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Abstract 

 An overwhelming majority of speech perception research has focused entirely on the end 
product of the perceptual process.  Perhaps no other phenomenon in cognitive science is as 
overstudied with these “endpoint” techniques as the categorical perception of consonants.  Recent 
advances in eye tracking methodologies have allowed us to now look at the intermediate stages of 
processing in several domains.  In this paper we present two studies examining the time course of 
categorical perception in adults.  We demonstrate that, although categorization seems to be present 
throughout the time-course of categorical perception, it is not immediately discrete.  Accompanying 
simulations suggest that categorical perception may only be a single temporal facet of a more 
complex, continuously evolving process.  Categorical perception has been pervasive in explaining 
diverse areas of cognition such as speech perception, color perception, music perception, non-
human speech perception.  Most importantly it has been invoked in explaining infants’ speech 
perception abilities.  Given the results presented here, it seems appropriate to expand any study of 
categorical perception beyond simply the temporal endpoints to the entire time course of infant 
perception.  However, the inadequacy of current infant methodologies to provide identification data 
for speech stimuli provides the greatest obstacle to achieving this goal with infants.  Thus, we 
present the anticipatory eye movement paradigm, which will allow us to assess identification and 
categorization in infants.  Preliminary data obtained with this methodology suggests that this 
methodology can provide categorization data and may also provide a glimpse into the temporal 
dynamics of infant speech perception. 

 
Introduction 

Five decades of research in speech perception and phonetics have been based primarily on a 
single experimental paradigm.  In this paradigm, the participant hears a speech sound (or series of 
speech sounds) and must report the stimulus as belonging to one of a set of possible response 
categories.  This research has been guided by the underlying belief that if the stimuli are varied in 
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the right theoretically motivated ways, the structure of the human speech recognition mechanism will 
become apparent.   

This approach treats the speech recognition mechanism as a black box, accepting input from 
the ears and yielding phonemic output to the button-pushing finger (or as is commonly assumed, to 
the word-recognition system).  Much research has demonstrated the viability of this basic hypothesis 
(see McQueen, 1996 for examples).  This approach has been quite valuable, leading to refinements 
of stimulus generation (e.g. synthesized speech) and experimental design that have provided a large 
body of research from which to build.  Indeed, Kluender (1994) has argued that in part because of 
this approach, speech perception is one of the more tractable problems in cognitive science. 

These methodological improvements in fine-grain stimulus generation have not been equally 
matched by methodological improvements in fine-grain response measures.  There has been little 
development of the standard dependent measure, in which a listener provides a metalinguistic 
judgment a second after the speech perception event has taken place.  The events that occur during 
the 500-750 milliseconds between auditory transduction and the behavioral response remain an 
entirely open question. 

A similar state of affairs once existed in the field of sentence processing.  Throughout much 
of the 1970’s, the dominant method used by researchers to infer the structure of the human sentence 
processing mechanism was to present a sentence (or series of sentences) and subsequently test the 
participant’s memory for certain aspects (e.g., syntax, semantics) of the sentence.  Then, at the 1975 
Chicago Linguistic Society meeting, Marslen-Wilson (1975) argued convincingly for developing 
measures of sentence comprehension that tap representations and processing during the 
comprehension event, rather than after it.  This motivation has driven the field of sentence 
processing for the past two decades, and has resulted in an extremely rich understanding of the 
possible mechanisms by which a listener/reader integrates linguistic structure and linguistic content 
in real-time (for recent reviews, see MacDonald, Pearlmutter & Seidenberg, 1994; Tanenhaus & 
Trueswell, 1995).   

In the work presented here, we apply that same logic in experimental design to the study of 
low-level speech perception.  Our goal in this research is to demonstrate that although 
discrete/symbolic phonetic representations are useful descriptions of the ultimate reportable percept 
during speech perception, a considerable amount of information is available in the intermediate 
representations that get computed along the way toward that final state.  That is, we do not wish to 
discount the importance of categorical representations of speech (the existence of sharp 
categorization functions for speech perception is difficult to contest), we merely wish to convince 
the reader that “getting there is half the fun.” 

  
Why study the time course of speech perception? 

Synthesized speech has allowed the field to examine the psycho-acoustic microstructure of 
speech perception mechanisms.  Using such speech, experimenters have been able to generate 
continua of speech sounds that vary in small steps by a single acoustic feature.  Research with these 
continua has found overwhelming support for a very sharp category boundary between phonemes 
along many acoustic continua.  This sharp boundary (along with the fact that discrimination between 
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stimuli on one side of the boundary is at chance in many situations1) has been taken to mean that 
perception of speech sounds is categorical on some level.  In a sense, lower level acoustic 
information is lost in favor of a discrete category label (Liberman, Harris, Hoffman & Griffith, 
1957). 

 
Categorical perception is typically described in terms of an identification curve over an 

acoustic continuum (Figures 1).  For example, the identification curve of a voicing continuum would 
indicate the percentage of time a stimulus was labeled “voiced” as a function of the voice onset time 
(VOT) of the stimulus.  A steep logistic identification function has been the hallmark of virtually 
every experiment involving consonant perception. 
 Another nearly universal feature of speech perception experiments is that this identification 
curve has only been examined at the end of the perceptual process.  We do not know the initial state 
or the pattern of change as the system settles on a response.  Typical response times to individual 
phonemes in a button-pushing perception experiment are between 500 and 750ms.  However, in this 
same amount of time during on-line speech recognition, the system may have to process as many as 
20 phonemes.  Clearly whatever phonetic category information is used for word recognition is not 
necessarily the sharp categorization we see in categorical perception experiments.  This focus on the 
on-line processing of speech calls into question the pertinence of categorization data collected after 
a 750ms of processing. 

                                                 
1 There is some evidence that in certain situations, greater-than-chance discrimination is possible within phonetic 
categories (Massaro and Cohen, 1983; Samuels, 1977; Pisoni and Lazarus, 1973).  However, the sharp category 
boundary in the identification function is a hallmark of most phonetic categorization experiments.  Since the 
research presented here is concerned mostly with identification, we will leave the debate on discrimination to 
another paper. 

0 10 20 30 40
0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1 .0

%
 v

oi
ce

d

Figure 1: A schematic identification curve.  Percentage of stimu lus identified as voiced as 

a function of VOT is plotted,  although similar curves have been reported for many other 

features of speech such as the acoustic cues signaling place of articulation.  
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Figure 1: A schematic identification curve.  Percentage of stimu lus identified as voiced as 

a function of VOT is plotted,  although similar curves have been reported for many other 

features of speech such as the acoustic cues signaling place of articulation.  
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 Since the initial findings of categorical perception by humans for speech sounds, categorical 
perception has been revealed in other domains.  Facial discrimination, color perception and musical 
triad identification and have all been shown to be categorical processes (Beale & Keil, 1995; 
Bornstein & Korda, 1984; and Howard, Rosen & Broad, 1992; and respectively).  It has also been 
shown for   the perception of complex nonspeech sounds (Pisoni, 1977).  Finally, categorical 
perception of human speech sounds has been found to occur for several non-human species 
(Kluender, Diehl & Killeen, 1987 [quail]; Kuhl & Miller, 1975 [chinchillas]; Kuhl & Padden, 1982 
[macaques]).   
 These diverse findings of categorical perception suggest that categorical perception could be 
a very general property of the cognitive system (see Harnad, 1987, for numerous examples).  
However, although all categorical perception experiments show the same steep logistic function as 
the end-state of categorization, it is possible that they result from different patterns of change over 
time.  By exploring the temporal dynamics of categorical perception in these different modalities 
and subjects, we may find differences between these categorization abilities.  The combination of 
this type of research with explicit computational models, may allow us to draw conclusions 
regarding the mechanism or mechanisms behind categorical perception. 

More importantly, categorical perception has also been invoked in explaining the speech 
perception abilities of infants.  Although it is unclear at this point how to assess identification, 
discrimination data have suggested that human infants might at least discriminate speech sounds 
categorically (Eimas, Siqueland, Jusczyk and Vigorito, 1971; see Werker & Polka, 1993 for a 
review).  These conclusions are tenuous for two reasons.  The first is that these studies are based on 
habituation measures that can only measure discrimination (and may be subject to selective 
adaptation processes, since the infant is hearing many repetitions of the same stimulus).  
Unfortunately at this time, there have been no procedures that allow us to obtain identification data 
from infants or allow a response after the presentation of only a single stimulus (thus allowing a 
direct comparison with adult data).  The second reason to doubt these findings (and more important 
to our argument here) is that even if we had a measure of identification based on the percept of a 
single stimulus, it is quite possible that the end-state of perception is quite different than the 
intermediate stages.  These well-replicated findings have encouraged the view that speech 
perception is a modular or special process.  However, the study of the temporal dynamics of 
perceptual processes may permit a new dimension on which to compare categorical perception in 
speech and non-speech modes and between infants and adults, if we are able to develop the 
appropriate methodologies.   

In this paper we will present preliminary data from several studies that attempt to elucidate 
the temporal dynamics of low-level speech processing.  We will present data from several adult 
studies involving the time course of phoneme categorization, and explore several possible models 
for the mechanism that might account for our data.  We will then present preliminary data from a 
series of infant studies that potentially solve the methodological pitfalls outlined above.  Although 
they do not demonstrate conclusive data on infant speech perception the methodology clearly holds 
promise. 
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The temporal dynamics of categorical perception in adults 
When participants listen to synthesized speech sounds that span a voice onset time (VOT) 

continuum between /ba/ and /pa/, stimuli with shorter VOTs are consistently identified as /ba/ and 
those with longer ones as /pa/.  Additionally, using traditional measures, discrimination between 
different stimuli within a category is typically at chance.  Although other studies have shown 
subjects have limited access to this subcategorical level of representation (Utman, Blumstein, & 
Burton, 2000; Massaro and Cohen, 1983; Pisoni and Lazarus, 1973; Samuels, 1977), in many 
experimental situations, the actual VOT of the individual stimulus appears to be discarded, and all 
that remains in the percept is category membership. 
 Nonetheless, something very interesting is going on during those several hundred 
milliseconds between stimulus offset and the reporting of the percept.  The first hint at this came 
from work by Pisoni and Tash (1974), in which they replicated the basic categorical identification 
of VOT and also recorded participants’ reaction times.  Stimuli in the ambiguous region of the VOT 
continuum elicited longer reaction times than the unambiguous phonemes.  Thus, categorization of a 
particularly ambiguous stimulus takes longer than categorization of a less ambiguous stimulus.  This 
is consistent with the kind of settling, or pattern completion, process seen in attractor networks.   
 As previously mentioned, the end product of the categorization process is clearly a steep 
logistic identification function of a continuous acoustic value (such as VOT).  The initial shape of 
the identification function and it’s transformation to this steep logistic is much less clear.  At this 
point, we can formulate three hypotheses for the time course of categorical speech perception: 
 
Hypothesis 1: No Change -- The initial state of the speech percept is no different from the end-state, 

i.e., categorical speech perception is instantaneous and exhibits no temporal dynamics 
whatsoever. 

