability” target words (e.g. having
a contextual probability of more or less than .5). ERPs
are typically only analysed for those target words. This
means that the words and contexts that are analysed
in most ERP experiments make for a very odd subset of
natural text. As an illustration, consider that less than
3% of the content words analysed in the present study
had an n-gram probability above .5. This does not invali-
date research on experimenter-designed stimuli. Psycho-
and neurolinguistics paradigms that investigate the
language system by presenting it with rare, taxing, and
unexpected stimuli have a long history of critical contri-
butions to the field. However, just as the field of modern
neuroscience does not exclusively rely on findings from
patients with brain damage, ERP studies on natural
stimuli with typical statistics offer important validation
of neurolinguistics theories (as well as the potential of
unique insights).

In the present study, we examined when different
contextual predictors affect ERPs in reading natural sen-
tence stimuli. We found that both surprisal and semantic
association are independent linear predictors of N400
amplitude (replicating Frank & Willems, 2017). We also
found evidence that lexical surprisal affects early ERPs
during the P2 time window, though this effect was
only marginally significant in the time window analysis.

The early effects of some contextual predictors
confirm the patterns found in Frank and Willems (2017)
but contrasts with the findings of Dambacher et al.
(2006). This suggests that contextual information can
affect early lexical processing even in natural sentence
reading where the context is not highly constraining.
This would be in line with accounts that lexical proces-
sing is interactive and cascading (Dell & O’Seaghdha,
1992; McClelland & Elman, 1986). We note, however,
that the contextual effect on the P2 is not as robust as
the effect on the N400. In particular, the time window
analyses only found a marginally significant effect of
lexical surprisal in the P2 time window. This is not necess-
arily unexpected for two reason. First, the cascading
effects on form-based processing are expected to be
small (Dell & O’Seaghdha, 1992; for discussion, see, e.g.
Yan et al., 2017). Second, early ERP effects are likely
smaller than later effects and harder to detect (see, e.g.
Hauk et al., 2006). Further work on other data – including
on ERPs over natural stimuli – are needed to cross-vali-
date the effects.

Next, we discuss some further similarities and differ-
ences between our findings and previous work on
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Figure 11. Comparing predictions of lexical probabiltiy and surprisal. Panel A: Predictions are shown on a probability scale. Panel B:
Predictions are shown on a surprisal scale. Black line denotes predicted N400 amplitude from GAMMs with lexical probability (A) or
lexical probability (B) as a predictor allowed to be non-linear. Shaded area represent estimated 95% confidence intervals. Blue line
denotes predicted N400 amplitude from GAMMs with lexical surprisal (A) or lexical probability (B) as a linear predictor.
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experimenter-designed stimuli. Then we discuss the
implication of our finding that lexical surprisal is a
better predictor of N400 amplitude. Lastly, we review
some limitations of the methods employed in the
present study, and how they might be resolved in
future work.

ERP effects in reading natural text

Our time course analyses qualitatively replicated pre-
viously findings using experimenter-designed stimuli.
Besides replicating the time course of context effects,
we also found word-form-related effects with similar
time course as in studies using experimenter-designed
stimuli (Hauk et al., 2006; Laszlo & Federmeier, 2014),
as described in Appendix D. One noticeable exception
to this is that the PCA factor with a strong loading on
orthographic probability was not found to have an
early effect on ERPs (in contrast to, e.g. Hauk et al.,
2006). This could indicate that orthographic probability
of a word is not an important source of information in
natural language reading compared to the meta-linguis-
tic tasks that subjects were performing in the original
study (lexical decision). It is, however, also possible that
this null effect is due to our focus on centro-parietal
sites, whereas the most robust effect of orthographic
probability was found at peripheral sites. Future work is
required to thoroughly compare the differences in acces-
sing lexical information in reading natural and exper-
imenter-designed stimuli by examining larger range of
stimuli with different lexical properties and sample
more electrodes that are sensitive to early lexical
processing.

