GENERICS, ATTITUDES & EXCEPTIONS

Jon Ander Mendia (joint work with Hana Filip)

December 3 2020 ~ Virtual Rochester

THE PLOT

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
0000	00000	00000	00000000000000000	000000000000	000000

Generics

Generic statements convey generalizations.

- Generalizations: non-accidental, principled characteristics of some (type of) individuals/situations.
- Essential to express the ways in which we view the world and how we reason about it.

The plot ○○●○○	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000

Characterizing Generics (CGs)

• No general agreement on the criteria that single out *all and only* CGs.

The plot ○○●○○	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000

Characterizing Generics (CGs)

- No general agreement on the criteria that single out *all and only* CGs.
- Two types of CGs, (roughly) depending of the type of subject:
 - ► CGs with *kind* denoting NPs (e.g., Dahl 1995, Pelletier and Asher 1997): the regularity holds of the kind **and** across individual instances of that kind.
 - (1) a. Triangles have three sides.
 - b. Birds fly.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	0000000000000	000000

Characterizing Generics (CGs)

- No general agreement on the criteria that single out *all and only* CGs.
- Two types of CGs, (roughly) depending of the type of subject:
 - ► CGs with *kind* denoting NPs (e.g., Dahl 1995, Pelletier and Asher 1997): the regularity holds of the kind **and** across individual instances of that kind.
 - (1) a. Triangles have three sides.
 - b. Birds fly.
 - "Habituals": CGs with object-denoting subjects, express a generalization over situations that are specified by the corresponding episodic predicate.
 - (2) a. Liz smokes after dinner.
 - b. The sun rises in the East.

The plot ○○○●○	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
The pro	oblem				

The plot ○○○●○	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
The pr	oblem				

• It is clear, intuitively, that generic sentences convey generalizations; i.e. non-accidental, principled conditions, etc.

The problem

It is far from clear (i) what their truth-conditions are, and (ii) whether it is possible to provide a uniform analysis of all CG sentences, given the variety of conditions under which they are judged to be true.

- What counts as "non-accidental"? What counts as "principled"?
- What is "exceptional"?
- How do we form such generalizations?

The plot ○○○○●	Properties of CGs 00000	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
Todav					

Question

Is it possible to provide a single unified semantics for CGs?

PROPERTIES OF CGS

The plot 00000	Properties of CGs ○●○○○	Two theories	A new perspective	The Czech suffix va	Conclusion
1. Exce	eptions				

- Some CGs allow exceptions:
 - (3) Birds fly.

 \sim in the general case...

The plot 00000	Properties of CGs ○●○○○	Two theories	A new perspective	The Czech suffix va	Conclusion
1. Exce	eptions				

- Some CGs allow exceptions:
 - (3) Birds fly.
- Others don't:
 - (4) Triangles have three sides.

→in the general case...

#in the general case...

The plot 00000	Properties of CGs ○●○○○	Two theories	A new perspective	The Czech suffix va	Conclusion
1. Exc	eptions				

- Some CGs allow exceptions:
 - (3) Birds fly.
- Others don't:
 - (4) Triangles have three sides.
- Some CGs "integrate" the exception:
 - (5) Mosquitoes carry West Nile virus.

∼ in the general case...

#in the general case...

→→in the general case...

The plot 00000	Properties of CGs ○○●○○	Two theories	A new perspective	The Czech suffix va	Conclusion

2. Not about majorities

- Not any property that is true of a majority of a population guarantees the truthfulness of its corresponding generic statement.
 - (6) Germans are right-handed.

FALSE, even if it turns out to be the case that most Germans are right handed.

The plot 00000	Properties of CGs ○○●○○	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
					ľ

2. Not about majorities

- Not any property that is true of a majority of a population guarantees the truthfulness of its corresponding generic statement.
 - (6) Germans are right-handed.FALSE, even if it turns out to be the case that most Germans are right handed.
- ⊕ Being a minority does not preempt CGs (as in the 'mosquitoes' example above); being a majority is not sufficient for forming CGs.

The plot 00000	Properties of CGs ○○○●○	Two theories	A new perspective	The Czech suffix va	Conclusion
3. Inte	ensionality				

- Some generalizations have never been, or may never be, actualized:
 - (7) This machine crushes oranges.TRUE, even if the machine has never been used.