 
Hypothesis 2: Linear to Sigmoid -- The initial state of the speech percept may retain the continuous 

nature of the synthesized stimuli, as in the top left panel of Figure 2.  This continuous 
perception might gradually warp itself over time (t) into a steep sigmoid, as in the top 
middle and right panels. 

 
Hypothesis 3: Expanding Sigmoid -- The initial state of the speech percept may be completely 

ambiguous (see the flat line in the bottom left panel of Figure 2), and the halves of the 
continuum separate themselves over time, retaining their categorical structure (lower middle 
and right panels of Figure 2). 
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The eye-tracking and response deadline methodologies used here were designed to give us a 
precise picture of the time course of categorical perception and tell us which of these hypotheses 
provides the best description of the data.   The use of head-mounted eye tracking methodologies has 
allowed us to extend Pisoni and Tash's (1974) exploration of the time course of categorical speech 
perception by observing evidence of the speech percept in a state that had not yet "settled" into a 
discrete category.  Our goal is to detect the underlying representations that lead to the patterns of 
reaction times found by Pisoni and Tash. 

 

Experiment 1: The categorical perception of voicing over time, measured by fixation 
probability 
 
Methods 

Subjects were 16 undergraduate students at Cornell University.  They were either paid $5.00 
or given course credit for their participation.  All were native monolingual speakers of American 
English with normal hearing and normal or corrected to normal vision.  In accordance with 
university human subjects procedures, subjects were informed of the risks of the experiment and 
consent was obtained prior to beginning the procedure. 
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Stimuli were synthesized on a Sun workstation with the Delta system from Eloquent 
Technologies.  A 9 stimulus /ba/-/pa/ continuum was created by varying the temporal onset of 
voicing relative to the onset of the release burst (VOT).  VOTs varied from -50 to 60 ms with the 
category boundary (determined by the subject’s responses) lying roughly at 10ms.  During the post 
experiment briefing, none of the subjects reported having any trouble identifying the stimuli as /pa/ 
or /ba/. 

Our methods are based on the eye-tracking methodology of Tanenhaus, Spivey-Knowlton, 
Eberhard and Sedivy (1995).  In this paradigm, subjects are asked to perform motor tasks in 
response to linguistic instructions.  In tasks such as reaching or pointing, eye movements have been 
shown to indicate what the subject is about to reach for or point to.  The probability of an eye 
fixation to a potential target over time has been interpreted as being indicative of activation levels 
as the system settles on a decision (Allopenna, Magnuson and Tanenhaus, 1998).  We adapted this 
paradigm to use computer-generated images as the targets and mouse control as the motor task (as 
opposed to real objects and reaching). 

Subjects were seated at a computer and the head-mounted eye tracker (to be described 
shortly) was calibrated.  They were told that they were about to hear a series of synthetic speech 
sounds and that their task was to categorize them as accurately as possible by clicking with the 
mouse on one of two large squares labeled /ba/ and /pa/ (which were on the screen during the 
instructions).  They were told to relax and take their time and that the labeling of the squares would 
not change throughout the experiment—/ba/ would always be on the left and /pa/ on the right (so that 
eye movements would not be induced by the subject searching for the button’s locations). 

Throughout the experiment, eye position was monitored with an ISCAN eye tracker.  The eye 
tracker consists of two cameras that are mounted on an adjustable helmet.  The "eye camera" 
records an infrared image of the eye.  This image is analyzed by a computer to determine the 
location of the pupil and the corneal reflection.  From this, the computer is able to find the position 
of the eye relative to the head.  This information is combined with the view from the "scene camera" 
(which records the subject's field of view) as a set of cross hairs indicating the subject's point of 
fixation. Although the eye tracker is able to compute this 60 times per second, the data ware 
recorded on a HI-8 video recorder at 30 Hz. 

Each trial starts with the presentation of a single gray circle in the middle of the screen.  The 
subject fixates on this for two seconds to establish that their gaze is midway between the two 
buttons.  When the circle turns red, the subject clicks on it, establishing that the mouse is at the 
midway point.  At this point, the circle disappears, and two gray squares labeled /ba/ and /pa/ 
appear on the computer screen.  One of the nine stimuli is played through the Macintosh computer 
speaker and the subject clicks on the button corresponding to what he or she heard.  In addition to 
eye position, reaction time (measured as the time between the stimulus onset and when the mouse 
was clicked) and the square the subject chose was measured.  Each of the stimuli was presented a 
total of 7 times, with the order of presentation randomized for each subject.  The experiment was 
designed and run using the PsyScope experimental design software (Cohen, MacWhinney, Flatt, & 
Provost, 1993). 
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Results  
 In order to provide an accurate picture of the temporal dynamics of categorical perception, 
eye tracker data were analyzed frame by frame (where one frame equals 33.33 ms).  Research 
assistants viewed the video tapes of the experiment and for each frame they were instructed to 
record whether or not the subject was looking at or saccading to the buttons labeled “/pa/” and 
“/ba/” or to neither of them.  Sound was not recorded on the videotape, so the coders were unaware 
of which stimulus the subject was hearing. 
 Averaging these data across subjects and trials for each VOT yielded a picture of the 
probability of fixation on a particular choice as a function of time.  Figure 3a shows the probability 
of a fixation to “/ba/”, “/pa/” or neither as a function of time after subjects heard a /ba/ with a VOT 
of –50.  Figure 3b shows fixation patterns after an ambiguous VOT of +10.  The time course of 
processing following unambiguous stimuli shows qualitative similarities to results from word 
recognition (Allopenna, Magnuson & Tanenhaus, 1998).  This suggests a common underlying 
process.  In particular, looks to multiple objects immediately after presentation of the stimuli suggest 
parallel activation of responses, with competition as the disambiguating mechanism.   

Averaging the percentage of looks to “/ba/” or “/pa/” (ignoring the looks to neither button) at 
several time bins as a function of VOT allows us to view the time-course of categorization. Figure 4 
shows an identification curve created by using the button the subject fixated on last as a response.  It 
also shows subjects’ mouse identifications and their reaction time.  The pattern of reaction times is 
qualitatively similar to the pattern found by Pisoni and  

Figure 3: Fixation probability as a function of t ime for a good /b a /  (VOT=-50, figure 

3a) and for  an ambiguous st imulus (VOT=10, f igure 3b)
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Tash (1974) and the identification curves exhibit the same steepness.  In addition, it is clear 
that the final eye movements are highly correlated with the mouse choice data. A repeated measures 
logistic regression (with VOT, trial and whether or not the data came from the late eye movements 
or the mouse choice) found highly significant effects of VOT and trial (yielding a total χ2(22)=1539, 
p<.0001).   More importantly, no effect was found for whether the data were from a mouse choice or 
an eye movement (p > .5) or for the interactions of this variable with the others (all p>.4). The two 
datasets are not different from each other when intra-subject effects and the effect of VOT are 
partialed out.  Late eye movements provide the same information as the mouse choice.  Given that 
both of these events are occurring during approximately the same time window, this provides 
support for our view that the time of an eye movement tells us something about processing at that 
time. 

Figure 5 shows identification curves created by averaging whether or not each subject was 
fixating to /pa/ during particular temporal windows (time-bins of 0–400ms, 433-633, 667-867,900-
1100, and 1133-1333 msec).  The data seem to support the expanding sigmoid hypothesis (we’ll 
show this statistically in a moment).  Category membership is maintained throughout the time-
course, by which we mean that for each time-bin, within an eventual phonetic category, stimuli with 
differing VOTs have similar probabilities of being identified as /pa/.   

Although we want to stress that under our view categorization is a graded process that takes 
place over time, it is possible to determine when (across subjects) categorization (or the beginnings 
of it) has reliably occurred.  The earliest time at which a stimuli could be reliably (p<.05) identified 
as /ba/ (given that the subject heard a stimulus with VOT –50, -35 or –20) was 16 frames or 533 ms 
after stimulus onset (%/pa/ = 32, t(15)=2.48, p=.025). The earliest time at which a stimulus (with 
VOT 60, 50 or 35) was identified as /pa/ was 19 frames or 633 ms (%/pa/=68, t(15)=2.5, p=.024).  
It takes roughly 200ms to generate saccade and the release burst occurred at 80 ms, so it took the 
system roughly 250ms to identify a /ba/ after it received enough acoustic information.  Similarly, it 

Figure 4: Proportion of /pa/ responses for last eye movements, mouse clicks and reaction 

t ime as a function of VOT.
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took 290 ms to identify a /pa/ (since it would not have enough acoustic information for an extra 60 
milliseconds—after the onset of voicing).  These values are consistent with a magnetic mismatch 
field study by Phillips, Marantz, Yellin, Pellathy, McGinnis, Wexler, Poeppel and Roberts 
(submitted) that found a latency of roughly 200 msec for categorically distinguishing voicing.  The 
longer value for /pa/ is probably the result of our imperfect stimuli (they were underaspirated 
causing a shift in the boundary towards /ba/), which did not show the same sharp identification as 
/ba/. 

 

Since it is clear there is an effect of time on the identification function, we must establish 
which of the remaining two hypotheses best fits the data by determining whether that change is due 
to a change in its slope or steepness (the derivative at the midpoint), or due to a change in category 
goodness or amplitude (the difference between the upper and lower asymptotes).  To do this, a 
hierarchical nonlinear model based on the logistic function was used (see Ohlemiller, Jones, 
Heidbreder, Clark and Miller, 1999, for a simpler example).   

Here, we will only describe the analysis conceptually before moving onto the results.  The 
interested reader may wish to see Appendix A for a more complete treatment.   

The identification function seen here is well approximated by a logistic function (Figure 6).  
This function is usually only described by two parameters the slope (how fast it changes from 0 to 1 
along the y axis, or more specifically, the derivative at the midpoint) and the category boundary (the 
point along the x axis where the mid point lies).  However, to fully describe all possible logistic 
functions, two additional parameters are needed—the amplitude (the distance between the upper and 
lower maximums of the function) and the bias or height (the point along the y axis where the 
midpoint lies).   

