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1 Overview

• This talk is about a topic of long-standing interest in the psychology of reasoning: conjunction
fallacies.

• Tversky and Kahneman (1983) propose that conjunction fallacies arise because experimental
participants employ a representativeness heuristic.

◦ Representativeness must be based on a relation of similarity.

• We propose instead that the conjunction fallacies arise because experimental participants employ
a satisficing heuristic (Simon 1956).

◦ Satisficing is based on a relation of optimization, relative to some defined optimum.

• We believe satisficing to be more satisfying, because there are well-defined ways to compute
optima.

• A feature of previous literature on this problem has been the lack of a compositional analysis of
and that predicts the correct pattern of experimental results.

• We offer such an analysis, based on a monad built around tropical semirings (Simon 1988).

Computational tools

• We have developed a couple of implementations that you can play with:

1. A Jupyter Notebook, which is useful as an exercise tool to play with the framework and to try
things out.
https://github.com/gianlucagiorgolo/nls-with-ct-exercises

2. A theorem prover, does what it says on the tin: It proves theorems based on sequents that you
provide and displays any proofs it finds.
http://www.sas.rochester.edu/lin/sites/asudeh/tp.html

*This talk is based on joint work with Gianluca Giorgolo, in particular chapter 6 of Asudeh and Giorgolo (2020). Any
errors in this talk are my own.
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1.1 Outline

• Section 2 lays out the more general project developed in Asudeh and Giorgolo (2020).

• Section 3 lays out the background on conjunction fallacies and issues of compositionality raised
by previous approaches.

• Section 4 lays out the intuitions behind our model.

• Section 5 discusses how monads can model uncertainty as probability.

• Section 6 discusses how a previous monadic solution that we have proposed (Giorgolo and
Asudeh 2014) needs to appeal to general Gricean reasoning to fully explain conjunction falla-
cies.

• Section 7 introduces tropical semirings, explains how this predicts the pattern of experimental
results without appeal to Gricean pragmatics, and shows that the result captures the duality of
conjunction and disjunction.

• Section 8 concludes.

2 Our project

• The Enriched Meanings project (Asudeh and Giorgolo 2020) is about using a concept from cate-
gory theory and functional programming — monads — to model some murkier aspects of natural
language meaning.1

• Monads have been successfully used in the semantics of programming languages to characterize
certain classes of computation (Moggi 1989, Wadler 1992, 1994, 1995).

• Our original inspiration came from Shan (2001), who sketched how monads could potentially be
used to offer new solutions to certain problems in natural language semantics and pragmatics.

• Before I answer the question of what we mean by enriched meanings, it is useful to build up some
common ground about semantic theory.

◦ We adhere to the fundamental assumption of formal semantics, the Principle of Compositional-
ity (POC), which requires that there be some basic stock of meanings that can be combined to
yield the meanings of larger expressions that are built out of the basic meanings. The non-basic
expressions can then be composed into yet larger expressions, and so on.

– Language is productive/generative and it is also interpreted. So something like POC sim-
ply must be true. It seems axiomatic.

◦ The basic meanings must be stored somewhere, so let’s assume there’s a lexicon of some kind.

– POC does not place particularly substantive restrictions on the nature of lexical meanings,
other than requiring them to support composition.

1For other research in this vein, see: Bumford (2015, 2017a,b), Bumford and Barker (2013), Charlow (2014, 2019a,
2018, 2019b), Cohn-Gordon (nd), Giorgolo and Unger (2009), van Eijck and Unger (2010), Maršik (2016), Shan (2010),
Unger (2011), White, Needle, Charlow, and Bumford (2017). Monads are also related to continuations (Wadler 1994),
which are the formal tool used in a rich body of work by Chris Barker and Ken Shan (Barker 2002, 2012, 2018, 2019,
Barker and Shan 2006, 2008, 2014), and also in their collaboration with Raffaella Bernardi (Barker, Bernardi, and Shan
2010).
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◦ There has often been a tendency in formal semantics to generalize lexical meanings to the
worst case.

– For example, based on the necessity of treating some nominals as generalized quantifiers,
Montague (1973) famously treated all nominals as generalized quantifiers.

– Similarly, in order to capture the semantics of intensional verbs, Montague treated simpler,
extensional verbs equivalently, but had their lexical entries disregard the intensional param-
eters. In other words, because some verbs need intensional parameters, all verbs have them.

– Yet another example is the use of assignment functions to interpret variables: Every interpre-
tation is relativized to an assignment function, whether what is being interpreted contains
variables or not. Again, because assignment functions are needed in some cases, they are
there in all cases.

• If we want linguistic semantics to be a linguistically and philosophically sound science, we should
avoid generalizing to the worst case.

