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Introduction

Possible Worlds Semantics

Possible worlds semantics models meanings as constructions from
possible objects and possible worlds.

Possible worlds account of propositions (henceforth ‘PW-account’):
The proposition that a declarative sentence φ expresses
is modeled as some f : W → {>,⊥}, or equivalently,
as some P ⊆W (the proposition expressed by φ is the
set of possible worlds in which φ is true).



Introduction

Big problem for the PW-account

There is only one necessary proposition, W = {w | w is a possible
world}.
I All true mathematical sentences mean the same thing;
I whoever knows any necessary proposition knows them all, and,

thus, in particular, is mathematically omniscient.



Introduction

Plan:

1. The metalinguistic strategy: mathematical propositions aren’t
W or ∅, but propositions about the relation between some math-
ematical sentence and W ;

2. the closure problem;
3. the fragmentation strategy;
4. the computation strategy.
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The Metalinguistic Strategy

The Metalinguistic Strategy

I Mathematical propositions are propositions about the relation-
ship between some mathematical sentence and the one neces-
sarily true proposition, W .

I Ola seems ignorant that 5801 is prime: Ola isn’t ignorant that
W , but that ‘5801 is prime’ expresses W .

I Mathematical propositions are propositions of form {w | φ ex-
presses W at w}, for mathematical sentence φ.

I Since for any distinct ϕ and ψ, {w | ϕ expresses W at w} 6=
{w | ψ expresses W at w}, there are as many distinct math-
ematical propositions as there are distinct mathematical sen-
tences.
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Closure principles

The Closure Problem

On the standard model traditionally associated with the PW-account,
knowledge and belief are closed under entailment:
I If Π entails Q, and if BS(P ) for all P ∈ Π, then BS(Q).

[Closure Principle]
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Closure principles

The Closure Problem

1. Ola knows that the axioms of PA are true.
2. Ola knows that the inference rules preserve truth.
3. For any given theorem of arithmetic, φ, the axioms being true

and the rules of inference being truth-preserving entails that φ
is true.

4. Ola knows that φ is true [by Closure Principle].
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The Closure Problem

The standard model of knowledge and belief

The Standard Model

Knowledge and belief is “truth in all accessible worlds”:
I IS : the set of worlds that are epistemically accessible to S, S’s

“information state.”
I KS(P ) iff IS ⊆ P .
I If P ⊆ Q, and KS(P ), then IS ⊆ Q, i.e., KS(Q).
I BS : the set of worlds that are doxastically accessible to S, S’s

“belief state.”



The Closure Problem

From functionalism to the standard model and the PW-account

Stalnaker’s causal-pragmatic account of belief

To believe that p is to be disposed to act in ways that
would tend to satisfy one’s desires, whatever they are, in a
world in which p (together with one’s other beliefs) were
true. (Stalnaker 1984, 15)
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The Closure Problem

From functionalism to the standard model and the PW-account

Stalnaker’s causal-pragmatic account of belief

Necessarily, an agent believes P iff:
1. the agent is in a state she would only be in if P were the case,

and,

I Closed under entailment.

2. the agent is disposed to act in ways that would tend to satisfy
her desires in a world in which P together with her other beliefs
is true.

I If S is disposed to act in ways that would tend to satisfy her
desires in P -worlds, and if P ⊆ Q, then she is also disposed to
act in ways that would satisfy her desires in P ∩Q;

I S believes {w | P is true at w and Q is true at w};
I S believes Q (by distribution) [?];
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The Closure Problem

From functionalism to the standard model and the PW-account

Stalnaker’s causal-pragmatic account of belief

Necessarily, an agent believes P iff:
1. the agent is in a state she would only be in if P were the case,

and,
I Closed under entailment.

2. the agent is disposed to act in ways that would tend to satisfy
her desires in a world in which P together with her other beliefs
is true.
I In any case, {w |PA is true and rules are truth-preserving at

w} = {w |PA is true and rules are truth-preserving and FLT is
a theorem and FLT is true at w}, so, if Ola believes the former
she believes the latter.
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The Fragmentation Strategy

I Agents can be “fragmented” in the sense of having more than
one belief state at the same time.