To generate the statistics described here, we subdivided our large dataset into smaller 
datasets containing the fixations and VOTs for a single subject and time-slice (1 frame).  We had 16 
subjects x 130 time slices, or 2080 such datasets.  For each dataset we found the four  

Figure 5:  Proportion of /pa/  f ixation responses as a function of VOT and time. 
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parameters that described the logistic function that best fit the identification data for that 
subject and time.  This procedure yielded a new dataset that contained the subject, time slice, and 
each of the four parameters (essentially a description of the identification function at that time and 
subject).   

By analyzing the effect of time on these parameters we can determine which of our 
hypothesis is correct.  If the no change hypothesis were correct, we would expect to see no effect of 
time on any of those parameters. If the         linear->sigmoid hypothesis were correct we would 
expect to see a significant increase in slope over time but not in amplitude or the other parameters.  
If the expanding sigmoid hypothesis were correct, we would expect to see an increase in amplitude 
but little change in the others.  We would not expect to see any change in category boundary or bias.2 

Four hierarchical regression analyses were performed on each of these parameters to 
determine how they were affected by time.  The first step of the analysis was the addition of 15 
dummy codes to the model to capture within subject effects.  The second step was the linear effect 
of time and the third was the nonlinear effect of 1/time (since the scatterplots suggest that the 
parameters asymptote after a certain amount of time).   Scatter plots for each parameter as a function 
of time are shown in Figure 7 (the dark line represents the mean value). 

 

                                                 
2 However these terms suggest that this procedure might be well adapted for better understanding effects like the 
Ganong effect or trading relations where secondary factors affect the response probabilities.  By analyzing these 
effects in terms of their effect on category boundary or bias we might reach a more detailed understanding of them 
than by simply exploring the overall “difference” in the logistic functions that results from them. 

Figure 6: A typical logistic function and it’s parameters.  The amplitude of this function 
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Amplitude (scatterplot and mean shown in Figure 7a) showed a highly significant effect of 
time.  Above and beyond the intrasubject effects, a positive effect of linear time significantly 
accounted for an additional 11.5% of the variance (β=0.339, t(1945)=19.746, p<.0001).  Above and 
beyond that, 1/time accounted for an additional 8.8% of the variance (total R2

model=0.516).  It was 
significant and negative (β=-.358, t(1944)=18.792, p<.0001)—as time increased, so did amplitude, 
reaching an asymptote near 1.0. 

The second analysis looked at slope as a function of time (scatterplot and mean shown in 
Figure 7b).  Although time and inverse time showed significant effects (time: β=-1.70, 
t(1945)=10.960, p<.0001, 1/time: β=.189, t(1944)=10.352, p<.0001), they accounted for very little 

 
 

Figure 7: Parameters of the logistic identification function as a function of t ime.  There is 

substantial change in amplitude over time, but very little in th e other three parameters.   This 

suggests the expanding sigmoid hypothesis.   Gray circles represent individual data points.   The 

dark line represents the average value over time.
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variance individually (R2
time=.029; R2

1/time=.024).  Moreover, the slight change in slope that did 
occur was in the opposite direction of that predicted by the linear->sigmoid hypothesis—
identification curves appear to start off steep and flatten out a bit over time. 

Regressions for the category boundary (midx, Figure 7c for scatter plot and mean) again 
yielded very small, but significant effects of time and 1/time (time: β=-.068, t(1945)=-3.398, 
p=.001, 1/time: β=.136, t(1944)=5.623, p<.0001).  Although this shift in category boundary was 
significant, the effect size was extremely small (R2

time=.005, R2
1/time=.013) suggesting that overall, 

there was not much of a shift in category boundary, if there was one at all.  An examination of the 
data within each subject, however, suggested that within a subject there might be a considerable 
shift in category boundary early in the time-course (although they all arrive at the same boundary by 
the end of the time-course).  To test this intuition, subject by 1/time interaction terms were added 
and significantly accounted for 28% of the variance (F(15,1929)=72.861,p<=.0001) over and above 
the previous model (consisting of subject, time and 1/time).   

This large effect may be the result of individual differences in the way subjects process 
temporal cues to voicing.  For example, aspiration, as a high frequency cue to voicing, can be 
detected relatively early (only a few samples are needed) while the presence of a voicing pulse 
might take a bit longer to detect.  If different subjects weighted these cues differently, we might see 
evidence of these differences reflected in the time-course of processing.  Of course, this tenuous 
hypothesis cannot be shown conclusively without first examining the temporal dynamics of 
aspiration and voicing-pulse cued voicing more directly. 

The last regression analyzed the height of the logistic function as a function of time (the y 
coordinate of the midpoint of the function, see Figure 7d for the scatterplot and mean).  It is 
important to note that this variable cannot be anything other than .5 when the amplitude is 1 
(otherwise the curve would yield an invalid identification probability greater than 1 or less than 0).  
When midy is not equal to .5, though, it indicates a general bias to chose one category over another.  
Like midx, there were very small but significant effects of time (R2

time= .003, β=.055, t(1945)=3.398, 
p=.001) and 1/time (R2

1/time=.007, β=.105, t(1944)=5.426, p<.0001).  However, again, the 
scatterplot suggests there may be a strong interaction of 1/time by subject (Figure 7d).  Each 
subject’s data has its own characteristic hyperbolic function, all of which converge at the same 
height around frame 40.  The slope and the starting point of these functions tend to vary by subject, 
however.  Indeed, the addition of <subject by 1/time> interaction terms accounted for an additional 
18.4% of the variance (F(15,1929)=76.4, p<.0001).   

Since we see such dramatic within-subject shifts in both category boundary (midx) and bias 
(midy) over time, one might suspect that they are related.  Interestingly, there seems to be a small, 
but significant correlation (R=.241, p<.0001) so as the category boundary shifts towards /pa/ 
(resulting in more stimuli being identified as /ba/), the overall response bias seems to shift towards 
/ba/.  This is consistent with range effects on phonetic categorization.  Ohlemiller et al (1999), for 
example, found that if the VOT range of the continuum was increased on one end, a boundary shift 
occurred, suggesting that subjects were attempting to maintain equal numbers of responses in the two 
categories.   
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In summary, it seems that each subject has a characteristic starting point with a shifted 
category boundary and a compensating response bias.  Across all subjects, the amplitude of the 
curve is small initially.  Over time, the category boundary and response bias shift towards the center 
and the amplitude increases.  Additionally, any change in slope is likely to be towards a flatter, 
smoother curve.  Of the hypotheses we’ve proposed, this story fits the expanding sigmoid hypothesis 
best, with the possibility for some further potentially interesting work on individual differences. 
 

Experiment 2: The categorical perception of voicing over time, measured by a 
response deadline 
 
Motivation 
 Since the mid 1990’s eye tracking has become an important tool for understanding cognitive 
processes in which information comes in serially (i.e. word recognition and sentence processing).  
Many papers have shown that eye-fixations are often very tightly time-locked to the serial arrival of 
information (e.g. Allopenna et al, 1998; Tanenhaus et al, 1995).  Moreover, the proposed linking 
hypothesis between serial fixations and serial information is quite simple and explicit.  However, 
the informativeness of eye tracking as a tool to look at the temporal process of categorization and 
decision-making in a setting where information does not arrive serially has not been fully explored 
(Experiment 1 in this paper represents one of the first times that this application has been 
attempted). We hypothesize that fixations indicate where the subject is about to click (or reach) and 
can tell us something about the probabilistic tendencies of subjects over time.  This linking 
hypothesis is fundamental to our arguments, but has not been explicitly tested. 
 To deal with this potential objection to our line of research, in the present experiment, we 
replicate Experiment 1 using a different type of response paradigm.  Response deadline 
methodologies (and the associated speed accuracy tradeoff task) have been quite successful in 
exploring the temporal dynamics of higher-level language processes (see McElree, 1993 for an 
example) and visual categorization (Humphreys, 1981; Lamberts & Brockdorff, 1997).  In this 
methodology subjects are given response deadlines that force them to respond before they are fully 
confident in their decision.  We have adapted this methodology to our purposes by giving subjects a 
number of different deadlines that will map onto different portions of the time-course of perception.  
Subjects’ responses to early deadlines should map onto early fixations.  Their responses to later 
deadlines should map onto later fixations.  In this way, we expect a slightly cruder (since the 
temporal resolution of the procedure is much less than that of the eye tracking methodologies) 
replication of Experiment 1. 
  
Methods 
 The same 9-step VOT continuum from Experiment 1 was used in Experiment 2.  Eleven 
subjects were recruited in the same manner.  The experiment was designed and run with the 
PsyScope experimental design software (Cohen et al, 1993). 
 The experiment consisted of five randomly ordered blocks of trials.  Each block had a 
different response deadline (400 msec, 500 msec, 600 msec, 800 msec and 1000 msec).  Each block 
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consisted of three components.  In the first two, subjects were familiarized with the response 
deadline to be used during the experiment.  Initially, they saw a countdown from 5 seconds followed 
by the auditory presentation of a prototypical (endpoint) /ba/ or /pa/.  Immediately following that, 
they saw the phrase “respond now”.  These letters persisted until that block’s response deadline at 
which point they were replaced with the phrase “too-late”, and a buzzing sound was heard (the same 
buzz as if the subjects responded after the deadline). 
 Following this timing display, subjects were given 10 practice trials with the prototypical 
sounds.  Each practice trial was initiated by a button-press from the subject.  This started a 
countdown from five.  At the end of the countdown, one randomly chosen speech sound was 
presented.  Subjects were to press their right button if they heard a /pa/ and the left button if they 
heard a /ba/.  If they responded before the deadline, they were rewarded with a pleasant beep.  If 
they responded too late or not at all, they heard a nasty buzz.  During the practice session, the word 
“Practice” was visible on the top of the screen during all 10 trials. 
 Testing trials were identical to practice trials with the exception that the word practice was 
not visible.  There were 90 testing trials per block (so the subject heard 10 repetitions of each 
stimulus item per trial).  Subjects were able to respond quickly enough most of the time.  In the 
fastest deadline (400 msec), they responded on time on average 61% of the time.  In the slowest 
deadline (1000 msec), they responded quickly enough 86% of the time. 
 
Results 
 Identification curves for each response deadline are shown in Figure 8.  The data closely 
resemble the results of Experiment 1, suggesting that the expanding sigmoid is the correct 
hypothesis.  They agree with the previous results to the point that even the noise (e.g., the %/pa/ for 
a VOT of 50 is greater than that of 60 early in processing) is replicated.  They suggest that the eye-
tracking methodology and the response deadline are measuring fundamentally the same things: the 
temporal dynamics of categorization. 
 The same hierarchical non-linear model was applied to these data as before.  Again, a 
regression analysis was used on the output of this model to determine the effect of time on 
amplitude, slope, and the midpoint location.  Highly similar results were found. 