◦ Serious steps were taken in this direction through the development of type shifting rules (Partee
and Rooth 1983, Partee 1986), which allow certain meanings to be listed in a simpler form
lexically but to be shifted to a more complex form if compositionally necessary.

– For example, a proper name can be listed lexically as denoting an individual, but can be
shifted to a generalized quantifier if necessary in composition (e.g., when conjoined with a
generalized quantifier built around a quantificational determiner).

– Moreover, some type shift rules are logically justified (van Benthem 1991), including the
shift from an individual to a generalized quantifier.

– However, this doesn’t hold for all type shifting, such as shifting from the type of a predicative
adjective to that of an attributive adjective.

– Moreover, type shifting is not formally restricted, unless we restrict it to, for example, only
logically justified type shifting.

– Restrictions instead come from linguistic observation; i.e, shifts are motivated by whatever
happens in natural language.

– But this means that type shifting is descriptive, not explanatory, since the only restrictions
come from the very data it seeks to explain, rather than from some formally defined theo-
retical framework for mapping simple meanings to complex meanings.

• This is where enriched meanings come in. An enriched meaning is precisely the result of mapping
some input space of objects and relations to a richer space.

◦ To do this in a principled way, we use monads.

• Much like type shifting, enriched meanings allow us to avoid generalizing basic meanings to the
worst case, but in a more principled way.

• This is particularly useful in formally capturing some aspects of meaning that seem to straddle
the boundary between semantics and pragmatics, without destroying the boundary, which seems
conceptually and empirically necessary.

• Furthermore, we believe that formal analysis of semantic and pragmatic phenomena is necessary
to properly understand the phenomena.
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• Thus, enriched meanings provide a principled way to capture a mixture of simpler and more com-
plex meanings and also provide empirical benefits in shedding new light on tricky phenomena
at the semantics–pragmatics boundary.

• Conjunction fallacies, today’s topic, are an instance of such phenomena.

3 Background

• Tversky and Kahneman (1983) noticed that, in a task asking for ratings of the relative likelihoods
of different propositions being true, the majority of experimental participants consistently rated
the likelihood of the conjunction of two propositions being true as higher than the likelihood
that one of the conjoined propositions is true.

• One of their examples is the well-known ‘Linda paradox’ or ‘Linda effect’.

◦ Experimental participants were given statements like (1).
(1) Linda is 31 years old, single, outspoken and very bright. She majored in philosophy.

As a student, she was deeply concerned with issues of discrimination and social
justice, and also participated in anti-nuclear demonstrations.

◦ As part of the experimental task, they where asked to rank the probability that various state-
ments were true of Linda; the resulting ranking for the relevant cases is given in (2), where >
indicates “ranked likelier than” (by experimental participants).
(2) Linda is active in the feminist movement. [F(eminist)M(ovement)]

>Linda is a bank teller and is active in the feminist movement. [B(ank)T(eller)&FM]

>Linda is a bank teller. [BT]

• The context is designed to bias towards the label Feminist and it is unproblematic and unsurpris-
ing that the relevant proposition (FM: Linda is active in the feminist movement) is ranked most
likely, but the result that the joint probability BT&FM is ranked higher than BT is interesting, and
constitutes an instance of conjunction fallacy: A conjunction of two propositions is reported by
subjects to be more probably than the probability of one of the two propositions on its own.

• This result is problematic given probability theory, which holds that the likelihood of the conjunc-
tion of two events cannot be greater than the likelihood of either of the two events. Formally, for
any two events A and B, the standard law for joint probability is:

(3) P (A and B) ≤ P (A), P (B)

• The Linda effect has been replicated by various studies that have investigated different ways in
which this apparently fallacious response can be elicited (among others, Yates and Carlson 1986,
Tentori et al. 2004).

• Tversky and Kahneman (1983) explained these results in terms of a notion of representativeness.

◦ They claimed that the observed responses are due to the fact that people do not operate in
terms of probabilistic reasoning, but instead use a representativeness heuristic.

◦ According to Tversky and Kahneman (1983), experimental participants check the degree of
correspondence between the events whose likelihood they are judging and a certain model of
reality and select as likely those events that are more representative of what the model predicts
as being the more likely event.
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◦ Representativeness tends to covary with frequency but not necessarily.

• A crucial point of Tversky and Kahneman’s analysis is that this heuristic operates on the conjunc-
tion as a whole, or as they put it:

[T]he judged probability (or representativeness) of a conjunction cannot be computed
as a function (e.g., product, sum, minimum, weighted average) of the scale values of
its constituents. (Tversky and Kahneman 1983: p. 305)

◦ This is essentially a claim that the conjunction is non-compositional, which is rather prob-
lematic for any attempt to integrate their observations with linguistic theories of meaning
composition.

• Aspects of Tversky and Kahneman’s explanation has been challenged by a number of researchers.