The plot 00000	Properties of CGs ○○○●○	Two theories	A new perspective	The Czech suffix va	Conclusion
3. Tnte	ensionality				

- Some generalizations have never been, or may never be, actualized:
 - (7) This machine crushes oranges.TRUE, even if the machine has never been used.
- Co-extension does not guarantee truth:
 - (8) a. Lions have manes.TRUE even if only male lions have manes.
 - b. Lions are male.

FALSE even if the all and only the lions that are male have manes.

The plot 00000	Properties of CGs ○○○○●	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
So					

- The problem is that the truth of a generic statement does not (solely) depend on quantity, i.e., they do not (just) depend on knowing **how many cases verify it**.
- There is a tension:
 - ▶ We have clear intuitions about what CG-statements are.
 - We do not know what the necessary conditions to form CGs are.
- We seem to understand generic statements, but we don't understand why we understand them.

TWO THEORIES

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	0000	0000000000000	000000000000	000000

Question

Is it possible to provide a single unified semantics for CGs?

• Null hypothesis

CGs form a single class of sentence types constituting a unified phenomenon, for which a unified semantic analysis is possible and desirable.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	000000000000	000000

Carlson (1995): two perspectives for a unified analysis

- The Rules & Regulations (R&R) perspective: The truth of CGs depends on some causal structure or forces that are behind episodic instances in the world.
 - (9) a. Bishops move diagonally. game rules
 b. Tab A fits in slot B. operating instructions
 c. The Vice-President succeeds the President. parliamentary rules

The plot Properties of CGs Two theories A new perspective The Czech suffix va Conclusio 00000 00000 000000 000000 000000 000000		
---	--	--

Carlson (1995): two perspectives for a unified analysis

• The Induction perspective:

CGs express inductive generalizations whose base is some observed set of instances. They are **inferential** generalizations based on patterns, as such they must be backed up by evidence.

(10) a. Birds fly.

b. Liz smokes after dinner.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	0000000000000	000000000000	000000

- Carlson (1995) favors the R&R approach, with reservations wrt. unification:
 - (11) a. Rule descriptions: ✓ R&R; XInd.
 Bishops move diagonally, In the UK one drives on the left...

 - c. ILPs:

John is a bachelor/murderer...

✓ R&R; ¥Ind.

The plot 00000	Properties of CGs	Two theories ○○○○●	A new perspective	The Czech suffix va	Conclusion 000000

• Carlson (1995) favors the R&R approach, with reservations wrt. unification:

(11)	a.	Rule descriptions:	✓R&R ¥Ind.
		Bishops move diagonally, In the UK one drives on th	e left
	b.	Non-actuality:	✓R&R ¥Ind.
		This machine crushes oranges, Tab A fits in Tab B	
	с.	ILPs:	✓R&R XInd.
		John is a bachelor/murderer	
	d.	Habituals:	¥R&R √Ind.
		John smokes after dinner, Liz drives to work	
	e.	Inferential generalizations:	X R&R √Ind.
		Crows are smaller than ravens	
	f.	Gradability:	¥R&R √Ind.
		Dutchmen are good sailors, African marathoners rur	ı fast
	g.	Exceptions:	X R&R √Ind.
		(Categorically excluded from R&R.)	

A NEW PERSPECTIVE

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

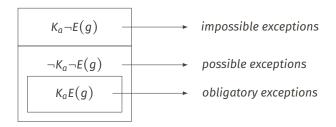
Overview

Question

Is it possible to provide a single unified semantics for CGs?

- Some linguistic expressions are dedicated (morphological) markers of certain type of inductive generalizations.
- Our focus: the stance that the cognitive agent takes on exceptions to the generically predicated property, which in turn correlates with different types of generalizations.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
_					


• Fact

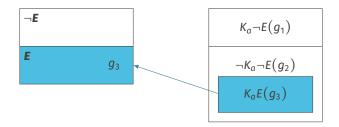
For some generalization *g*, either there are exceptions to *g*, or there aren't; *E* ("has exceptions") induces a bipartition of the space of all *g*.

¬ E	g 1	g ₂	g ₃
Ε	g ₄	g ₅	g ₆

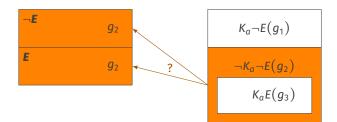
The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
Focus	on exception	IS			

 Given that for any g, either E(g) or ¬E(g), a cognitive agent a may contend three hypotheses as to what a knows concerning the supporting evidence for g are: either a knows that g has exceptions, a knows that g hasn't exceptions, or a does not know.

