University of Rochester Working Papers in the Language Sciences—Vol. Spring 2000, no. 1
Katherine M. Crosswhite and Joyce McDonough (eds.)

Connectionist Modeling for...er... linguists

Bob McMurray (mcmurray@bcs.rochester.edu)
Department of Brain and Cognitive Sciences
University of Rochester, Meliora Hall, Rochester, NY 14627 USA

Abstract

Connectionist modeling(AKA neural network modeling, connectionismis

rapidly becoming a dominant descriptive and theoretical tool for the
psycholinguist. Below is a brief introduction to some of the terms and concepts
used in connectionist modeling. Connectionist models are no different than any
other sorts of theories in cognitive science, they merely offer a new computational
toolbox, or set of algorithmic constraints on models and theories of cognitive
phenomena. In this paper | review many of the important components of
connectionist models and introduce some of strengths, pitfalls and caveats that
casual readers and serious modelers must be aware of.

Introduction

If you've read past the abstract, you must have resisted the urge some linguists
feel to put down the article after reading the word “connectionist”. Thank you.

I'd like to welcome you to our informal field by teaching you some of the lingo
you’ll need to navigate. I'll try to avoid using the math that modelers love to
flaunt and instead focus on the underlying concepts and architectures. Hopefully,
after reading this, you will be able to start reading modeling papers and
understanding much of what is going on. Moreover you may stop falling asleep
at modeling talks. If I'm lucky, you may even collaborate with psycholinguist to
build your own models of linguistic phenomena. Hopefully you'll have enough
understanding of the basic terms and issues to do all of these things after reading
this paper.

Throughout this paper I've tried to put most connectionist terrslifface so

that you can find particular concepts quickly by scannidgnnectionismas a

field grew out of work in neurobiology, computer science, electrical engineering,
statistics, and cognitive psychology (and probably other fields), so there are often
many terms that mean the same thing (depending on what your background is).
In these cases, | have tried to provide all of the terms. I've also tried to include
terms and concepts that are not formally defined anywhere, but have proven
useful to connectionists discussing their work over the years.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

73 WPLS:UR, vol S2000, no. 1

A common question that linguists have asked me is “igl@tonnectionist

model?” The answer to that question is surprisingly quite simple. A
connectionist models really an algorithm for turning sonmgut (which

presumably maps onto something of psychological or linguistic interest) into
some otheoutput (which may map onto some data). In this regard it is very
similar to any other cognitive or linguistic model that has been implemented
computationally. Take, for example, an Optimality Theory Grammar. An OT
grammar turns a collection of phonological forms from Gen (the input) into the
actual production (the output). The only difference between this grammar and a
neural network is that the kinds ofomputationswe are allowed to use in

creating the algorithm are different. OT prescribes one type of computation
(constraint satisfaction), whilgonnectionist modelaise computations that are

very loosely based on the kinds of computations that neurons and populations of
neurons might perform. Under this viesgnnectionismis simply a set of

(mostly) agreed upon guidelines for what sorts of algorithms are appropriate for
describing cognitive behavior.

Architecture

All connectionist models are composed of two simple concepties(AKA
neuronsor units or cells) andweights (AKA connectionsor synapses

A nodecan be consideredhaghly idealized representation of a neuron. It has an
activation (or firing rate) that tells us how strongly that neuron is firing. In a
very simple case, modemight be assigned to a real world concept such as a
specific phoneme, /b/. It's neighboring nodes may represent other phonemes, /d/
and /t/. In this case, tlativation of the /b/ node relative to the other nodes
would tell us how strongly the system believes a /b/ was present in the input.
Oftentimes thectivation of anodewill be simplified by saying theodeis
eitheron (firing) or off (not firing , inactive). Keep in mind that very few
connectionist modeldhavenodeswith discreteactivation levels—on or off

simply refer to thenode having a lot ofactivation (relative to the othemodeg or

a little.

Nodes are organized intayers (AKA arrays or vectors). Eachlayer is a

cluster ofnodesthat are [usually] functionally related. For example, one layer of
a network may consist of the group nodes that correspond to each phoneme;
another layer may have nodes that correspond to words.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 74

Lateral weights, synapses, connections

Output layer, array, vectot.
Activations computed from
hiddenand output layers'
and their weights.

Hidden node, Bidirectopmal
neuron, unit weights,
________________ synapses,
' Hidden layer, array, connections
. vector. Activations
computed from input
layerand fts weights. 7~ Feedforward
weights,
synapses,

connections

Input layer, array, '
vector activations -
set by modeler.

Input node, 3 """"""""""""""""""""

neuron, unit

Figure 1: A typical diagram of a neural network with its features labeled.

In any model, one or mofayersis designated thieput layer. Stimulus from

the outside world is received into the network via thymit layer. Thestimuli

consist of numerical representations of real world objects or stimuli. When the
modeler sets thactivations of thenodesof theinput layer to match one of these
representations, the network has received that stimulus as its input. The patterns
of input activation may come from a corpus of text, a digitized waveform, or any
other set of stimuli the modeler wishes. Additionally, they could be manually set
to arbitrary values if the modeler wishes to abstract away from real input
(possibly the real input is too complex to illustrate the problem the modeler
wishes to work with). The set ofput activation levelsthe modeler decides to

use is called thraining set. Each item in #&raining set minimally consists of

the activations for eadhput node in theinput layer. Thetraining set will
sometimes contain other information such as the expected value of the output
nodes for each input. This will be discussed when we talk about learning.