For amplitude, a significant linear effect of time was found (β=.527, t(43)=4.795, p<.0001) 
over and above within subject effects (R2

time= .263).  Moreover, as in Experiment 1, a significant 
effect of 1/time was also found (R2

1/time=.118, β= -1.245, t(42)= -3.653, p=.001).  Overall, the 
model did quite well at predicting amplitude (R2

model=.627).  These results replicate the findings of 
Experiment 1. 
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For slope, there was no effect of time or 1/time (F<1) suggesting that either the response 
deadline task did not have the sensitivity necessary to detect the slight change in slope we found in 
Experiment 1 (due to the lack of temporal resolution) or that the regression model used in 
Experiment 1 was too sensitive (due to the large number of within-subject responses).  In either 
case, this confirms that the linear->sigmoid hypothesis is not likely to be correct. 

Similarly, our analysis of the category boundary (midx) showed the same lack of effect of 
either time or 1/time (F<1).  However, since we did find considerable individual differences in the 
starting category boundary location, we added <subject X 1/time> interaction terms to the model 
and found a significant effect (R2

interation=.269, F(10,32)=2.181, p=.046), suggesting that this 
individual variation is reliable. 

The analysis of bias (midy) showed no significant effects (F<1) of time, or 1/time.  Although 
our <subject X 1/time> interaction terms were not significant, (F<1) they did account for almost as 
much variance as they did in Experiment 1 (R2

interaction=.142, compared to R2
tiime=.040), suggesting 

that with more subjects, or with more data per subject, we may find a significant effect.  This is 
supported by a correlation between category boundary and bias (R=.299, p=.027) much like we 
found in Experiment 1.  
 In summary, it appears that the important results of Experiment 1 are replicated.  Amplitude 
increases over time, and there is no effect of slope.  Interestingly, the findings of individual 
differences in the starting points of the category boundaries also seem to be supported.  These 
results provide strong independent support for the use of eye tracking in this domain.   
 

Neural network simulations of the temporal dynamics of categorical perception 
Now that we understand more fully what is occurring over time during categorical 

perception, it is important to begin to address the psychological consequences of these findings.  To 
do this we instantiated each of our three hypotheses in a connectionist network.  Since we know the 
architectures of each network and the kind of representations and processing they use, if we can find 
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one that fits, we can make a case for the psychological processes that might be responsible for 
observed temporal dynamics of categorical perception. 
 

Simulation 1: The “no change” hypothesis 
The “no-change” hypothesis was instantiated in a simple two layer feed-forward network 

that learns statistical distributions of its input using competitive Hebbian learning (Rumelhart and 
Zipser, 1986).  This network is a simplified version of the network found in McMurray (in 
preparation).  Forty input and output nodes were used with the input array indicating VOT—lower 
indexed nodes represented small VOTs and higher nodes large VOTs.  Input was in the form of a 
psuedo-gaussian curve3 (across the input array) with the mean chosen from a bimodal normal 
distribution (as per Lisker and Abramson, 1964).   

This form of input is compatible with two lines of thought that have begun to emerge.  The 
lateral representation of VOT is compatible with much of the work in population coding which has 
found topographic representations for a number of dimensions in the visual system including 
stimulus location and orientation, movement direction and ocular dominance, as well as in the 
auditory system for interaural time and intensity differences, frequency, and space (see Knudsen, 
duLac & Sascha, 1987, for a review).  Moreover, this selection of each input from a multimodal 
distribution is compatible with distributional accounts of phoneme learning (Guenther and Gjaja, 
1996; Maye and Gerken, 2000; McMurray, in preparation). 

The output of the network was “winner take all”—after the output was computed, the node 
with the highest activation was given all the activation and the rest of them were set to zero 
(Rumelhart and Zipser, 1986).  This is assumed to have happened after many iterations of some sort 
of lateral competition.  Learning occurred after this idealized “competition” using a variant of 
Rumelhart and Zipser’s (1986) unsupervised learning rule and based on the ideas of Hebb (1949). 

 
 ∆Wio= (Ii*Oo - Wio)*ε  (6)   

Here, ∆Wio refers to the change in weight connecting input node i (Ii) and output node o (Oo).  Wio 
refers to the current connection strength and ε is the learning rate (set to .1 for this simulation).   
 After 5000 training epochs, the network correctly learned to categorize VOTs into one of 
two categories.  This categorization was in the form of one of the 40 output nodes representing 
voiceless sounds and one representing voiced sounds.  Although it may seem that only two nodes 
were needed to represent two categories, previous research (McMurray, in preparation) has 
suggested that additional output nodes are necessary for the learning process—without them, the 
network has a tendency to group all the stimuli under a single output node.   

                                                 
3 The actual form was a squared Gaussian curve.  This introduced some kurtosis into the activation patterns.  This 
creates a greater difference near the endpoints between two  curves centered at different locations.  In a sense this 
helped the network generalize the information from the center of the continua to the endpoints by increasing the 
difference between a prototypical /pa/ curve and /ba/ curve at the end.  Neurobiological evidence from the population 
coding literature suggests some form of Gaussian curve as the activation function for population codes (Knudsen, du 
Lac, and Esterly, 1987).  However, there is not enough data to rule out a squared Gaussian function. 
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Although this model did show the correct categorization behavior, it showed none of the 
temporal dynamics we were interested in.  Rather it demonstrates the simplest possible network that 
could learn phoneme information from the distributional properties of its linguistic environment.  In 
short, this network was extremely sensitive to the statistics in its learning environment but had no 
temporal processing.  Because of this, it could not fully model the data. 

 

Simulation 2: The linear to sigmoid hypothesis 
To model the linear to sigmoid hypothesis, the Normalized Recurrence Network was used 

(McRae, Spivey-Knowlton & Tanenhaus, 1998; Spivey & Tanenhaus 1998).  This network consists 
of two input nodes and two output nodes.  Input nodes indicated the probability that the VOT is a 
/pa/ or a /ba/ (with the decision indicated by the output nodes).  A very good /pa/ for example might 
have 0.9 and 0.1 as the activation for its input nodes, where a /ba/ would be 0.1 and 0.9 and an 
ambiguous stimulus would have 0.5 and 0.5.  At each round, the sum of activation at either level can 
only be 1.0 so each node’s activation is divided by the total amount of activation for that level. 

The network then passes activation back and forth from the input to the output layers until it 
has reached a decision.  The algorithm is as follows: 

1) Output = Output + Input 
2) Output = output/sum(output) 
3) Input = Input + Input*output 
4) Input = Input/sum(input) 
5) Repeat. 

The first two steps simply compute the cumulative output and normalize it so that the two nodes sum 
to one.  The third step passes that output back to the input and adds some nonlinearity.  The last step 
normalizes the inputs.  In addition to these steps, a small amount of noise was added to the input 
layer before processing began.  This tipped the network towards one decision or the other in cases 
where the input nodes were exactly equal (something which is extremely unlikely in a biological 
system). 

Most instantiations of normalized recurrence use an absolute threshold of activation to 
indicate that the network has made a decision (although often this threshold does change with time).  
That is, the network is said to have picked /pa/ or /ba/ when the activation of one of those nodes 
crosses some threshold.  We chose to model this behavior of the network differently, by stopping the 
network when the derivative of the output nodes was less than 0.0001—essentially when the 
network settles on a decision.4  If we measure the number of iterations until the network reaches 
such a decision, we have an analogue of reaction time. 

 

                                                 
4 We have also run this model with dynamic and fixed thresholds and found the same general results.   Although the 
results are the same, these different stopping criterion have different theoretical motivations.  The fixed threshold 
model, for example, is roughly analogous to the variable rate model of reaction time.  The algorithm used here 
(based on the derivative) is not directly analogous to either the variable rate or variable threshold models of reaction 
time, and might represent the beginnings of a third model.   
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This network does categorize correctly (see Figure 9a), since the categories are built into the 
architecture.  It also shows the appropriate increase in reaction time at the category boundary (as 
per Pisoni and Tash, 1974) since it takes a greater number of iterations for the competition algorithm 
to resolve an ambiguous input (see Figure 9b).  However, since the network is not sensitive to any 
sort of realistic internal representations (which we believe are derived from the statistical 
distributions of its input), it does not treat inputs from the same category the same—perceptions start 
out as a linear function of VOT and are categorized over time (as per the linear to sigmoid 
hypothesis). This network showed no statistical sensitivity, but did show competitive processing. 
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Simulation 3: The expanding sigmoid hypothesis 
 Our third hypothesis, the expanding sigmoid was instantiated in a synthesis of the two 
networks presented previously, the Hebbian Normalized Recurrence Network.  Since this 
hypothesis was the one found to best describe the data, we’ll spend more time on this network than 
the others. 

The Hebbian Normalized Recurrence Network combines the representation and learning of the 
two-layer network of Simulation 1 with the processing algorithm of the normalized recurrence 
network.  Like the network in Simulation 1, the Hebbian normalized recurrence network has 40 
inputs and outputs.  The input layer is organized topographically, and for any perception event, the 
input is chosen in the same manner (from a bimodal normal distribution).  After activating the input 
nodes, the network then uses the following algorithm: 
 

1) The inputs are normalized so that they sum to 1. 
2) The outputs are computed by multiplying the inputs by the weight matrix and adding that value 

to the current value. 
3) Activation in the output layer is squared. 
3) The outputs are normalized so that they sum to 1. 
4) The weights are modified using the Hebbian Learning Rule. 
5) The output is multiplied by the weight matrix transposed and this value is multiplied by the 

input vector and added to it. 
6) This repeats until the average change in the outputs is less than  .00001. 

 
This algorithm is similar in nature to that of the normalized recurrence network, except that the 
addition of the weight matrix allows for a topographic representation of the input, as well as the 
possibility for learning.  Rather than simply passing activation directly from input to output, this 
operation is mediated by the weight matrix (or the transpose of the weight matrix if we are passing 
activation backwards from output to input).   

The only deviation from the processing architecture of the normalized recurrence algorithm 
is in step 3 where the activation in the output layer is squared.  The reason this was done was that 
without some nonlinearity in the output layer’s activation function, the network never learns to map 
regions of the input onto a single category.  Some form of lateral inhibition seems like a 
psychologically plausible choice for this nonlinearity.  In Simulation 1, we used winner-take-all 
learning for this, but if used here, the simulation would stop after only one processing cycle—
preventing a model of temporal dynamics.  Instead, we had to develop a more gradual form of 
lateral inhibition that we call quadratic normalization (quadratic because the activations are 
squared, normalization because the output is normalized to sum to one after squaring).  This 
algorithm is based on a relatively neurologically plausible model of lateral inhibition and we direct 
the interested reader to Appendix B for a more thorough explanation and derivation. 
 