The plot 00000	Properties of CGs	Two theories 00000	A new perspective	The Czech suffix va	Conclusion 000000



$$K_{a}\neg E(g_{1})$$
$$\neg K_{a}\neg E(g_{2})$$
$$K_{a}E(g_{3})$$


The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
_					

• General Hypothesis

Learning of generalizations proceeds by either learning some R&Rs or by Induction.

• Different types of generalizations are amenable to one or other by virtue of the properties the relevant generalization is about; i.e. on its *base* (*sensu* Carlson 2008).

Cf. Cohen (1999), Greenberg (2003), Pelletier (2010), Krifka (2013), Doron and Boneh (2013), a.o.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
_					

General Hypothesis

Learning of generalizations proceeds by either learning some R&Rs or by Induction.

Different types of generalizations are amenable to one or other by virtue of the properties the relevant generalization is about; i.e. on its base (sensu Carlson 2008).

Where do R&R/Inductive CGs fall wrt. E?

Cf. Cohen (1999), Greenberg (2003), Pelletier (2010), Krifka (2013), Doron and Boneh (2013), a.o.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
R&R G	eneralizatio	ns			

- R&R generalizations permit no exceptions, no counter-instances; they live in $\neg E$.
- They convey dispositions whose defining properties/conditions do not change, are taken to be tendentially stable.
- For a cognitive agent *a*, the issue of exceptions with SG wrt. some episode *p* to does not meaningfully arise; call these **Strong Generalizations** (SG).
 - (12) a. Triangles have three sides.
 - b. Cats are mammals.
 - c. This machine crushes oranges.
 - d. John is a bachelor.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

Inductive Generalizations

- Inductive generalizations are **inferential**: by repeated observation of episodes $p_1 \dots p_n$, a pattern emerges.
- They are ceteris paribus.
 - (13) a. Birds fly.
 - b. John smokes after dinner.
 - c. Dutchmen are good sailors.
 - d. Typically books are paperback.
- Unlike SGs, these are **Weak Generalizations** (WG); the cognitive agent *a* cannot rule out the possibility of exceptions.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion 000000
Cautior	า				

- - (14) a. $R\&R \Rightarrow$ no exceptions
 - b. No exceptions \Rightarrow R&R

The plot 00000	Properties of CGs	Two theories	A new perspective ○○○○○○○○○○○●○○	The Czech suffix va	Conclusion 000000
Cautior	ן ח				

- There is no one-to-one correspondence between the presence/absence of exceptions and R&R/Induction:
 - (14) a. $R\&R \Rightarrow$ no exceptions
 - b. No exceptions \Rightarrow R&R
 - Some "inductive" generalizations do not have exceptions:
 - (15) The sun rises in the East.

The plot 00000	Properties of CGs 00000	Two theories	A new perspective ○○○○○○○○○○○○●○	The Czech suffix va	Conclusion 000000
A clari	fication				

- (16) a. Triangles have three sides.
 - b. The sun rises in the East.
 - c. John smokes after dinner.
 - d. Typically books are paperbacks.

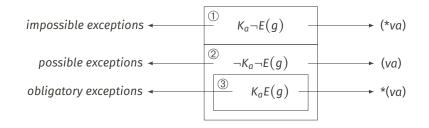
Process	Generalization	Attitude wrt. E	
R&R	Strong	$K_a \neg E(g)$	(16a)
Induction	Strong	$K_a \neg E(g)$	(16b)
Induction	Weak	$\neg K_a \neg E(g)$	(16c)
Induction	Weak	$K_a E(g)$	(16d)

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	000000000000	000000000000	000000

Overt markers of Weak Generalizations

• Concrete Hypothesis

The weak/strong distinction is not just notional. The *linguistic reality* of such division is supported by the existence of expressions that pick out one sub-type.


• Up next: Czech verbal suffix *va*, which we take to be a generic marker of Weak Generalizations

We will not defend here that va is neither an IMPF nor HABITUAL marker; see earlier work by Hana Filip.