Each network will also have one or mangtput layers. Theoutput layer is the
cluster of nodes that will determine the network’s “behavior”. The values of these

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

75 WPLS:UR, vol S2000, no. 1

nodes are the values that we will attempt to relate to the empirical data that we are
trying to evaluate. For example in a network designed to categorize phonemes,
theinput layer might represent a digitized waveform, and egput layer

would have a node corresponding to each phoneme. The way in which the
activation of nodesin theoutput layer is related to the empirical data or

behavior is called thiinking hypothesis (because it links models and data). For
example, for our phoneme categorization examplelimking hypothesis might

be that the model will choose the phoneme with the axistation as the

phoneme it heard. I'll talk more abdirtking hypotheseslater.

Layers of nodes that do not receive input or provide output are tadiéein

layers. These layers compute some sort of intermediate representation (between
input andoutput layers). Many modelers dispense with tinput, hidden, and

output layer designations all together and simply refer to layers by what they
designate. The TRACE model (McClelland and Elman, 1986), for example has a
feature layer, aphoneme layer,and aword layer, but none of them is

designated theutput layer. TRACE, in fact, can use either phonemes or words
as the output depending on the task at hand. In models like these, one must think
about the logical flow of information is a psychological sense if you wish to
determine thénput andoutput layers. Many models are described simplg-as

layer or 3-layer networks (or more). R-layer network will necessarily have

only aninput andoutput layer. A 3-layer network will have both of these plus
onehidden layer. A 4-layer network will have twdiidden layers.

In the remainder of this paper, whenever | refer to sinmgut or output, | will
be referring to the entiri@put or output layers (i.e. thepattern of activations of
across node in thayer).

Often times, dayer of nodes is thought of as a set of coordinates in a
multidimensional space This is easiest to visualize for a network of two nodes.
The activation of the first node could be considered the X-coordinate. The
activation of the second node would be the Y-coordinate. Then any particular
pattern of activations across the two nodes can be thought of as a unique point in
a 2-D coordinate system. So if the input activations for the two nodes were .5 and
.8, we could talk about the input as the single point <.5, .8>.

Of course, when we move up to larger networks we won’t be able to visualize a
16 dimensional space. However, we can still talk about one, and this spatial
metaphor is used frequently. Under this metaphoiinfhe spacewould consist

of all regions of the possible N-dimensional space that are used in the network
(where N=number of inputs). Tlmaitput-spaceis the corresponding regions in

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 76

M-dimensional space (where M=number of output nodes). People often refer to
thedimensionality of a space (which is simply the number of nodes). Then when
information is passed from amput spaceof high dimensionality to anoutput
spaceof lower dimensionality, the information is undergoingjmensionality
reduction—it must be compressed (and some information invariably lost) in
order to “fit” in the lower dimensionality space. This forces the network to make
group someinputs together and discard others according to the correlations it
finds in its inputs. They types of categorizations it makes may be of ultimate
interest psychologically.

This way of describing network behavior spatially provides a convenient way of
describing a network. When activation patterns change, we can talk about the
network moving to a new point in tieput space. Moreover modelers often
speak ofearning (which I will discuss shortly) as a search throughdhtput

space. Finally, dimensionality reductionis often thought of as a form of
information compression (as a network may have to represent 3-D information,
for example, in only two dimensionsRimensionality reductionis also a

common concept used to describe statistical techniques such as factor analysis,
clustering, and multidimensional scaling (if you don’t know these terms, that's
fine, I merely throw them out to show that the analogy can be helpful in relating
neural network computations to other types of computational tools).

In a networknodesare connected to each othengights (AKA synapses
connectiong. Eachweight represents the amountadtivation that can be
passed by oneodeto another. If amput nodeis highly active and it has a
strongconnectionto anoutput node, thatoutput node will also be highly
active. If it has a weakonnectionthatoutput nodewill not be highlyactive.
We’'ll go over the details of this in a moment.

The set of all weights between two layers is termedviksight matrix (for

reasons we'll see shortly). When a model is builtwb&ght matrix often starts

as a matrix of small random numbers (as we will discuss, it will be modified later
by learning).

Weights can eitheexcite (make active) omhibit (make inactive) the nodes they
connect. Excitatory weights will cause a node to become more active if the
nodes that connect to it are activahibitory weights will cause a node to
become less active if the nodes that connect to it are active.

Weightsthat pass information fromput to output nodes(or in that direction
betweerhidden node$ are considerefked-forward connections Weights that

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

77 WPLS:UR, vol S2000, no. 1

pass information backwards input output
from output nodesto input
nodes(or in that direction

betweerhidden node$ are 1.1=2*3+ 5*1
consideredeedback

connections. Bidirectional

weights pass information both 1/,@ 305=2%15+ 51
ways. Weights that connect 1

unitswithin alayer are @
consideredateral connections.
The most common use of
lateral connectionsis lateral
inhibition in which nodes
within a layer attempt to turn
each other off. The result of this process is that a few nodes have all the
activation and the others have none.

Figure 2: A basic connectionist network. Circles
represent nodes, and arrows wghits. Values
inside circles reresent activations.

Consider the example network in figure 2. This network consists ohpub
nodesand twooutput nodes(a 2x2 network)fully connected(each input nodes
is connected to each output node) &ewtl-forward. Theactivations of the input
nodes have been set to 2 and .5 by the modeler.

To compute the values of thatput nodes we will use some function of the
inputs and the weights. This function is calledabgvation function.

outputop = f(iINpUtep, iINPUthottom Weightop->top Weighbottom->top 1)
The simplesactivation function is thelinear activation function. Each output
node is simply the sum of the activation each input node multiplied by the

corresponding connection (weight) to that output node.

outputop = iNputop*weightop>top + iNPUbotion™ Weightoorom>top (2)
outpUbottom = INPUtep * Weightiop->bottom + INPUbottom * Weightyottom->bottom

This can be generalized to:

Num input

outpuy = Z_linpug(* weighty.sy (3)

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 78

We can simplify this even further with some linear algebra. Let Output (with no
index) become gector of all theoutput activations, and Input (with no index)
be avector of all theinput activations.