Results 

After training for 3000 stimuli on a bimodal normal distribution with means at 30 and 70, the 
Hebbian Normalized Recurrence network approximates the expanding sigmoid hypothesis quite 
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well (Figure 10).  It is clear that it learns to categorize the input correctly (the identification curve 
after 6 processing cycles in Figure 10A) and also shows the appropriate spike in processing cycles 
at the ambiguous region (Figure 10B).  In addition, it also seems to have the properties of  

the expanding sigmoid in that category members are treated similarly throughout the time-
course of processing.  The only deviation to this pattern (the pattern we saw empirically) is the 
tendency of the model to show graded category membership at the far ends of the VOT continuum (at 
the extreme of devoicing and prevoicing) early in the time course.  This “prototype effect” has seen 
some support in the work of Miller, (2000) who found graded representations at the extreme 
devoiced end of the continuum using a rating task.  It represents a testable hypothesis that we have 
begun to look at by exploring the extreme devoiced and prevoiced ends of the VOT continuum with 
our eye-tracking measure.   
 Other simulations with this architecture have shown that it is capable of learning as many 
categories as appear in the input (as modes in a multimodal distribution), and that it is robust across 
multiple instantiations and against noise in the input.  However, despite the fact that it undergoes 
learning, its performance early in the training does not map well onto the abilities of infants, so it is 
clearly not a complete model (it initially discriminates all VOTs from one another rather than 
grouping some together).  By combining this architecture with the structures in McMurray (in 
preparation) that do predict infant abilities (but do not deal with the temporal dynamics of 
categorization), it may be quite simple to simulate in one model both the large and small time-scales 
of learning and categorization. 

The normalized recurrence network presented in Simulation 2 can best be thought of as a 
system of two equally sized and spaced attractor basins, while the Hebbian normalized recurrence 
network learns those attractor basins and can learn as many as it needs in whatever “shapes” it 
needs.  It shows sensitivity to both the statistical distribution of VOT in the learning environment 
and competitive processing.  This network also shows a high degree of neurological plausibility.  
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The learning algorithm has been shown to have a close correlate with long term potentiation a 
process by which synaptic connection strengths increase after concurrent firing by pre- and post-
synaptic neurons. We have derived the activation function (quadratic normalization) from a 
relatively simple model of lateral inhibition (Appendix A).  Finally, the competition algorithm is 
based on Heeger’s work (1993) in neural interaction, and so is also supported neurologically.  For 
these reasons, this “breed” of connectionist models may be an excellent way to explore the effects of 
both learning and processing. 
 Hebbian Normalized recurrence not only predicts the correct time-course of perception, but 
also provides testable predictions about the ends of the continua (and potentially about 
development).  It represents a combination of a statistical learning device and a competitive 
processing device (neither of which could fit the data on their own) and suggests that both of these 
processes may underlie the categorization of speech sounds. 

 
Categorization in Infants 

A major goal of the work we’ve discussed so far has been to convince the reader that 1) 
time should be an important dimension for characterizing speech perception and 2) eye-tracking and 
response deadline methodologies make it quite possible to assess how perception changes over 
time.  The addition of this temporal dimension to our characterization of the perceptual system 
allows us to further define our notion of categorical perception and gives us the ability to explore 
further perceptual domains that may result in similar representations at the time of a perceptual 
decision.  The comparison of infant and adult perceptual abilities may be the most important of these 
domains. 
 Work in infant speech perception has found that infants tend to discriminate only those 
sounds that lie on either side of an eventual phonetic category (Eimas et al, 1971; see Jusczyk, 1997, 
for a review).  This has led many researchers to propose that infants exhibit a categorical perception 
mechanism that may be quite similar to that of adults, at least by the time a perceptual decision has 
been made.  However, in light of our temporal view of speech perception, the obvious question 
becomes, “What about the intermediate stages?”  More importantly the methodologies used to make 
these claims do not provide adequate data to support them because none of these techniques has 
been able to provide the sort of labeling or categorization data that can be obtained from adults. 
 Two major techniques have been used to assess infant speech perception abilities.  In 
habituation tasks the infant is repeatedly presented with a stimulus until he or she habituates (gets 
bored).  Habituation is usually measured by looking time to a sound source—as looking time 
decreases, the baby is habituating.  Once the baby is habituated, the stimulus is changed to something 
new.  If the baby can discriminate the new stimulus from the original, he or she should become more 
interested (dishabituate).  If the baby cannot discriminate the two stimuli then he or she will continue 
to habituate.   

High amplitude sucking methodologies are based on habituation techniques but add an 
element of learning.  Babies are given a pacifier to suck on.  The pacifier is attached to a computer 
such that every time the baby sucks with sufficient amplitude the computer plays a speech sound.  
Infants learn this contingency quite rapidly and begin to suck faster as they hear more sounds.  
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However, soon sucking becomes less interesting because the auditory stimulus never changes and 
they start to habituate.  At this point the stimulus is changed to something else.  If the baby can 
discriminate this sound from the old one, then the baby will become more interested and his or her 
sucking rate will increase (dishabitauation), otherwise it will decrease. 

These methodologies do not permit a simple linking hypothesis between the data they 
provide and the underlying infant speech processing mechanism for several reasons.  The first is that 
they rely on the infant’s response to changes in a stimulus rather than to a single stimulus.  This more 
closely parallels discrimination than identification data, a much more complex process to attempt to 
model.  These techniques also confound the issues in that they are really studying infant perception 
after they have heard many repetitions of the same stimulus.  This, of course, may lead to the 
possibility of adaptation effects.  Finally, these techniques do not permit us to study speech in any 
sort of ecologically valid way.  It is clear that identification of speech sounds (as opposed to 
discrimination) is the more essential element of word recognition, and the presentation of multiple 
stimuli may enable the infant to rely on acoustic representations that are not available during on-line 
(single-presentation) speech processing.   

In this last section of the paper, we describe a new technique that employs anticipatory eye 
movements after a brief training session to measure speech categorization in 4 and 5 month old 
infants.  This new methodology promises to not only overcome the methodological hurdles I have 
mentioned but also to yield information on the temporal dynamics of infant speech processing.   
 
Methodological background 
 Clearly habituation and high-amplitude sucking will not provide the sort of data we need to 
explore infants’ categorization abilities.  However, two other common infant methodologies offer 
features that may overcome the problems of high-amplitude sucking and habituation.   
 The visual expectation paradigm (Canfield, Smith, Brezsnyak & Snow, 1997; Haith, 
Wentworth & Canfield, 1993) has been used extensively to explore the nature of expectancy in 
infants.  To oversimplify it, when an infant is presented with two alternating side-by-side lights (or 
images), he or she is able to learn the pattern very quickly (Haith et al, 1993, report 11 trials).  On 
some trials, the baby will begin to make anticipatory eye movements (eye movements to the other 
light or image location before it is actually turned on).   

Unlike habituation studies, this paradigm relies on a naturalistic response—making an eye-
movement to a moving object is something that infants do quite frequently.  Moreover, each response 
is given as the result of a single stimulus (after training).  Finally, the visual expectation paradigm 
relies on a very metabolically cheap response—eye movements are faster and take less energy than 
head movements or sucking responses.  Unfortunately, the eye-movement response in this paradigm 
is not arbitrary (we cannot assign a response to a particular stimulus as we do in a two-alternative-
forced-choice task), and the stimuli are entirely visual.   
 The conditioned head-turn procedure (Kuhl, 1985) has some of the properties we are 
looking for in a methodology.  In this procedure, the infant is conditioned to turn his or her head to 
the left (or right) in response to a change in a stimulus by presenting a visual reward on that side 
only when the change occurs.  As an example, an infant may hear /a/ /a/ /a/ /a/ /i/ and will only be 



238 WPLS:UR, Vol. 1, No. 2 
 

http://www.ling.rochester.edu/wpls 
 

rewarded if he turns his head after hearing /i/.  These sorts of studies are very difficult to do 
because head turns are both costly (metabolically) to perform and quite noisy.  Since the infant is 
responding based on multiple presentations of the background stimulus, it is much more difficult to 
compare results to that of adults (who hear only one) and also introduces the possibility of 
adaptation effects or the building of completely different representational schemes than the ones 
used in online perception.  Moreover, the closest adult methodology that is analogous to this would 
be phoneme monitoring (and we are more interested in something resembling a two-alternative-
forced-choice task).  This methodology does, however, employ something of the arbitrary response 
that the visual expectation paradigm lacked. Here, the infant is trained to make an unrelated response 
to an arbitrary stimulus (much like an adult pushing a button). 
 Although neither of these methodologies provides a perfect measure of categorization (and 
both ignore the temporal dimension that we are interested in), a combination of the two may be 
ideal.  Eye movements are clearly the right sort of response measure—they are metabolically cheap, 
and by looking at the timing of the saccade we can get some measure of the temporal dynamics of the 
system.  As we’ve discussed, this use of eye movements to explore the temporal dynamics of the 
system is becoming prevalent in the adult literature (Experiment 1, this paper; Tanenhaus, et al, 
1995; Allopenna, et al, 1998) and it is starting to become used in work with children as well.  
Swingley and Aslin’s (2000) work on the temporal dynamics of early word recognition (in 18 month 
olds) is the most recent example.   

By using eye movements (instead of head-movements) in a conditioning paradigm we may be 
able to overcome some of the limitations of the head-turn preference procedure.  Since eye 
movements are much cheaper to produce than head movements, we may be able to condition infants 
to look to two different locations (as opposed to only one) and we may find it takes much less 
training.  This relatively simple idea of conditioned eye movements represents the heart of the 
anticipatory eye-movement procedure presented here. 

 
Overview of the methodology 

The procedure (Figure 11) starts with the infant seated on a parent’s lap viewing a series of 
movies on a large computer screen.  Since we’ll be measuring eye movements relative to the center 
of the screen, each trial begins with a visual stimulus to orient the infant’s gaze to the center of the 
screen.  In the experiments we report here, a vertically moving ‘smiley face’ of a randomly selected 
color was used.  Immediately following the removal of the centering stimulus, one of two randomly 
selected sounds is presented simultaneously with a short animation (which varied from trial to trial) 
on one side of the screen.  The sound is consistently paired with the side on which the animation is 
presented.  
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 Training consisted of 40 repetitions of this basic cycle.  To keep participants interested 
during training, training was broken up into two blocks.  Between the training blocks the infant was 
given a short break during which the parent was encouraged to talk to and play with the baby.  
Within each block the training cycles were periodically (every 5 or so trials) broken up by 
presenting a brief visual display consisting of moving smiley faces, expanding and contracting 
psychedelic shapes and other images that served to break the monotony. 