THE CZECH SUFFIX VA

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	0000000000000	●●●●●●●●●	000000

Va and epistemic commitments to exceptions

Va-generics stand for weak generalizations that require compatibility with exceptions; 2 and 3: they signal that a is denying the existence of a relevant SG, thereby committing herself to either the knowledge of exceptions (3) or explicitly signaling her ignorance concerning the absence/presence of exceptions (2).

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
The Cz	ech suffix vo	כ			

- *Va* (and its allomorphic variants) is a verbal suffix that previous literature has labeled as a frequentative or iterative marker (e.g. Dahl 1995, where *va* is treated as a marker of imperfective aspect).
- Here we will take for granted that *va* is not just a marker of imperfectivity (*pace* Dahl 1995; see the critic in Filip and Carlson 1997 and Filip 2018).
- Generic-va: a verbal suffix conveying genericity not to be confused with its homonymous imperfective suffix va.

The plot 00000	Properties of CGs	Two theories 00000	A new perspective	The Czech suffix va ○○○●○○○○○○○○	Conclusion 000000

The Czech suffix va

(17) Imperfective vs. generic va

- a. psát write.INF episodic: to write/be writing generic: to write as a habit
- přepisovat
 ITER.write.IMPF.INF
 episodic: to rewrite/be rewriting
 generic: to rewrite as a habit
- e. dávat give.IMPF.INF episodic: to give/be giving generic: to give as a habit

- b. psávat
 write.VA.INF
 episodic: generic: to write as a habit
- d. přepisovávat
 ITER.write.IMPF.VA.INF
 episodic: generic: to rewrite as a habit
- f. dává**va**t give.IMPF.VA.INF episodic: generic: to give as a habit

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va ○○○○●○○○○○○○○	Conclusion

1. Obligatorily generic

- Unlike formally unmarked generic statements (e.g. with imperfective aspect) *va* is unambiguously generic (Filip and Carlson 1997).
 - (18) a. Honza sedí v hospdě. Jon sit.IMPF in pub 'Jon {is sitting / (usually) sits} in a bar.'
 - b. Honza sedává v hospdě.
 Jon sit.vA in pub
 'Jon {#is sitting / (usually) sits} in a bar.'
- Formally unmarked imperfectives behave as in English.
- ❸ Generic-va is sufficient but not necessary for CG.

The plot 00000	Properties of CGs	Two theories 00000	A new perspective	The Czech suffix va ○○○○○●○○○○○○○	Conclusion

2. Obligatory verifying instances

- *Va*-generics require that there be at least one verifying instance of the generically-predicated property in the actual world.
 - (19) a. Tento stroj drtí pomeranče. this machine crushes oranges
 'This machine crushes oranges.' ...√'although we haven't used it yet.'
 b. Tento stroj drtívá pomeranče. this machine crush.vA oranges

'This machine crushes-va oranges.'

...X'although we haven't used it yet.'

• Generic-va is ungrammatical in the absence of evidence.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	0000000000000	000000000000	000000

3. Incompatibility with exceptionless CGs

- Va-generics are infelicitous with exceptionless generalizations such as analytical truths, constitutive and regulative rules, etc.
 - (20) a. Trojuhelník { má / #mívá } tři strany.
 triangle has has.vA three sides
 'Triangles have three sides.'
 - b. V Anglii se { jezdí / #jezdívá } po levé straně.
 in England REFL drive drive.vA on left side
 'In England one drives on the left.'
 - c. Velryba { je / #bývá } savec.
 whale is is.vA mammal
 'A whale is a mammal.'
- This makes generic-va different with Q-adverbs like usually, etc., which are oftentimes compatible with exceptions.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	0000000000000	000000000000	000000

3. Incompatibility with universal-Q

- Similarly, *va*-generics are incompatible with universal quantification that uses up the same situation variable.
 - (21) #Každou sobotu Honza sedává v hospodě
 each Saturday John sits.va in pub
 'Every Saturday John usually sits in the pub.'

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	0000000000000	000000

4. Obligatory with positive-counterinstances

 Generic-va must be used to express generalizations that concern generic properties to which there are known positive counterinstances (Leslie 2008).

22)	a.	Books are paperbacks.	False
	b.	Typically, books are paperbacks.	True

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	0000000000000	000000

4. Obligatory with positive-counterinstances

 Generic-va must be used to express generalizations that concern generic properties to which there are known positive counterinstances (Leslie 2008).