Input = [Inpufep INPUbotion] = [2 5] (4)
Output = [Outpusp, Outpubotion

Now letW be defined as matrix where the row indicates tledex of the input
node (in this case, the top node would have an index or row of 1 and the bottom
would have an index of two), and the column indicatesnithex of the output

node. The value at each position indicates the connection strength or weight.

W= [weight; weight] (5)
[weight 1 weighty 4

W = [We_ightop»top We_ightop->bottom]
[weig ht)ottom->top weighbottom->bottom]

W= [.3 15]
[1 1]

Then by the definition of matrix multiplication (which essentially says: for each
output node, do equation 3, and concatenate all the results into a vector) we can
simplify the whole thing into.

Output = Input * W (6)

where * indicates matrix multiplication, and Output and Input are vectors, W is

a matrix. As some one to explain the linear algebra to you, and you will see it's
not too complicated. You should recognize, thought, that equation 6 and equation
3 are doing the same thing, as you will often see it notated both ways.

All of this stuff so far has been to describe lihear activation function. This
activation function says that as you gimput activation to an output node (as a
function of theweights) theoutput activation will increase proportionally. This
isn’t the only possiblactivation function, though. As equation 1 implies

virtually any function could be used (although modelers tend to limit themselves
to simple, understandable functions that may be neurologically plausible).

The most commononlinear activation function (i.e. not equation 3) you will
see is théogistic activation function. Without going into the math much, the

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

79 WPLS:UR, vol S2000, no. 1

0.9t
0.8
0.7p

Output activation

-10 -5 0 5 10
Input activation

Figure 3: The logistic activation function. For any input
activation to an output node, the logistic function outputs a
value between 0 and 1.

logistic activation function serves to truncate the possible values of the output
activation to a value between 0 and 1. If the sum of inputs*weights is high, the
output node will equal 1. If that sum is low, the output node will have an
activation of 0.

Non-linear activation functionsare crucial to the successrtiltiple-layer

networks because it has been shown that for any network with more than two
layers that useslanear activation function, atwo-layer network can be built

that performs equivalently. Essentially, if you want to reap any advantage out of
having more than two layers, you have to useralinear activation function.
Thelogistic function is a particularly good one, since tlogistic function is

what is known as basis function. A basis functionis a function that can
approximate any other function if you add enough of them togetheGé&hssian
curve, and thesine waveare other examples basis functiong. So, if you think

of a bunch ohidden units with logistic activation functionsa network could
approximate many other functions by simply adding them together. Because of
this, neural networks have been termedrersal function approximators.

Although oftenconnectionist modeldhave been associated witbn-modular

(or interactive) theories of processingndtabula-rasa,statistically-oriented
theories of learning, amiversal function approximators, connectionist

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 80

Input Output

7070 2.0 R
<0.7,15>» <15>°
O o 101 \
o\‘l

.6701 <2.0,08>> <1.95>
Input Output
[2.0 0.8]* W=1.95 r ‘
[0.7 1.5]* W= 1.50 0 10 20

Figure 4: A neural network trained to perform a dimensionality reduction and the
corresponding “geometric” representation of that reduction. In this case, the network is
mapping the points in two dimensional space to a point in one dimensional space (along the
dotted line). The values ofthe weights determine the equation of the line. Ofcourse, not all
networks perform a dimensionality reduction. Some keep the same dimensionality (merely
shuffling the points in a predictable way), others will increase the dimensionality. The main
point, though is that the weight matrix serves to perform this “remapping”.

modelscan instantiate any sort of theory and should not be pigeon-holed into
these particular lines of thought.

As | mentioned previouslyayers of nodesare often thought of aordinatesin
amultidimensional space. Under this view, theveight matrix then performs a
remapping of a coordinate in N dimensional space to one in M dimensional
space (where N is the number of input nodes, and M is the number of output
nodes (see figure 4 for an example and explanation of this).

Representation

It is often useful to classify a model (or sometimes just a layer of a model)
according to how it represents real world information.

A localist representationis one in which each node has a label of some kind, and
when that node is active, it is in a sense saying “l think my label is correct.” An
example of this is a layer of cells in which each node corresponds to a different
phoneme, or one in which nodes correspond to various people. Often localist
nodes are derogatorily call&andmother Cells, after a famous thought
experiment in which someone asked “What would happen if your grandmother
cell was damaged? Would you be unable to recognize your own grandmother?”

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

81 WPLS:UR, vol S2000, no. 1

Although a trifle silly, this question does raise the important point that localist
representations are very susceptible to damage. If your only cell that recognizes
/bl is damaged, your network can no longer recognize that sound any more. Many
other people have pointed out, however, that a node doesn’t necessarily stand for
one neuron, but that it could stand for a whole population of neurons. Under this
view, localist networks could easily survive damage.

A distributed representation represents information across several cells.
Sometimes this is completedybitrary . The word “boy” for example may be the
pattern [1 1 0 1 0 O] (for a layer with five nodes), while “botch”is[1 110 1 1].
Other types oflistributed representationsmay assign smaller units of meaning

to individual nodes, although the interesting meanings are distributed across them.
In our previous example, if the first cell responds to a “b”, the second to an “0”
the third to a “t”, the fourth to a “y” and the fifth and sixth to a “c” and “h”
respectively, our representation of each word isdistributed, but each unit is

now meaningful as wellDistributed representationsare particularly valuable

in that they can withstand damage well (if you knock out a single node, there may
be enough information remaining in the other nodes to maintain the
representation). They also implicitly encode similarity. In the example above,
“boy” and “botch” are similar in that they both share the first two letters. As

such, their distributed representations share two active nodes. Because of this
similarity encodinggistributed representationscan often generalize patterns

they have seen to novel ones.