I Each belief state corresponds to a context the agent is in, or a
task that the agent is engaged in.

I → Information can be accessible for some purposes or in some
contexts, but inaccessible for others.

I E.g.: Information that ‘dreamt’ is a word of English with 6
letters ending with ‘mt’:

I Inaccessible to S for purpose of solving cross-word puzzle;
I Accessible to S for purpose of answering “Is ‘dreamt’ a word of

English with six letters and ending in ‘mt’?”
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The Fragmentation Strategy

Cases that can’t be explained by fragmentation:

1. KO({w | a1 expresses W at w}) [assumption].
2. KO({w | a2 expresses W at w}) [assumption].
3. KO({w |`〈A,R〉 ψ at w}) [since {w |`〈A,R〉 ψ at w} = W ].
4. KO({w |At w, for any ϕ, if a1 expresses W and a2 expresses
W and `〈A,R〉 ϕ, then ϕ expresses W}) [assumption].

5. KO({w | ψ expresses W at w}) [by 1.–4. and closure under
entailment].
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The Computation Strategy

I What Ola doesn’t have is the ability to prove φ from 〈A,R〉.
I What Watson lacks and Holmes has is the ability to compute

who the culprit is based on the information they each have.



The Computation Strategy

Algorithmic knowledge models

Algorithmic Knowledge Models

Developed by Halpern, Moses, Vardi, Konolige, Parikh, Pucella, ...:
I Supplements the standard model with algorithms;
I Agent has a knowledge algorithm that returns ‘Yes’, ‘No’, or ‘?’

given a formula φ;
I An agent then (algorithmically) knows φ iff her knowledge al-

gorithm returns ‘Yes’ on input φ.

[Simple case: An algorithmic structure is a tupleM = 〈W,W ′, π, A〉
where 〈W,W ′, π〉 is a K45 Kripke structure, and A a knowledge
algorithm that returns ‘Yes’, ‘No’, or ‘?’ given φ.
(M,w) |= Kφ iff A(φ) = ‘Yes’.]
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Simple Proposal

Simple Proposal

S knows {w | φ expresses W at w} iff:
1. S is in a state that indicates (carries the information) {w | φ

expresses W at w}, and,
2. S has an algorithm that reliably outputs ‘True’ if asked to de-

termine φ’s truth-value, using at most resources R.

I Doesn’t face closure problem.
I Mathematical knowledge plausibly requires more than 2.
I Ignores relevance of desires to action.
I Only applies to metalinguistic propositions.
I Could be made to fit more explicitly with functionalism.
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Improved Proposal 1

Improved Proposal, 1

S knows P iff:
1*. S is in a state that indicates (carries the information) P , and,
2*. S has an algorithm that reliably produces desire-satisfying be-

havior in w ∈ P , using at most resources R.

I Faces closure problem:
I Assume you know axioms and rules of inference, you are able

to exhibit desire-satisfying behaviors in w ∈ {w | PA is true and
rules are truth-preserving}.

I But {w | PA is true and rules are truth-preserving} = {w | PA
is true and rules are truth-preserving and FLT is a theorem and
FLT is true at w}.
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Improved Proposal 1

Simple Proposal:

S knows {w | φ expresses W at w} iff:
1. S is in a state that indicates (carries the information) {w | φ
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Improved Proposal 2

Improved Proposal, 2

S knows P iff:
1**. S is in a state that indicates (carries the information) P , and,
2**. S has an algorithm that reliably produces desire-satisfying be-

havior in w ∈ P , using at most resources R, with respect to
tasks T.

I Even if P = Q, having an algorithm that produces desire-
satisfying behavior in w ∈ P with respect to task T1 might
not entail having an algorithm that produces desire-satisfying
behavior in w ∈ Q with respect to task T2.
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Improved Proposal 2

Improved Proposal, 2

S knows P iff:
1**. S is in a state that indicates (carries the information) P , and,
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P = {w | PA is true and rules are truth-preserving and FLT is a
theorem and FLT is true at w}?

Other Ps?
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I Even if P entails Q, the tasks relative to which one attributes
‘knowledge that P ’ can be different from the tasks relative to
which one attributes ‘knowledge that Q’.
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Thank you!
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