(22)	a.	Books are pa	perback	۲S.	False
	b.	Typically, books are paperbacks.			True
(23)	a.	Knihy book.pl.nom			
		'Books are pa	perbacl	k.'	False
	b.	Knihy book.pl.NOM		<i>brožované.</i> paperback	
		'Books tend t	o be pa	perback.'	True

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
5. No 1	frequency co	nveyed			

- The semantic contribution of the suffix *va* cannot be reduced to an ordinary quantifier over situations (e.g. *most*, *usually*).
- i. *va* marks generic sentences that are true even if most instances do not satisfy the generically-predicated property.
 - (24) a. Žraloci napadávají plavce.
 shark attack.vA bather
 'Sharks may attack bathers.' TRUE
 - b. Žraloci obyčejně napadávají plavce.
 shark usually attack.vA bather
 'Sharks tend to attack bathers.'

False

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va ○○○○○○○○○○●○○	Conclusion
5. No 1	frequency co	nveyed			

- The semantic contribution of the suffix *va* cannot be reduced to an ordinary quantifier over situations (e.g. *most*, *usually*).
- ii. *va* may freely occur with quantificational adverbs denoting low frequency, such as *rarely*.
 - (25) a. Ten šuplík bývá jen velmi zřídka zamčený. that drawer is.va only very rarely locked 'That drawer used to be locked only very rarely.'
 - b. # Usually the drawer is very rarelay locked.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va ○○○○○○○○○○●○○	Conclusion
5. No 1	frequency co	nveyed			

- The semantic contribution of the suffix *va* cannot be reduced to an ordinary quantifier over situations (e.g. *most*, *usually*).
- ii. *va* may freely occur with quantificational adverbs denoting low frequency, such as *rarely*.
 - (25) a. Ten šuplík bývá jen velmi zřídka zamčený. that drawer is.va only very rarely locked 'That drawer used to be locked only very rarely.'
 - b. # Usually the drawer is very rarelay locked.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va ○○○○○○○○○○○●○	Conclusion

6. Epistemic effects

- In cases where exceptions to the generically predicated property are not known, *va*-generics convey an additional epistemic meaning that the speaker is uncertain as to the extent to which the generality expressed by the proposition holds.

 - (27) Felicity conditions of (26): Speaker S is committed to the following...
 - a. at least one house has a garden.
 - b. at least one house does not have a garden.
 - c. there is a house~garden pattern.
 - → S cannot commit herself to a stronger statement.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va ○○○○○○○○○○○○	Conclusion 000000

Summary

	Strong	Weak	va
Verifying instances	×	\checkmark	\checkmark
Obligatory exceptions	×	\checkmark	\checkmark
Positive counterinstances	×	\checkmark	\checkmark
Low frequency	×	\checkmark	\checkmark
Epistemic effect	×	\checkmark	\checkmark

CONCLUSION

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
Conclu	usion				

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
Conclu	usion				

- There is *linguistic evidence* for two types of CGs. It's not just a matter of on-the-surface non-uniformity of CGs; it is genuinely reflected in the semantic properties of marked/unmarked generics.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
Conclu	usion				

- There is *linguistic evidence* for two types of CGs. It's not just a matter of on-the-surface non-uniformity of CGs; it is genuinely reflected in the semantic properties of marked/unmarked generics.
- O No unification for all CGs.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

• Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?

The plot 00000	Properties of CGs	Two theories 00000	A new perspective	The Czech suffix va	Conclusion ○○●○○○

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?
- CGs like *birds fly* are a "mixed case" of kind reference in a CG-statement (**?**, Krifka 2009), it expresses a "double generalization".

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?
- CGs like *birds fly* are a "mixed case" of kind reference in a CG-statement (**?**, Krifka 2009), it expresses a "double generalization".
 - (28) The generically-predicated property FLY is understood as being true...
 - a. of the kind BIRD (on the basis of individual birds to which the property of flying is attributed), and
 - b. of individual birds (on the basis of particular situations of flying by a stage of an individual bird).

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion ○○●○○○

- Formally unmarked generics in Czech (without the generic-va) are compatible with all types of CGs. So, why marked generics at all?
- CGs like *birds fly* are a "mixed case" of kind reference in a CG-statement (**?**, Krifka 2009), it expresses a "double generalization".
 - (28) The generically-predicated property FLY is understood as being true...
 - a. of the kind BIRD (on the basis of individual birds to which the property of flying is attributed), and
 - b. of individual birds (on the basis of particular situations of flying by a stage of an individual bird).
- The formally **unmarked** Czech generic sentence *Ptáci létají* highlights (28a).
- The formally **marked** generic sentence *Ptáci létávají* conveys (28b).