Another type oflistributed representationis thetopographic map (AKA

population code). In this scheme, a layer of cells represents the value of some
continuous value by location. For example, in a layer of 10 cells that respond to
sound frequency, the left-most cells may respond highest to low frequencies and
the right most to high frequency. You can then recover which frequency the cells
heard by looking at which cells fired.opographic mapsdo not always

represent their inputs linearly—they may have a lot of cells devoted to low
frequencies and only a few to high frequencies, for example (this is what the
output of aKohonen network, which we’ll read about shortlypoks like).

On some level, the debate over representation is a little pointless. It has been said
that “one level of representation’s localist representation is another level's
distributed representation”. The two representational schemes are not terribly
different and really depend on the level of description you wish to use and the

way in which you wish to describe your model’s behavior and architecture. This

is not say that it is not important to have a good understanding of the way in

which your model represents information, just the there are no hard lines between

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 82

distributed and localist representations, and one should not worry too much about
the debate over them.

Learning

As you may have noticed, most of the interesting computational work in a neural
network is done by thereights At this point you are probably asking yourselves:
how do | get the weights? That will be the topic of the next seddaming. |

intend to keep to the more abstract conceptual level, however, an excellent
description of the math behind the various learning systems can be found in
Rumelhart, and McClelland (1986) and McClelland, and Rumelhart (1986). A
good comparison of work in developmental psychology with connectionist
learning can be found in Elman, Bates, Johnson, Karmiloff-Smith, Parisi and
Plunkett (1992)

Theconnection strengthassociated with eackeightis usually set by a learning
process (although in some cases, such as TRACE, they can be set by hand by the
modeler to implement a specific theory). Each network hearaing rule that
essentially tells the network how to modify its weights at any given point.
Learning rules change thaveightsas a function of thactivations of theinput
andoutput units, the value of theveight itself and possibly somerror signal—

how close the actualutput valuesare to thdarget output values(the ones you
want the network to output). Akarning rules have a component called the
learning rate that determines how fast or slow the network can change its
weights (essentially how much the network can change as a result of a single
input). This gradual modification meightsleads to gradual change in the
network’s performance. The challenge to the modeler is to use learning rules
appropriate to the task the model is given so that this change is an improvement.
The process of modifying the weights over time&ning (alsotraining, or

simply running a model).

Regardless of the type l&farning rule used, networks can be trained in two
ways:batch learning, andonline learning. In batch learning, the modeler
presents the each item in tiaining set to the network and computes it's
correspondingutput activations. Theweightsare not changed until after the
network has seen all of the possilput/output pairs when they will be

modified using dearning rule. This forces the learning rule to consider all the
input the network will ever see before changing any weights. The network will
probably process the entire batch multiple times (each time is usually called an
epoch though this term is often misused in the literatuBgtch learning is

often considered implausible (e.g. it seems clear that children do not wait until

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

83 WPLS:UR, vol S2000, no. 1

they have heard every English sentence before learning to talk), but has the
advantage of preventing a network from getting sidetracked by a single weird
input.

The more common training schemerdine learning. In this scheme, the model
cycles for multiplaterations (AKA generationsand sometimes, confusingly,
epochg. At each iteration, a single item from tinaining set is chosen (either
randomly or by fiat), and thactivation of eachinput node is set according to

that item. Output activation is computed via theveight matrix, and the weights
are modified via théearning rule. This is then repeated again and again until the
modeler decides to stop. Usually the weiglattle (stay at approximately the

same value from iteration to iteration) after some time—this is a good place to
stop training.

In most models, the model starts its “life” witlmaaadom weight matrix

(essentially, each weight is a randomly selected value, usually within a small
range). This ensures that the model does not start its life with any preknowledge
of what it is to learn. It also is essential for many of the learning algorithms
because initially, eacbutput node will be biased differently in response to an

input (if the network started out withvgeight matrix consisting all the same
number, each output node would be equally biased towards everything and
learning would be very difficult).

So what kinds of things make up the learning rule? How does one know what to
change the weights to? Modelers have been working on this issue for quite some
time and have arrived at two broad categories of solutsupgrvised learning
andunsupervised learning.

Supervised learning ruleschange the weights as a function déaching signal
which is provided by the modeler to tell the network whahduldbe outputting

in it's output layer. Thiseaching signalis often considered part of thrining

set. For our dinky 2x2 network, the modeler might provide a training set such as
the one below:

If the network sees... ...it should output
[1 0] [1 0]
[O 1] [1 0]
[0 0] [0 1]
[1 1] [0 1]

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 84

Then at each iteration, tlaetual output can be compared with tharget output
(the output provided by theaching signa) and each weight can be adjusted
according to whether it was contributing to the correct output or not. This
comparison is usually in the form of arror signal, the difference between the
target andactual output.

Thedelta rule (AKA the LMS rule) andback-propagation are two commonly
used forms of supervised learning. Twedta rule works very similarly to what
I've described above. However, thelta-rule does not work very well for
multiple-layer networks (unless you haegget valuesfor the activation of the
hidden units). Back propagationis designed to send tleeror signal back
throughthe hidden units (by transforming it via the weight matrix and a lot of
messy calculus). Thumack propagationcan be used with networks of any size.
Since a complete description of this requires calculus, | will wave my hands a bit
and move on to the next section. However, | direct the interested reader to
Rumelhart, Hinton and Williams (1986). It is important to note, laak
propagation is not widely considered to eurologically plausibleas a
neurological mechanism for passing error information back through multiple
synapsedas not been found, and the, as I'll discuss later, the sourceesfdine
signalitself can lead to biological implausibility.