Another potential difference to previous work on
experimenter-designed stimuli pertains to the effect of
word position (Payne et al., 2015; Van Petten & Kutas,
1990). Unlike these works, we did not find that N400
amplitude decreases with the increase of word position.
There are two possible reasons why we did not find such
an effect. First, the sentences used in Payne et al. (2015)
were longer (mean 15, range 5–27) compared to the
dataset we analysed (mean 10, range 5–15). Second,
the current dataset used naturalistic stimuli while
Payne et al. (2015) and previous studies used exper-
imenter designed stimuli. In experimenter-designed
stimuli, each sentence is like a mini-story that has
richer contextual information, e.g. “She kept checking
the oven because the cake seemed to be taking an
awfully long time to bake” (Payne et al., 2015). In our
dataset, the naturalistic stimuli are excerpts from
novels, information is likely more spread out across sen-
tences but less constraining within a sentence. Therefore,
later parts of the sentences are less constrained by

previous parts of the sentences in our stimuli, and
word position is not as good a metric for sentential
constraint.

Lexical surprisal vs. lexical probability

Another finding worth highlighting is that we found that
(n-gram) lexical surprisal is a better linear predictor for
N400 amplitude than (n-gram) lexical predictability.
This complements findings from previous tests on ERP
over experimenter-designed stimuli (Delaney-Busch
et al., 2019; Yan et al., 2017). It also mirrors findings
from reading time studies (Goodkind & Bicknell, 2018;
Smith & Levy, 2013).

Although further work on this question is required to
reach certainty about the functional relation between
N400 amplitude and lexical probability, these findings
call for caution with regard to a common practice in
ERP design and analyses. Most research on the N400
has measured and manipulated predictability in terms
of (non-log-transformed) cloze scores. However, if the
N400 amplitude is linearly correlated with the surprisal,
i.e. correlated with lexical probability log-linearly, then
the difference in N400 amplitude between lexical items
with a lexical probability of 9% and 90% is comparable
to that between lexical items with a lexical probability
of 0.9% and 0.09%. However, due to the lack of resol-
ution in cloze tests, the lexical items with lexical prob-
ability of 0.9% and 0.09% will likely both have a cloze
rate of 0. When untransformed cloze scores are used as
predictors, this pools all the low lexical probability
items together despite the fact that they potentially
elicit very different N400 amplitude (for further discus-
sion, see Yan et al., 2017). The same potential issue
applies to factorial designs that dichotomise cloze
scores into, for example, “low” vs. “high”. Besides loss
of resolution for low probability words, this also poten-
tially violates the homoscedasticity assumption of stan-
dard analysis approaches, if N400 amplitude associated
with items in the “low” condition vary more or less
than those in the “high” condition.

If the N400 amplitude is linearly correlated with the
surprisal, this finding can also have potential theoretical
implications. The fact that both the amplitude of the
N400 and reading times are linear in lexical surprisal
can be seen as in suggestive (albeit weak) support of
the argument that reading times and N400 amplitude
both reflect lexical processing difficulty (Dimigen,
Sommer, Hohlfeld, Jacobs, & Kliegl, 2011). Whether a
measure is a linear predictor can also have implications
for the underlying processing mechanism reflected by
this measure (Smith & Levy, 2013), although we note
that computationally explicit models of ERP components
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are still largely lacking (for a notable exception, see
Rabovsky et al., 2018; for further discussion, see also
Yan et al., 2017).

Auto-correlation correction

Our approach to AC-correction results in fewer effects
reaching significance. This is expected if the procedure
successfully corrects for auto-correlations. The present
study cannot, however, assess whether our approach
indeed successfully corrects the Type I error rate, or to
what extent our approach is conservative (resulting in
reduced power). The answer to this question would
require Type I and II error simulations that are beyond
the scope of the present study. Here, we note three prop-
erties of our approach that should be considered when
applying it to other data.

First, when analysing AC-corrected ERPs, one will only
find significant effects at time points where the effect
size differs from what is predicted by the effect sizes in
the preceding time points. This is, of course, the purpose
of AC-correction, but it means that analyses over corrected
ERPs will thus be most sensitive where there is a drastic
change in the effect size (e.g. at the onset/offset of an
effect). For example, for sustained effects that are relatively
stable in size across time, the analyses on corrected ERPs
might only find significant results at the onset of the
effect but not at later time points. This is not per se a limit-
ation, but rather a property that needs to be considered
when interpreting results over AC-corrected ERPs.