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion ○○○●○○
Other	lannuanes				

- A number of languages have morphological devices available to signal CGs (often called "habituals"; Dahl 1995).
- Some examples (for more see Dahl 1995, 421).
 - ► Affixes on verbs: Swahili prefix *hu*-, Czech suffix -*va*-, West Greenlandic suffix -*sar*-/-*tar*-.
 - ► Reduplication of imperfective morphemes: Wolof.
 - ► Free forms in the verb's auxiliary cluster: Georgian particle *xolme*, Swedish auxiliary verb *bruka*.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion ○○○○●○
About	Gen				

• Notice that:

- ▶ We have not said anything about the semantics of unmarked CGs.
- Not knowing the actual semantics of unmarked CGs greatly complicates any competition-based account of the epistemic effects of marked CGs.

The plot 00000	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion ○○○○●○
		i .	l .		

• Notice that:

About Gen

- ▶ We have not said anything about the semantics of unmarked CGs.
- ► Not knowing the *actual* semantics of unmarked CGs greatly complicates any competition-based account of the epistemic effects of marked CGs.
- What is the relation of va (and similar markers) to GEN?
- Assuming all R&R generics involve GEN, it is clear that *va* cannot be GEN; rather, it behaves like a "vanilla" Q-adverb specifically tailored to express Weak Generalizations.

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	000000000000	00000

Thank you!

The plot	Properties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000	00000	00000	00000000000000	000000000000	000000

- Carlson, G. N. (1995). Truth-conditions of generic sentences: two contrasting views. In *The generic book*, chapter 4, pages 224–237. Chicago University Press.
- Carlson, G. N. (2008). Patterns in the semantics of generic sentences. In Guéron, J. and Lecarme, J., editors, Studies in Natural Language and Linguistic Theory, Time and Modality, volume 75, pages 17–38. Springer, Dordrecht.
- Cohen, A. (1999). Generics, frequency adverbs, and probability. *Linguistics and Philosophy*, 22(3):221–253.
- Dahl, Ö. (1995). The marking of the episodic/generic distinction in tense-aspect systems. In Carlson, G. N. and Pelletier, F. J., editors, *The Generic Book*, pages 415–425. University of Chicago Press, Chicago: USA.
- Doron, E. and Boneh, N. (2013). Hab and gen in the expression of habituality with . in . : . In Beyssade, C., Mari, A., and del Prete, F., editors, *Genericity*, pages 176–191. Oxford University Press, Oxford.
- Filip, H. (2018). Grammaticalization of generic markers. To appear in *Habituality and Genericity in Flux. A special issue of Linguistics*, edited by Nora Boneh and Lukasz Jedrzejowski.
- Filip, H. and Carlson, G. N. (1997). Sui generis genericity. In *Proceedings of the 21st Annual Penn Linguistics Colloquium*, pages 91–110, Philadelphia, USA. University of Pennsylvania.

Greenberg, Y. (2003). Manifestations of Genericity. Routledge, New York.

Krifka, M. (2009). Approximate interpretations of number words: A case for strategic communication. In Hinrichs, E. and Nerbonne, J., editors, *Theory and evidence in semantics*, pages 109–132. CSLI Publications.

The plot Proj	operties of CGs	Two theories	A new perspective	The Czech suffix va	Conclusion
00000 00	0000	00000	000000000000000	000000000000	000000

Krifka, M. (2013). Definitional generics. In Mari, A., Beyssade, C., and Prete, F. D., editors, Genericity, pages 372–389. Oxford University Press.

Leslie, S.-J. (2008). Generics: Cognition and acquisition. Philosophical Review, 117(1-47).

- Pelletier, F. and Asher, N. A. N. H. (1997). Generics and defaults. In van Benthem, J. and Ter Meulen, A., editors, *Handbook of Logic and Language*, pages 1125–1177.
- Pelletier, F. J. (2010). All are generics created equal? In Pelletier, F. J., editor, *Kinds, things and stuff*, pages 60–79. OUP.