When doingsupervised learning,modelers often want to talk about how close
their model is to théarget output. The most common way to do that is to
compute thévlean Square Error (MSE). This is very simply defined. For any
given input, compute the squared difference between each output node’s
activation and its target activation (by squaring this difference, we make each
difference positive, so every node’s error adds to the total error). Now take the
mean of these numbers. That isRM8E. Since this only tells you how good the
model is doing on a singleput pattern, many modelers will compute th@SE

for each member of the whole training set to see how the model is ddBig.is
also a nice way to determine how long to train the model—simply present inputs
to the model and run yolegarning rule until MSE is below some arbitrary cutoff
point.

Computing a single value for the performance névork prompts many

modelers to speak of tlegror-spaceor theweight space.Consider a network

with only twoweights. If we look at all the possible values for these weights and
compute theVISE for each combination, we could plot a three dimensierak-
landscapewhere the X axis was the first weight, the Z axis, the second weight,
and the Y axis (vertical) thHdSE. Supervised learning algorithmshen simply
search thigrror-spacefor the point (combination of weights) with the lowest

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

85 WPLS:UR, vol S2000, no. 1

MSE. They start from a random point (remember our weights are set to random
values initially) and wander until they can no longer reach a lower point. In doing
this search, a model may fall into what is callédcal minimum. A local

minimum is simply a point in thigrror spacethat is lower than all of its

neighbors, but may not be thbsolutdowest point. Training the same model

from several different starting points (random weight matrices) is a good way to
escape this potential pitfall, as you are more likely to be sure that the final state is
anabsolute minimum.

A classicback-propagation modelis theautoassociator(AKA the

autoassociative networl. This network is a three layer-network with #zme
number ofinput andoutput nodesand asmaller number othidden nodes(thus

the network is performing @mensionality reduction as activation flows from
input to hidden nodes. The network is trained to repeat whatever input it is
given. This may seem trivial, but this is in fact an interesting problem given the
dimensionality reduction.

For example, an autoassociator may represent a time-slice of a spectrogram by
100 nodes, but only have 4 hidden nodes through which to send that input to the
output nodes. After computing hidden unit activations, it will need to recover 96
dimensions to go from hidden to outputs. In order to do this, of course, the
learning rule must pick 4 dimensions to represent the input that are particularly
important (account for a lot of the variance in the input). If this model is able to
learn to perform its task, it may be very interesting what sotglden unit
representationsit learns. In this particular task, we might expecttigelen

units to approximate acoustic features.

Autoassociatorsbring up two very important concepts concerragk-
propagation networks.

1) If you want to use your model to evaluate learning (ignoring for the
moment issues about whether propagating the error signal is
neurologically plausible), you must evaluate piesusibility of the
teaching signal It may be obvious that thheaching signalis doing
a lot of the work in back-propagation networks. Since you could train
a network to do virtually anything, given a good teaching signal, it is
important to evaluate whether or not the signal you use is
psychologicallyand/orbiologically plausible. A word recognition
network that is trained on acoustic input and told what the word is for
each sound pattern is not very plausible, as real human babies don’t
generally have access to this. An autoassociator, however, does have a

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 86

plausible teaching signal, since brains probably do have access to their
inputs. However, if you are not interested in learning itself, but rather,
on whether or not a set of inputs &arnable, the plausibility of the
teaching signal is not as much of an issue.

2) Hidden unit representationsare important. In a lot of cases, (such as
the autoassociator, they are the only interesting results. It is crucially
important to evaluate what your hidden units are paying attention to in
the input. This, of course, can often be difficult or even impossible,
particularly in cases where the hidden units seem to represent inputs in
arbitrary distributed representations. Often, however, individual
hidden units will have some meaning that may be interesting.
Evaluating what sorts of inputs the hidden units respond to can be very
difficult. The best way is to treat the hidden units as a psychological
experiment. Present them with various inputs that you have varied
systematically to test one or more hypothesis. Then try to find out if
the activation of certain hidden units (or groups of units) can be
predicted by those hypotheses.

Unlike supervised learning, unsupervised learningequires ndarget values
for theoutput—there is no right or wrong answer. Rathvegjghtsare modified
as a function of theaput andoutput activations only.

One of the most commamsupervised learning ruless theHebb rule,

proposed by Donald Hebb in the late 1940s. Hebb (1948) actually proposed this
rule long before we knew anything abowatural networks (computational or
biological) and it turns out to have been very useful in the computational literature
and also has a close physiological correlate in a phenomenalaatigd erm
Potentiation or LTP (that is to say that real neurons actually behave this way).
Although some people usmsupervised learningandHebbian learning
synonymously, the strict definition éfebbian learning states that if amput

nodeand anoutput node aresimultaneouslyctive, the strength of their
connectionincreases. For example:

Wiy = Wiy + I*Oy (7)

Here, if either | or O are equal to zero, there will be no change in weights. If they
are both active, however, W will be increased. Since we can’t have weights
increasing indefinitely, however, many modelers will includeegght decay

term that says that if the nodes are not simultaneously active to decrease the
weights. Of course we will also want to includiearning rate (which we will
abbreviate as)

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

87 WPLS:UR, vol S2000, no. 1

ny = ny + S(IX*Oy' ny) (8)

Here if | and O are active, we will increase W by a small amount (the old value of
W multiplied by the learning rate). If they are not we will decrease it by a small
amount.

Less common thaHebbian Learning is AntiHebbian Learning in which if an
input andoutput node are simultaneouslgctive, their connection decreases. Of
course, there are many unnamed variants of thessupervised learning rules
but they are similar in that they do not depend teaahing signal.