Second, our approach to AC-correction at present
does not take into account uncertainty about the EEG
activity at different preceding time lags. As a conse-
quence, the approach might “over-react” to fluctuations
in the preceding EEG activity, and this in turn might
exaggerate or mask true effects. This shortcoming
could be addressed in analyses techniques that model
auto-correlations and the effects of interest at the same
time, considering uncertainty about one while evaluat-
ing the other.

Third and finally, our approach does not currently
account for spatial correlations across electrodes. This
is not necessarily a hard limitation of the approach: just
as the present approach predicts EEG activity at
different lags of the same electrode (see Figure 4), one
could potentially include EEG from any other electrode
in this prediction process.

Models of context

Our results need to be interpreted in the context of the
modelling choices we make. We thus lay out the simpli-
fying assumptions we made in the formalisation of the

context predictors we considered in our analyses, and
discuss how these might be improved in future studies.

The estimate of lexical surprisal employed in the
present study almost exclusively reflects local lexical (n-
gram) information. It does not incorporate non-local
information, for example, discourse context, that is
known to affect N400 amplitude (Van Berkum, Hagoort,
& Brown, 1999). One way in which future work can
address this shortcoming would be through cloze
norms based on large scale norming studies, following
similar recent behavioural work on reading (Luke & Chris-
tianson, 2017). However, to at least approximate the res-
olution of an n-gram or other computational models, one
would need to collect data from thousands of subjects
for each word. This quickly becomes infeasible for
word-by-word estimates over large sets of sentences.

A second caveat to our findings originates in the rep-
resentational assumptions made in the models of
context employed in the present study. We represented
the semantics of the context by simply adding the
vectors of all the content words in the context. While
such approach has received empirical support from
other studies (Broderick, Anderson, Di Liberto, Crosse, &
Lalor, 2018; Ettinger, Feldman, Resnik, & Phillips, 2016;
Frank & Willems, 2017), it does not include other factor
that are shown to affect meaning building and affects
N400 amplitude (e.g. thematic role assignment,
Rabovsky et al., 2018). The current results confirm that
even with simple “bag-of-words” representation of the
context semantics can explain the variances of N400
amplitude. It remains to be tested whether the semantic
measures will have better explanatory power when other
information that can influence meaning building is also
incorporated into the model. An alternative approach is
to build language models that explicit incorporate other
information that affects meaning construction, e.g. the-
matic information. There are now models of this type,
but they have so far only been applied to smaller “toy”
corpora and cannot yet be scaled to the type of broad-
coverage natural corpora investigated in the present
study (Brouwer et al., 2017; Rabovsky et al., 2018).

Future directions

The use of computational models makes it possible to
test hypotheses about N400 and other neural processes
on large scale, more naturalistic stimuli. This allows one
to test language processing in more ecological task
environments. The dataset we analysed contains sen-
tences from corpora that captures sentences similar to
those encountered in daily life. However, the sentences
were presented in isolation and devoid of discourse
context. With the development of more naturalistic
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EEG paradigms, e.g. gaze-contingent EEG (Dimigen et al.,
2011; Hauk et al., 2017; Plöchl, Ossandón, & König, 2012),
it has become possible to study ERPs over entire coher-
ent discourse, rather than isolated sentences. The statisti-
cal methods we have employed here can be adopted in
future work on the N400 and other ERP components
related to language processing in more naturalistic
contexts.

Notes

1. We originally also examined a related alternative
measures of semantic distance, based on an interpret-
ation of context vectors as probability distributions
over latent semantic spaces. This measure correlates
neither with early ERP components nor with N400 ampli-
tude. The results reported here do not change if this pre-
dictor is included in the analysis.

2. Additionally, the smoothing technique employed in the
n-gram model (Kneser-Key smoothing, Chen &
Goodman, 1999) uses back-off to smooth unreliable esti-
mates of n-gram probabilities. While this is an effective
smoothing technique and thus desirable, it can further
increase the correlation between the estimated n-gram
probabilities and word frequency.

3. Typically, the ERP baseline is simply deducted from the
ERP wave to perform baseline correction. This
assumes that the effect of baselines is constant across
ERPs at different times. Here we include the ERP baseline
as a regressor to keep our results comparable to
Frank and Willems (2017). This decision does not
affect our results. As reported in the appendix, the ERP
baseline had different effect on different parts of the
ERP signal.
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