During training the time interval between the presentation of the sound and the presentation 
of the movie was gradually increased to a maximum delay (approximately 2 seconds, though it 
varied from Experiment 3 to Experiment 4). If the infant learned which side of the screen is 
associated with each sound, he or she should make eye movements toward that side before the 
presentation of the visual stimulus.  
 After 40 training trials, the infant is tested until he or she becomes too fussy to continue 
(usually about 10-15 trials).  Testing was quite similar to training.  The infant heard one of the 
sounds, and eye movements during the delay between auditory and visual stimulus were recorded. 
  
Recently we have incorporated a computerized eye and head tracking system to increase the 
accuracy of our eye movement measurements (they used to be coded by observers viewing a video 
tape of the babies head) and the ease in collecting and scoring data.  For an overview of this system 
please see appendix C. 
 
 

 

Figure 11: The Anticipatory Eye Movement Paradigm. Each trial  begins with a 

vertically moving ‘smiley face’ to orient the infant’s gaze to the center of the screen. 

The face is  removed and one of two randomly selected sounds is  presented 

simultaneously with a short  animation on one side of the screen. The  sound  i s  
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Experiment 3: A preliminary test of the anticipatory eye-movement paradigm. 
 
Introduction and Methods 
 To evaluate the effectiveness of the anticipatory eye-movement methodology, six 4-month-
old infants were trained and tested on easily discriminated sounds: the Macintosh “Quack” and 
“Eep” sounds.  Training occurred exactly as described above.  The maximum (end-point) delay 
between the auditory stimulus and the visual stimulus was 2400 msec. 
 The testing procedure was identical to the training procedure except that the delay between 
auditory and visual stimuli was held constant at 2400ms (it did not increase like it did in training).  
Close-up videos of the infant’s face were coded by trained observers for gaze direction. 
 
Results 
 Performance was quite good.  On average, infants viewed 11.2 test trials before becoming 
fussy and dropping out.  Given that 70% of these trials contained an eye-movement to either stimulus 
location this represents just enough within subject data to begin looking at speech continua (here, for 
example, we would be able to get one response on each step of a 8 step continuum).  With 
improvements in the testing procedure (such as including the psychedelic images from training every 
5 blocks) we might be able to get even more data. 

 

For the 70% of trials on which infants made one or more eye movements to either of the two 
possible locations, the direction of the latest eye movement was correct 85% of the time (t(5)=6.032 
p=.002, see figure 12 for a breakdown by auditory stimulus). Additionally, none of the infants 
scored lower than chance (50%).  This indicates that the infants were learning to expect the visual 
display (reward) on the side cued by the auditory stimulus. 

Figure 12: Proportion of trials with more saccades to right or 

left as a function of the auditory stimulus 
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Experiment 4: A preliminary test of speech sounds categorization 
 
Introduction and Methods 
 Experiment 3 provided evidence that the anticipatory eye-movement paradigm could be used 
as a two-alternative-forced-choice measure of sound categorization in infants.  Thus, for Experiment 
4, we examined, a /pa/->/ba/ continuum.  A five-step continuum was created using the Sensimetrics, 
Inc. implementation of the Klatt synthesizer with VOTs ranging from 0 to 40 msec.  Infants were 
trained on the endpoints.  Because we felt that the stimuli might initially be hard to discriminate5, 
during training /pa/ was initially presented with an artificially heightened F0 (1200 hz) and /ba/ 
with an artificially lowered one (800 hz).  This gave the infants an additional cue to aid in their 
discrimination during training.  Over the course of training, the fundamental frequencies of these 
sounds were gradually brought together to reach 1000hz for both so that during testing this cue was 
no longer helpful. 
 A preliminary analysis of the timing of the saccades in Experiment 3 indicated that many of 
the incorrect saccades were actually occurring after a correct one.  This suggested that the infants 
were moving their eyes to the correct location and subsequently getting bored or impatient that the 
visual stimulus had not appeared yet.  To rectify this potential confound, we shortened the maximum 
delay between auditory and visual stimuli to 1800 msec.  
 After training, infants were tested on all five steps of the continuum.  For the work presented 
here, we initially reinforced all the testing sounds.  The endpoint sounds were reinforced on the 
same side as during training.  Sounds immediately adjacent to them on the continuum (10ms and 
30ms) were reinforced as though they were endpoints.  The ambiguous token (20ms) was reinforced 
randomly to either side.  Since we did not expect infants to hear more than two or three exemplars of 
each sound we did not expect this additional training to make much of a difference.6  However in 
current work on this paradigm in visual categorization we do not reinforce testing trials at all to 
avoid a potential confound. 
 
Results 
 Trained coders scored videotapes containing a close-up of the baby’s head for gaze 
direction (although we have subsequently moved to a computerized eye/head-tracking system—see 
appendix C).   Assuming some sort of temporal decision-making process, we made the assumption 
that the latest saccade in a trial would be the most accurate.  Thus, for each trial, the direction (right 
or left) in which the baby looked last was scored as the baby’s “decision”.   

                                                 
5 Although it has been shown that infants can discriminate endpoint sounds from a VOT continuum (Eimas et al, 
1971) these demonstrations have depended on the presentation of multiple stimuli in high amplitude sucking and 
habituation tasks.  Thus these demonstrations may depend on representations not available to the infant who has only 
heard a single stimuli.  
6 In subsequent (ongoing) experiments we have shifted to a new testing paradigm in which odd-numbered testing 
trials are always endpoint trials and are reinforced.  Even-numbered trials use generalization stimuli and are not 
reinforced, there is simply a 1800ms delay in which we record eye movements before moving on to the next trial. 



242 WPLS:UR, Vol. 1, No. 2 
 

http://www.ling.rochester.edu/wpls 
 

 

Since the ba/pa categorization task was a much more difficult task than the quack/eep 
categorization task, we employed a criterion measure for including a participant’s data: participants 
had to look in the correct direction last for at least 60% of the endpoint-trials (this criterion is 
similar, though lower, to the criterion employed in many psychophysical tasks with adults).  50% of 
our babies (7/14) reached this criterion.  

We were able to generate identification curves (Figure 13) similar to those from adult 
categorical perception experiments.  The solid black line represents data from the 7 babies who met 
our criterion.  The dotted gray line is two-alternative-forced choice data from 9 adult subjects 
listening to the same stimuli in similar listening conditions.   

A comparison with the adult data revealed that the infants performed as well as they could 
have on the endpoints.  Although the babies only identified the 0ms stimuli as /ba/ 70% of the time, 
and the 40ms stimuli as /pa/ 25% of the time, this was similar to the adult values of 60% and 7%, 
respectively.  To test this intuition, for each infant and adult we computed the percentage of 
“correct” trials (the subject chose /ba/ after hearing a 0 msec VOT or /pa/ after hearing a 40 msec 
VOT) for each of the two endpoint stimuli.  In a nested-design regression analysis, there was no 
effect of whether or not a data point came from the adult or infant dataset (F<1), or the interaction of 
that with VOT (F<1).  This suggests that the inaccuracy of the infants is not due to problems with the 
methodology, but rather with the synthesized stimuli, which were difficult to distinguish.  Future 
studies will need to make use of better, more natural sounding stimuli. 

One’s immediate impression of the infants’ ID curve as a whole is that it doesn’t form the 
smooth logistic function that most categorization curves show.  If we want to assume a logistic 
function, one of two hypotheses must be correct.   
 
Hypothesis 1:  The percentage of 20 msec stimuli chosen as /ba/ is incorrect and should be at 

approximately 60% (the actual percentage was 40%).  This would mean the infants heard 
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four /ba/’s and one /pa/ (compared to the adults 3 /ba/’s and 2 /pa/’s)—they must have a 
slightly different category boundary than adults. 

Hypothesis 2: The percentage of 40 msec stimuli chosen as /ba/ is incorrect and should be at 
around 30% (the actual percentage was 75%).  This would yield a relatively smooth 
identification curve, though one with a slope that is too shallow to call the perception 
“categorical”.   
 

In either case there are deviations from the adult data.  Although there is no conclusive way to 
determine which of these two interpretations is correct (more subjects trained on these and other 
endpoints are needed), the best fitting logistic function with a midpoint of 35 (the first hypothesis) 
yielded a log-likelihood of    –323.3 while the best fitting logistics with a midpoint of 20 (the 
second hypothesis) yielded a log-likelihood of –333.7.  Although not a huge difference on a log 
scale, this actually represents a difference of 4 orders of magnitude.  These crude simulations 
provide weak support for the first explanation with its shifted (though sharper) category boundary. 
 
The time-course of infant speech perception 

We now return to the central topic of this paper: temporal dynamics. It is quite clear that our 
categorization function is too noisy (due to poor stimuli and not enough infants) to make the sorts of 
assertions we were able to make about adult categorization in Experiments 1 and 2.  There is, 
however, a tantalizing hint in this experiment that infant-eye-tracking is sensitive enough to assess 
temporal dynamics (given some more methodological refinements) if we compare the time-course of 
categorization of the two end-point stimuli. 
 Figure 14 shows the probability of a fixation towards /ba/, /pa/ and neither as a function of 
time for the seven subjects who reached the 60% criterion on the endpoints.  There is an interesting 
discrepancy in the two graphs in that after hearing /ba/ (Figure 14A), subjects initially make a large 
number of false looks towards /pa/ before arriving at the correct response.  After hearing /pa/ 
(Figure 14B), on the other hand, subjects make very few false looks.  The obvious explanation is 
that /pa/ is simply easier to identify than /ba/, however, that would predict a more even temporal 
distribution of looks to /pa/ than we see.   

A closer examination of the stimuli suggests a possible explanation. When the stimuli were 
originally synthesized, the duration and amplitude of aspiration was held constant across all stimuli 
(all the stimuli have a medial amount of aspiration), so that VOT would be the only cue available to 
the listener.  However, aspiration is a good cue to voicing in many languages.  Moreover, aspiration 
is carried in the high frequency components of the speech stream and is present from the onset of the 
sound.  The presence of glottal pulses, on the other hand, can only be detected in the lower 
frequency components of the sound and is not initially fully present.  Thus, from a processing 
standpoint, aspiration can be extracted from the speech stream much faster than voicing because high 
frequency signals require fewer samples to detect, and (as already mentioned) it may be physically 
present in its complete form earlier.   
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By this account infants are extracting aspiration information about whether or not the sound 
is voiced early in the stimulus.  This suggests a voiceless sound.  Later, glottal pulses are detected 
and the infant arrives at the correct conclusion.  For a /ba/, the result of this is that the infants 
initially perceive the sound as /pa/ (due to aspiration) and correct themselves later.  For a /pa/ the 
two cues are not in conflict, and they correctly respond /pa/ throughout the time-course.  Of course, 
this is a tenuous explanation based on few subjects and on an experiment that was not designed to 
test this hypothesis.  However, future studies examining the differential weighting of acoustic cues 
may support this claim. 
 