One common scheme for usingsupervised learningis competitive learning

(or winner-take-all learning, see Rumelhart and Zipser (1986 this scheme

before computing theveight change the modeler sets the output node with the
highest activationto one and all the others to zero. This is a simplification of a
lateral inhibition process. Then the weights are changed according to a

Hebbian or otherunsupervised rule. The result of this sort of learning is that the
model is able to find categories in the input (i.e. it will devote one output node to
one category of inputs in the training set and a different output node to the others).

Another common scheme is tKiehonen (1982)network (or Self Organizing
Feature Map, SOFM). A Kohonen network works very similarly to a
competitive learning network, except that rather than exciting only thimner

in theoutput layer, thewinner and a number of it'seighborsare excited
together, before applying the learning rule. The result of this is a distoaied
of the input space in theutput spacein which regions of theput spacethat
occur frequently in the training set have lot®ofput nodesdevoted to them and
other regions have fewer.

Hebbian learning has also been usedmattern Completion Networks (famous
examples are thBrain-State-in-a-Box and theHopfield Network). These
networks have only singlelayer that serves as both the inpatioutput layers.

All of the nodesin this layer are connected to each otlheefally) and these
weightsare modified with Hebbian learning. The model is trained on a series of
patterns until the weights settle. Then afterwards, the model can be given a
partially complete pattern and will be able fill in the rest. For example, a four-
nodepattern completion network may be trained on the followirggtivation
patterns

[1010]

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 88

[0101]

With training, it will learn that when node #1 is on, node #3 should also be on,
and that when node #2 is on, node #4 should also be on. So when presented with
[1 0 _ 0], it will output the correct pattern, [11®].

Noise

When building connectionist models, we can make them pure and pristine, perfect
examples of what cognitioshould be.However, this is rarely a useful

generalization since everything we know about the brain suggests it is as noisy as
a debate on Chomskian language acquisition. To counter that objection, people
oftenadd noiseto asystem This may seem abstract and weird but all they are
doing is addingmall random numbersto something Sometimes this is added

to the input layer before outputs are computed, sometimes it is added when the
outputs are computed, and sometimes it is added to the weights. Wsgha

matrix of smallrandom numbers is another extremely common method of

adding noise (although this is usually considered adding noise to the learning
mechanism, without affecting the processing). Just know that addisgjs

simply injecting a littlerandomnessinto the model somewhere.

Noisedoesn’'t alwayslegradeperformance. Elman and Zipser (1988), for
example, found that if they added noise to a speech recognition network it
actually learned better, because the noise forced the network to create “noise-
independent” representations of the speech. These representations were more
useful in generalizing across speakers and contexts.

Another key point regardingoiseis that once you add some toetwork, your

model is no longedeterministic. That is to say that every network is going to be
slightly different (because you will be addiddferent random numbersto each
instantiation). Because of this, you are not guaranteed that every network will be
able to solve the problem, so it is a very good idea to run several different models
under different noise conditions to determine how your model fares against noise.
Conversely, when you read a paper in which noise is added to a model (even if it
is just in the initial weight matrix), it is important to note whether the author ran
the model several times. Otherwise, the possibility is open that he or she simply
got lucky the first time (or didn’t report the 200 models that failed). A network
that generally solves the problem every time in differing levels of noise is said to
berobust against noise.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

89 WPLS:UR, vol S2000, no. 1

Recurrence

Cognition often must unfold over time. In order for networks to capture this,
recurrenceis often added.Recurrencegenerally means thatlayer’s

activation is in some way influenced by thayer’s activation at a previous
time Somerecurrent networks will have layers (such as aoutput layer) that
are a function of themselves (at previous times). For example:

Outputime=t = f(OUtpUtime=t-1,iNpULS...) (9)

In the simplest case of this, the network may consist of only a $aygle(which
is bothinput andoutput) and simply connects to itself over time. Tedtern
Completion Network discussed earlier is one such examftecurrent
networks usually take time to process a single inputa@tsvation flows back
and forth between nodes). Often, givingeaurrent network an input and
allowing it to process it is calladinning the network (although this can often
refer to training as well).

Other networks may have layers with more indirect influences on themselves.

The TRACE model (McClelland and Elman, 1986), for example, is a type of
recurrent network known as ainteractive activation model(or IAM). In this

model, activation starts at the feature level and is passed to the phoneme level and
then to the word level. The word level then passes activation back down to the
phoneme level (vifeedback connections, so that the phoneme activation at time

2 is a function of both the feature input and information from the word level

(which of course is determined by the phoneme level at time 1). This process
cycles over and over again through time and predicts a number of the results
about the temporal dynamics of speech perception.

Another famous recurrent network is Elman’s (1986)ple recurrent network

(or SRN). These networks have been used to model all sorts of sequential
behavior (of which language is probably the most interesting). They use back-
propagation for learning and are trained to predichéh input they will

receive. For example, if they are learning sequences of words such as “the dog
smiles”, and “the boy eats” at any one instance of “the’SIRBl will be trained

on the very next word (such as “dog”). Over time, 8N should report that

“boy” and “dog” are highly likely (active) after hearing “the”, but “eats” and
“smiles” are not.

Simple Recurrent Networkshave a very simple structure that has turned out to
be quite powerful. Activation starts in thgput layer and flows into thénidden

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 90

Output Layer: trained to predict
the next input.

Context Layer=Previous
Hidden Layer (at time t-1
Learnable Hidden yer (

weights

Activation copied

Hidden Layer = Input*Vy +
Context "W, ex
A

Learnable
weights

Learnable
weights

Input Layer

Figure 5: A simple recurrent network. The network is trained to predict the next
output. At each iteration, activation in the hidden layer is computed from the input and
context layers. That activation is then copied to the context layer for the next iteration.

layer. Activation in thehidden unitsis not simply computed from thieput

layer alone, rather it is equal to tiput layer multiplied by its weightplusthe
activation of the old hidden units (at tasttime-step) multiplied by some other
weights. Output activation is computed from thedadden units. Thus, when
dealing withtemporal stimuli (such as language), tB&N you will need to be
basing outputs on not only tiearrent input (for a word, for example, the current
input might be a phoneme), but also on some optheious inputs (the previous
phonemes).

AlthoughSRN's are trained using ordinaback propagation, many other

recurrent networks are trained using l@arning algorithm calledback

propagation through time. In this algorithm, the network is literally unfolded

over time so that the output layer at time 1 will be one physical layer of the
network and the output layer at time 2 will be treated as an independent second
layer of the network (see figure 6). The network can then trained as a regular old
multi-layer network and the changes to all the weights (remember since each layer

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

91 WPLS:UR, vol S2000, no. 1

a) b)

Layer X Layer X attime 3 O

Figure 6: Back propagation throughtime. A)
A single layer, fully recurrent network. B)
That same network, unfolded through time
before learning. Each of the three layers
represents the same layer as in (a) ata
different time. Each set of weights is the
same recurrent set in (a) as well. Learning
occurs as if this network (in b) was an
ordinary three-layer network. After learning Layer X at time 1
the modifications in the upper set of weights

are combined with the modifications in the

lower set of weights to change the final

weight matrix.

Layer X at time 2

of nodes really consists of the same nodes, each weight matrix is really the same
weight matrix) will be combined to compute the final weight changes.

Genetic Algorithms

One emerging technique in connectionist modeling is the applicatmpenetic
algorithms to modeling. These algorithms seek to “breed” networks by using a
technique reminiscent @fiological evolution Essentially, each network is
assigned genomethat records its properties (such as the number of hidden units,
the learning-rate, or the values of the weights). The most common scheme for
encoding this genome is to use a strinditd (one or zeros). Each group of bits

or gene(maybe the first 10, for example) will encode (in base-2) the value of
whatever parameter thgénerepresents.

Once the form of thgenomeis determined, a large number of networks will be
generated by creatigenomesatrandom. These networks are all trained, and

after they have all been run thétness functionis evaluated. This function
essentially tells the algorithm how good the network did at accomplishing its task.
The nextgenerationof networks is then created by combining the genomes of the
networks with higheditness values. Sometimesnutations are allowed to creep

in by randomly changing one or more bits of the genome. There are literally
thousands of different mechanisms for evaluating fithess, organizing the genome,

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 92

computing the genomes of the next generations, and having mutation. | direct the
reader to Mitchell (1999) for a good introduction to them.

There is nothing mathematically special abgenetic algorithms. They simply

form another class of search tools for fitting a model to a data. Other classes
include learning rules likBack Propagationor statistical optimization

techniques likeMaximum Likelihood Estimation. The reader should bear in
mind that among these optimization togenetic algorithmsare the most poorly
understood, and may not be the most efficient (they will take longer to solve the
problem than other techniques).

Genetic algorithmsare popular mostly because of the compelling (to some
people)biological analogythey provide. However, a close look at this analogy
suggests they may not be as compelling as many people think. Researchers have
usedgenetic algorithmsto set the weights of a network as well as to determine
features of the architecture (number of nodes, connectivity, learning rule, etc..).
However, if you accept the majority-view thvegightsencoddearned

knowledgeit is hard to accept the evolutionary analogy for genetically

determined weights as we have yet to find evidence for inherited knowledge.
Moreover whermgenetic algorithmsare used to determine the architecture of a
model it is often extremely difficult to understand how a model is solving a
particular task and how tlggenetic algorithmarrived at that solution. Because of
this, such models are not good instantiations of a theory—since the theorist did
not determine how the model processes information, “evolution” did—unless

your theory is a theory about evolution (and then you run into the problem that the
model of evolution in mogienetic modelds quite bare). | am not trying to say

here thatGenetic algorithmsare useless. They do have their place in
connectionism,but we must exercise caution in building them (and reading about
them) to be sure that we are saying something interesting, interpretable and new
about cognition. To really achieve any utility we must constrain the algorithms to
the point where we can understand the output.

Damage and Lesions

A growing body of literature has begun to examine what happens when a network
isdamaged This has been particularly fruitful in language research as it is often
useful to compare the outpgesioned networkwith that of anaphasic. Much

like the use ohoisein connectionist networks, thissioninga network is a

concept that is much less complicated that it might seem.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

93 WPLS:UR, vol S2000, no. 1

Researchers have come up with two major ways of damaging a network. The first
is simply to remove sonmnnections(weights) between nodes by setting them

to zero permanently. The second is to remove one or more nodes (typically
hidden units). In both cases, people have looked at damaged networks in two
ways. Often they will simply compare their performance after the damage with
real data from patients. Other times, after receiving the damage, the network will
undergo some more training as a simulation of recovery. This is particularly
interesting in the case where hidden units are lost (autrassociator for

example) as this asks the question of whether the network can successfully adapt
to having fewer dimensions with which to represent its inputs.

As | mentioned previously, the way in whidamageis dealt with is one way in
which localist anddistributed representation schemes differ sinagistributed
representationscan deal with it more gracefully. Most networks exploring the
effects of damage use distributed representations for this reason.

Discussion

I'll prewarn the reader that as | attempt to sum-up this article, my discussion is
likely to turn into a personal pulpit for how connectionism should be done right.
Other authors disagree with me of course, as many of these issues are either under
active debate and those that aren’t have simply not yet surfaced as dominant
issues in the literature (although | predict that they may soon).

Connectionismhas rapidly become a dominant tool for expressing and
guantitatively modeling theories about psychological and neurological
phenomena. Its use is growing in linguistics and it is our hope (on the
psychological side of the fence) that more linguists will begin to add it to their
theory building toolboxes.