Discussion of the anticipatory eye-movement paradigm 
Although the methods presented here are based on training (specifically, operant 

conditioning) procedures, there is good reason to believe that we are not simply teaching the infants 
the categories we are trying to study.  We are only training the infants on one pair of sounds, and the 
additional sounds used during testing are novel.  Thus, the methodology is looking directly at 
generalization or similarity.  Although a single experiment may not be enough to establish a category 
boundary, performing multiple experiments with different ranges of stimuli (e.g. one experiment 
with VOTs from 0 to 40 and one with VOTs from 10 to 50) should tell us whether stimuli are being 
grouped relative to the endpoints or relative to an abstract phonetic category.   

Kuhl, (1985) has extended the conditioned head-turning procedure to look at what she claims 
is categorization by using more than one stimulus repeating in the background.  As an example, her 
methodology initially trains the infant on a single background stimulus pair (/a/ vs. /i/).  Then it 
slowly adds /a/’s and /i/’s from other speakers at different rates or fundamental frequencies.  If the 
infant is able to learn this discrimination, then, she claims, it has something resembling a phonetic 
category.  Rather than looking at infants’ natural categorization of speech sounds, this methodology, 
is really just teaching the infant the range of variation to ignore in its categorization.  Although it is 
certainly interesting what sorts of factors the infant is able to learn to ignore or use, this is not the 
question we are interested in. 
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 The anticipatory eye-movement paradigm on the other hand makes use of only a single 
stimulus presentation, and only the endpoints for training.  Any generalization that we see is the 
result of a natural similarity metric or categorization.  Rather than building this similarity into the 
training procedure, training merely provides reference points with which to explore this similarity 
structure. 
 This paradigm has also begun to prove itself useful to look at visual stimuli.  In a series of 
ongoing experiments in our lab, we have replaced the centering stimulus (the smiley faces) with 
either a cross or a square.  The few subjects we have run in this pilot experiment have learned to 
categorize these shapes successfully.  Given this preliminary success, this application of the 
anticipatory eye-movement paradigm will also allow us to ask a host of questions regarding visual 
perception.  For example, we might train infants to categorize circles and squares and then present 
them with a continuum.  Alternatively, we could train them to categorize circles from “pacmen” 
(circles with a 90 degree arc removed) and then look at issues of object occlusion. 
 In short, the methodologies presented here provide a very simple, natural way to look at 
infants’ internal representation of auditory (and potentially visual) stimuli with few of the problems 
inherent in other methodologies.  Moreover its use of eye movements provides a window into the 
temporal dynamics of infant categorization, which, as we’ve discussed, may become an important 
criterion for characterizing infant cognition. 

 
Conclusions 

Through the interplay of adult and infant experimentation with simulation, this work directs 
our attention to an aspect of categorical speech perception that has been all but ignored: temporal 
dynamics.  It is clear that we cannot ignore this aspect of perception much longer for several 
reasons.  In the case of speech, the word recognition system is clearly a system that is “pressed for 
time” in that it must process a large amount of information in a very short time.  Because of this it 
may rely on incomplete phonetic representations of incoming speech, and the temporal dynamics of 
sublexical processing may provide a clue as to what those representations may look like.  In the 
case of categorical perception in other modalities, we may find that phenomena that looked 
categorical in their end-state may be quite different in their intermediate states.  The combination of 
empirical analysis of the temporal dynamics and good computational modeling may tell us what 
these differences mean psychologically.  Moreover, although we have used categorical perception 
as a testing ground for this approach, it is certainly applicable to many other areas of perception. 
 From the adult eye movement and response deadline data, it appears that the continuous 
information of VOT for a given speech stimulus may indeed be discarded rather quickly during the 
perception process.  However, complete categorization is not instantaneous.  Early on in speech 
perception, each half of the VOT continuum is treated as belonging somewhat more to one category 
than the other.  As time proceeds, this gradual categorization becomes more confident and discrete, 
until finally displaying the signature step-function of categorical speech perception. 

This pattern of data could not be simulated with a neural network that simply incorporated a 
statistical learning algorithm but no temporal dynamics.  Similarly, the results could not be 
simulated by a hand-coded attractor network that displayed temporal dynamics but no statistical 
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sensitivity.  A neural network that combined competitive Hebbian learning (Rumelhart & Zipser, 
1986) with a “settling” algorithm (Spivey & Tanenhaus, 1998) provided the only satisfactory 
account of these data. This network also opens the door to further explorations, both in the extreme 
ranges of VOT, as well as in issues regarding the development of speech perception (McMurray, in 
preparation). 

These findings and their accompanying simulations have broad implications for speech 
processing and phonetics in general.  If it actually takes a few hundred milliseconds to discretize 
one’s percept of a potentially noisy consonant, speech recognition is an even more convoluted 
process than initially suspected.  Before one phoneme is fully categorized, the next few are already 
being received as input.  Mapping such a string of multiple partially active and mutually exclusive 
phonemic representations onto possible lexical items will no doubt be a massively parallel process.  
This perspective lends support to feature-based parallel-activation models of speech recognition 
(e.g., McClelland & Elman, 1986), in which phonetic features are not binary but exhibit graded 
activation levels.  Thus, treating phonetic representations as discrete logical symbols may be useful 
for idealized instances where noise and interfering signals are absent.  However, when speech 
perception is considered in realistic noisy environments, with the real-time accrual of acoustic-
phonetic input being faster than the real-time classification of that input, phonetic representations 
will have to be treated as probabilistic representations. 

On a different note, the anticipatory eye-movement paradigm presented here may be just the 
tool to begin exploring these issues throughout development.  We have shown that this methodology 
can be used analogously to the two-alternative forced choice task used with adults, and provides a 
unique window into infant categorization by allowing us to obtain discrete responses for a single 
stimulus.  Moreover, it appears to be quite sensitive to the temporal dynamics of perception and 
will likely prove a useful tool in looking at two scales of time in perception simultaneously. 

As we have shown, the methodological and theoretical developments presented here are 
built off a wide range of work in adult psycholinguistics, phonetics, and developmental psychology.  
However, this line of research represents a unique approach to studying cognition and advocates a 
new focus on the temporal dynamics of perception.  Perhaps speech perception is best seen as a 
dynamical system, and our goal as researchers is to uncover the parameters of this system, their 
meaning, and the way in which they are set. 
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Appendix A: A hierarchical nonlinear model used for the analysis of categorization 
data over time 
 
The identification function found in categorical perception experiments can be described by 

the logistic function whose formula is given in (1).   
 b1  
 logistic(x) =    + b4  (1)  

      (1 + e(-1(b2*VOT + b3))) 
 

For a categorization experiment, b1 is typically assumed to be one and b4 to be zero. Then, changing 
b2 changes the slope or steepness of the function and b4 the location of the category boundary.   Only 
varying two of the parameters, however, prevents this function from approximating the identification 
curves a few hundred milliseconds after stimulus presentation, because the distance between the 
upper and lower asymptotes is fixed at one.   Typical logistic regression models, for example, only 
use these two parameters.  As a result they are unable to account for models like the expanding 
sigmoid hypothesis. 

In this analysis, we have allowed all four parameters to vary so that we may better fit our 
data, and explore what happens to the identification curve over time.   Although the addition of two 
new parameters makes the curvefitting much more difficult, we were able to overcome that by using 
a constrained gradient descent algorithm.  This represents a real improvement over existing 
statistical techniques in the amount of detail we can extract from our data. 

This logistic function can be fully described by four psychologically interesting properties: 
the slope, the amplitude (amp), the location of the category boundary on the VOT axis (midx), and 
the height of the function (midy).  Amplitude will give some measure of noise or unbiased 
competition in the system.  Slope provides a measure of the relative discreteness of the categories 
(the sharpness of the boundary).  Midx is a direct measure of the category boundary.  This measure 
differs from other category boundary measurements in that it is based on all of the data, not simply 
the few datapoints near the boundary.  The height of the function gives a measure of overall bias in 
the system.  For example, a height of .5 represents an unbiased categorization.  A height of .6 on the 
other hand (paired with an amplitude less than .8—otherwise the maximum would be greater than 1) 
would show an overall bias (regardless of VOT) towards /pa/ in our data. 

Simple algebraic manipulations can change (1) into a form that uses these parameters (2). 
 

   amp               amp  
 logistic(VOT) =     +  midy   –        (2)    

        (1 + e4slope/amp  (midx - VOT))                2 
 

We extracted a subset of the total dataset for each subject at each 33 msec time slice (the 
minimum temporal resolution of the eye-tracker).  We then fit a logistic function of this form to the 
data for that particular subject and time slice.  By characterizing the degree of change in these four 
properties over time (across subjects), we can determine which of the hypotheses provides the best 
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fit.  In order to perform a maximum likelihood estimation of the best parameters for the data, this 
Equation (2) was used to predict the mean probability of a Bernoulli distribution (3). 
  
 P( looking to /pa/  | VOT) = logistic(VOT)X * (1 – logistic(VOT)(1-X)) (3) 
  
X is 1 if the subject made an eye movement to /pa/ and 0 if he or she looked to ba.  Thus, for each 
time by subject pair, the likelihood function of the eye-fixation data is given by (4). 
 

 L   =   Π logistic(VOT)Pvot * (1 - logistic(VOT)Bvot) (4) 
           VOT 

Here, Pvot is the number of looks to /pa/ at that VOT and Bvot is the number of looks to /ba/ at that 
VOT.  The product was taken over the data points (looks) from all VOTs for a given time-slice and 
subject.  The maximum likelihood estimator started by searching a number of points in the parameter 
space for the starting point with the largest log-likelihood.  It then used a constrained gradient 
descent algorithm to minimize the log of this likelihood function over the parameters of the logistic 
function: amp, slope7, midx and midy.  The algorithm was constrained so that all possible values of 
the logistic function were between 0 and 1 (otherwise, the function could not approximate a 
probability). 
 This analysis can be compared to hierarchical linear modeling in the sorts of statistical 
questions it is able to address for nonlinear functions (in this case, the 4 parameter logistic function 
although other functions could be used).  It represents a new and potentially very powerful way to 
analyze categorical data. 
  