It has been shown that given enolmghden units and enough layers didden
units, back-propagation networkscan learn to solvany problem (whether or
not they can help my love life is a different story...). As a result of this, when
evaluating network models we need to determine a lot more than whether or not
the model does the task, but also things like
1) Is the structure of the model neurologically plausible? Does the model
perform computations that real neurons could not possibly do?
2) Are the posited input and output representations psychologically and
neurologically plausible? A model that builds syntactic trees and is
given parts of speech may not be all that interesting (unless we have a

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 94

good model of part-of-speech tagging), since it is unlikely the
syntactic processor is simply given these...

3) What feature of the model allows it to solve the problem? How does it
solve it?

4) Does the time-course over learning and/or processing match the same
time-course in humans?

5) And most importantly, what is thieking hypothesis between the
model and the data? Models do not output eye-movements, or button-
presses or EEG waves or grammaticality judgments or reaction times.
Whenever we relate model output to actual data, we must form some
linking hypothesisas to how this relationship holds. It is crucial that
this be made explicit and that it be well reasoned. Additionally, this
linking hypothesisis just as important a part of theory building as the
model itself: the same model with differdimking hypothesescan
often yield strikingly different results.

When building a model, one needs to keep similar issues in mind. Although there
is a large engineering literature that focuses on building models with the single
goal of solving a particular problem, for the most part, connectionist networks in
psycholinguistics and linguistics are built to instantiate a theory of language
processing or learning (or some other aspect of language). In these models, there
are a number of decisions to be made, and the best modelers will make these
decisions on the basis of the theory they are trying to instantiate.

1) Localist or distributed representation? If a goal is neurological
plausibility, distributed representations may be preferred (as
grandmother cellshave not yet been found in the brain) however a
topographic map may be even better. If the goal is to relate output to
discrete experimental responses, then maybeadist representation
will make it easier to do that.

2) What is the goal of learning? If you wish to model the time course of
development or acquisition, maybe a more neurologically plausible
unsupervisedscheme is best. However, if you merely wish to show
that a particular categorization or mapping is learnable from the input,
asupervised learning rulemay suffice. This distinction is not very
clear-cut in the literature (many developmental arguments have been
made withback-propagation), but it is important to keep in mind
when building the model. If you do useswapervised learning rule
what is the basis of theaching signaP Could it arise in real life with
real brains/minds? Maybe you aren’t interested in learning at all, but
rather, are more interested in exploring processing mechanisms. Here

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

95 WPLS:UR, vol S2000, no. 1

you may even consider setting the weights manually, or wjénatic
algorithm.

3) Are you striving for a completely neurologically plausible architecture
or is an abstraction enough? The answer to this can often constrain all
the architectural choices you might need to make.

Because of the power inherentionnectionist networksand because they are
often as opaque as the cognitive system they are attempting to model, several
cautions must be exercised. Models must be developed to implement specific
theories, and a specifimking hypothesismust be formed linking thenodel

with thedata. The architecture of the model should be grounded in good
linguistic and psychological theory and should be tied to the theory we wish to
instantiate. We should make every attempt to understana network solves

the task, not just that it solves it, constraining our architectures toward this end if
that is necessary.

Finally we should systematically explore the models we develop in a style similar
to that of good psychological experimentation. We should always compare
multiple instantiations of the same model. The effect of different sources and
levels of noise should be systematically explored. Modelers should test the
architecture of the model by looking at the effects of individual components of the
network (e.g. running a network both with and without lateral inhibition). Lastly,
models should be developed so that they can be directly compared to other
models of the same phenomena. In the long run, only by combining these
cautions with knowledge of the neuroscience, mathematics and psychology
behindconnectionist modelingwill it ultimately prove useful as a tool for
conceptual understanding and theory testing.

References

Elman, J., Bates, E., Johnson, M., Karmiloff-Smith, A., Parisi, D., and Plunkett, K. (1996)
Rethinking Innateness: a Connectionist Perspective on Develop@antbridge, Mass.:
The MIT Press.

Elman, (1990) Finding structure in timépgnitive Science, 14,7/9-211.

Elman, J. and Zipser, D. (1988) Learning the hidden structure of sgdextiournal of the
Acoustical Society of America, 83(4515-1626.

Hebb, D. (1948 he Organization of BehaviomNew York: Wiley

Kohonen, (1982) Self-organized formation of topologically correct feature niapkgical
Cybernetics, 439-69

McClelland, J., and Elman, J., (1986) The TRACE model of speech perc&igmitive
Psychology, 181-86.

McClelland J., Rumelhart, D., eds. (198Barallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. Zambridge, MA: the MIT Press.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

McMurray—Connectionism for... er... linguists 96

Rumelhart, D., Hinton, G., and Williams R. (1986) Learning internal representations by error
propagation. in Rumelhart, D., McClelland, J. (e@sdallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. Cambridge, MA: The MIT
Press. 151-193

Rumelhart, D., McClelland J., eds. (198Barallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol. Lambridge, MA: the MIT Press.

Rumelhart, D., and Zipser, D. (1986) Feature discovery by competitive learning. in Rumelhart, D.,
McClelland, J. (edsParallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1.Cambridge, MA: The MIT Press. 151-193

Acknowledgements

This paper grew out of a handout for a series of discussions on the relationship between
linguistics, psychology and connectionist models in speech perception that included Mike
Tanenhaus, Mikhail Masharov, Jim Magnuson, Katherine Crosswhite and Joyce McDonough. As
a group they've contributed to this paper by introducing me to linguistic thinking, and forcing me
to think about connectionism from this viewpoint. I'd like to thank Katherine in particular for
helping to make this readable to linguists and Robbie Jacobs for helping to make this readable to
connectionists by keeping my facts factual.

http://www.ling.rochester.edu/wpls/s2000n1/mcmurray.pdf