Appendix B: Why quadratic normalization? 
A Hebbian normalized recurrence network starts its “life” with a random weight matrix.  

Because of this, it cannot initially count on any help from its knowledge of the inputs in categorizing 
stimuli—rather, its competition process must do most of the work.  Hebbian learning works best 
when learning mappings between an input array and a singly active output node (hence Rumelhart 
and Zipser’s, 1986, competitive learning scheme).  With a completely linear activation function in 
the output arrays, and no information from the weight matrix, it is very unlikely that even an 
approximation of this ideal output pattern will result from recurrent processing.  By inducing a non-
linearity into the computations of the output, the model can resolve to a singly active output node 
quite easily.  Competitive learning, for example, represents one such nonlinear (and in this case 
discrete) activation function. 
 The quadratic function is not the typical form of non-linear activation in neural networks—
logistic or softmax functions are usually preferred.  However, the quadratic function can be shown 
to arise quite naturally out of a particular model of lateral inhibition.  To derive the quadratic 

                                                 
7 In general the range of slopes that best fit the data were very small (mean = .47) and the effect of slope on the 
resulting curve (and the log likelihood) was very nonlinear.  Thus, we actually minimized over the log of slope so 
that we could maximize the effectiveness of the [linear] search algorithm. 
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activation function, let us first define how inhibition is going to work.  We will assume that the 
inhibited activation of node x is equal to the uninhibited activation minus some function of the other 
nodes. 
 
 O′x = Ox – f(O1…n)  (5) 
 
We’ll also define the proportion of the total activation held by any output node X to be  
  
 P(Ox) = Ox/A (6) 
 
where A is the total activation in the array of nodes.  We now shall define inhibition such that the if 
Ox is receiving the inhibition, and Oy is the inhibitor, then the effect of Oy  on Ox will be   
 
 Ox = Ox - Ox P(Oy) (7) 

 Ox = Ox - Ox (Oy/A) (8) 
 
Thus the inhibitor will take its proportion of the total activation from the node being inhibited.  For 
example, if Ox = 0.2 and Oy = .8, (and there are only two nodes), then Oy has 80% of the total 
activation.  The effect of Oy on Ox will be to remove 80% of Ox’s activation, leaving it with .04.  By 
this definition, the activation of a node after being inhibited by every other node will be 
 

 O′x = Ox - ΣOx (Oy / A) (9) 
        y  

This equation isn’t completely correct, given that a node cannot inhibit itself.  Thus we get 
 

 O′x = Ox – [ΣOx (Oy / A) - Ox(Ox/A)] (10) 
          y  

Now a little algebraic manipulation 
 

 O′x = Ox – [ ((Ox/A) ΣOy ) - Ox
2/A ] (11) 

                         y  

Since the sum of all activation in O is equal to A (by definition),  
  

 A = ΣOy (12) 

 O′x = Ox – [ (Ox/A) A  - Ox
2/A ] (13) 

 O′x = Ox – [ Ox - Ox
2/A ] (14) 

 O′x  = Ox
2 / A (15) 

 
Thus, if we start with a relatively neurologically plausible inhibition model of inhibition (in which 
each node inhibits the others as a function of it’s proportion of total activation) we can derive a 
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relatively useful nonlinear activation function.  Since in this particular network, we are normalizing 
the vectors to sum to one at each term, we can eliminate the A in the denominator simplifying the 
equation even further. 
 

Appendix C: Computer-based eye tracking in infants 
 
The setup 

Although computer-based eye-tracking technologies have been around for quite some time, 
the application of these methods to infants in any kind of non-intrusive, simple fashion has begun 
only recently.8  Because of this, it may be of some value to include a description of the methods that 
we are successfully using. 
 Since existing head-mounted eye-trackers are too big (and heavy) for infant use (and even if 
you could get one to fit, and find a baby willing to wear it, it is probably not a good idea to put a 
$15,000 piece of equipment on a baby’s head even if you could), we use a remote eye-tracking 
system which sits on the table in front of the infant (we used the ASL Pan/Tilt model 504).  This 
small camera emits and detects infrared light enabling us to run the experiment in the dark, when the 
infant’s pupil is largest and there is the least amount of distraction.  The camera is able to move in 
response to the user’s commands on a joystick or the computer console to maintain a constant close-
up view of the infants’ eye.  From this close-up view of the eye, the eye tracker locates the pupil and 
corneal reflection which, after calibration (which will be discussed shortly), allow it to determine 
where the subject is looking.   
 The software that operates the eye tracker contains an algorithm that attempts to maintain the 
eye in the center of the camera’s view at all times.  This allows it to compensate for small head 
movements.  Unfortunately, the average head movement of an unconstrained infant is much bigger 
than this allows.  Although encouraging the parent to constrain the infant’s head movements (by 
holding them gently below the chin or by holding a pacifier in the infant’s mouth) minimizes this 
head movement, it is often not enough, as many infants do not like having their head constrained.  
However, the ASL remote eye tracking system includes a simple interface (right out of the box) with 
several Magnetic Head Trackers (MHTs).  This allows the eye camera to use real time information 
about head position to regain the eye when it is lost.  Although we use the Polhemus FastTrak, they 
all work similarly.   
 The MHT consists of a small magnetic receiver that we attach to an infant knit cap with 
Velcro.  A larger transmitter is mounted behind the infant in the room.  The MHT receiver is able to 
detect its position (x,y,z) and orientation (elevation, azimuth, roll) relative to the transmitter.  This 
information is relayed to the eye-tracker that can then use it to find the eye when it is not in the view 
of the camera.  Before using the MHT, it must be calibrated for the room and the eye tracker, 
although this can be done once and saved.  This allows the eye-tracker and the MHT to share a 

                                                 
8 The interested reader may want to visit http://www.bcs.rochester.edu/infanteyetrack, the web page of a newly 
formed consortium devoted to the topic. 
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common coordinate system.  The head tracker must also be calibrated for the subject so that the eye 
tracker knows how far away the sensor is from the eye. 
 The layout and connectivity of equipment in our lab is shown in figure 15. 
  
Calibration and Use 

At the beginning of the experiment the infant is seated with its parent and the infant cap (with 
the MHT receiver) is placed on its head.  The system seems to work best if the receiver is directly 
above one of the eyes (the eye we will track).  We then play a short movie to engage the infant while 
the experimenter manually finds the eye with the eye-tracker.  At this point the experimenter 
calibrates the head tracker (by pressing a single key).  This records the angle of the eye tracker and 
the position of the receiver in space, allowing the eye-tracker to compute a vector difference, which 
it can use to zero in on the eye from head tracker coordinates.  At this point the autotrack feature of 
the eye tracker is enabled and the eye tracker follows the eye for the rest of the experiment. 
 The experimenter then adjusts pupil and corneal reflection detection thresholds until the 
computer is able to locate both.  The next step is to calibrate the eye tracker.  For most eye trackers, 
calibration consists of having the subject look at specific known points in space and recording the 
pupil and corneal reflection locations while they are looking there.   For most eye tracking 
applications, nine points are used.  However, infants rarely complete such a task.  Instead, ASL 
offers a two point “quick calibration.”   

To perform this calibration, we show the infant a set of colorful concentric circles that are 
expanding and contracting at a 1 second frequency.  These circles change color frequently and are 
accompanied by a phase locked frequency-modulated tone.  Infants seem to like watching this for up 
to a minute or more.  We first present these circles in the top left of the television and record the 
pupil and corneal reflection locations.  We then move them to the bottom right and do the same.  At 
this point the infant is calibrated and we begin recording data. 

 



McMurray, Spivey & Aslin  – Consonant Perception: Categorical or Categorized? 255  
 

http://www.ling.rochester.edu/wpls 
 

During the experiment, the experimenter monitors the corneal reflection and pupil thresholds 
(to make sure the computer is able to locate them at all times) and verifies that the auto-track is still 
following the eye (if the baby bumps the hat, for example, the head tracker will need to be 
recalibrated).  The experimenter can also adjust the calibration coordinates to clean up any bias in 
the calibration (with a squirmy infant and only two points, the calibration can be quite noisy).   

Remote eye tracking systems can record eye fixations in screen coordinates (allowing for 
easy data analysis).  To mark the beginnings and ends of trials in the data stream, we use two custom 

 
 

Figure 15: The infant eye-tracking setup.   The baby is  seated comfortably on the parent’;  

lap (parent not shown) watching the television.  He wears a hat on which we have at tached 

the Magnetic Head Tracker (MHT) receiver.   The receiver detects its position and 

orientation relative to the MHT transmitter and sends this to th e MHT control unit.   This 

computes six dimensional coordinates and sends them to the eye t racker control unit which 

directs the movements of the remote eye tracker.   An infrared video camera is  posi t ioned 

below the eye tracker giving a view of the infant’s entire face. This  a l lows us  to  hand code 

the data during periods when the eye track is lost and also allo ws the experimenter  to see 

the subject while calibrating the equipment and running the expe riment.
 



256 WPLS:UR, Vol. 1, No. 2 
 

http://www.ling.rochester.edu/wpls 
 

built sensors that detect sound (on the unheard right channel) or light (on an occluded portion of the 
screen), and insert numerical codes into the data stream.  Thus, we can mark trial onsets by playing 
a tone (that the infant will not hear), or displaying a light (that the infant will not see) to these 
sensors using our experimental control software.  We use Psyscope to control the timing of the 
stimulus and data signals although nothing in this system depends on that choice.  In addition, the 
ASL hardware permits a parallel port connection to the eye tracker that allows a direct connection 
between the experimental control computer (and software) and the eye tracking data stream. 

Apart from an explicit recording of fixation coordinates, the eye tracker also outputs (in real 
time) fixations as video in the form of a set of crosshairs superimposed on the image of the screen 
the subject (infant) is watching.  This is mixed with the image from an infrared video camera that is 
focused on the infants’ head and recorded on normal VHS tape.  From this tape, coders can code 
fixations from either the eye tracker’s crosshairs, or, when the eye track is lost, from a view of the 
infant’s head and eyes.  Very shortly we will be adding a third image to this tape: the close-up 
image of the eye from the eye camera.  The infrared camera also allows the experimenter to see the 
subject while the experimenter is running.   
 The combination of the MHT with the remote eye tracking system seems to allow us a more 
or less constant data stream of fixations in screen coordinates.  Fixation can be determined 
analytically, taking much of the guesswork out of eye tracking research with infants.  When 
combined with the anticipatory eye movement methodology it is easy to see the potential power of 
this technology. 
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