◦ Hertwig and colleagues have proposed that conjunction fallacies are not real errors, but rather
emerge because of the intrinsic ambiguity of linguistic operators such as the conjunction and
(Hertwig and Gigerenzer 1999, Mellers et al. 2001, Hertwig et al. 2008).

◦ Another important contribution of this line of research has been the demonstration that in
certain contexts conjunction fallacies do not arise so easily.

– This is particularly true of contexts in which experimental participants are somehow primed
to reason in terms of frequencies.
1. When presented with a scenario that explicitly introduces frequencies
2. When required to explicitly express their judgements regarding the likelihood of different

events in terms of numerical estimates (rather than only doing so implicitly by ordering
the events in terms of likelihood)

3. When the “stakes are raised”, for example in betting scenarios

◦ However, Hertwig et al.’s explanation is itself linguistically and philosophically problematic,
since it posits an otherwise unmotivated ambiguity in the logical operator and.

– This runs against the Modified Occam’s Razor (a.k.a. Grice’s razor): ‘Senses are not to be
multiplied beyond necessity’ (Grice 1978: 118).‘

– Kripke (1977: 268) similarly counsels against positing ambiguity (unless all else fails), char-
acterizing it as ‘the lazy man’s approach’.

• It would be preferable, then, to have a compositional account of conjunction fallacies (contra
Tversky and Kahneman) that posits no ambiguity for and (contra Hertwig et al.).

• We try to reconcile these different points of view on the basis of the data reported in the literature
and our goal of maintaining compositionality and unambiguity.
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4 The intuitions behind our model

• Our model starts from the assumption that people employ multiple strategies when evaluat-
ing the likelihood of conjoined uncertain events, an assumption shared with Yates and Carlson
(1986).

◦ However, Yates and Carlson (1986) propose a less principled “signed summation model” that
is not based on probability theory, unlike ours.

◦ They also assume that unrelated computational processes underpin the different strategies.

• We show that it is possible to assume a single uniform process that computes the likelihood of
the conjunction of two events from their two relative likelihoods.

◦ This uniform process may use different but related representations of uncertainty, expressed
as alternative algebraic structures, yielding different results.

◦ We can explain the results reported in the literature in terms of an algebraic structure known
as a semiring.

◦ This mathematical object is at the heart of monads.

• This yields more than one possibility. How is the choice between them made?

• We assume that the observation made in the literature (Hertwig and Gigerenzer 1999) that con-
junction fallacies arise only under specific conditions and can be cancelled under other conditions
is explained in terms of cognitive/computational economy

◦ In fact, the same computational structure, the monad, can be used together with a number of
different underlying semirings, one of them being the probability semiring.

◦ We predict that, in general, if people are presented with a task where there are “no stakes” they
will reason based on a representation corresponding to a semiring defined over a relatively
simple set with generally simple operations.

◦ Using this strategy will normally lead people to make overconfident estimates, which may
result in conjunction fallacies.

◦ If, on the other hand, people are forced to evaluate the consequences of their judgements,
such as in the context of a gaming scenario, or if explicitly primed to think in frequentist
terms, then they can switch to a more complex representation, with properties that better
approximate those of probability theory.

◦ In such circumstances, people would not necessarily commit conjunction fallacies.

◦ Crucially, in our model, logical operators such as and or or maintain their core logical meaning,
while the probabilistic behaviour is determined by the context in which they operate.

◦ In this sense, with respect to Hertwig et al. (2008)’s analysis, we move the ambiguity to the
context rather than assuming that a word like and has multiple meanings.

◦ As I noted above, this is in fact a problem with Hertwig et al. (2008)’s analysis, which effec-
tively treats and as ambiguous, i.e. truly polysemous.

• Our approach is similar in spirit to the standard Gricean approach (Grice 1975), although it also
differs in some important ways.

◦ Like the Gricean view, we assume that logical words such as and have a non-ambiguous core
logical meaning.
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◦ In the standard Gricean approach the core meaning is further elaborated by conversational
implicatures — additional meanings that are not explicitly stated by the speaker but inferable
by the speaker based on conversational goals (Grice’s Cooperative Principle and conversational
maxims) and real world knowledge.

◦ Crucially, conversational implicatures are determined by context and can be cancelled by ex-
plicitly stating that they do not hold.

– For instance, it is a consequence of the standard Gricean view that a numeral like two is
usually understood to mean “exactly two”, as in Wilgefortis has two daughters, but the impli-
cature can be cancelled, as witnessed by examples like Wilgefortis has two daughters, in fact
she has three.

• Similarly, in our approach the core meaning of a word like and is its logical, non-probabilistic
meaning.

◦ Instead of relying on implicatures defined by the context, we have a grammatical process (as
part of the logic of composition) that can lift this core meaning to the probabilistic level if
other linguistic expressions introduce uncertainty in the interpretation process.

◦ For instance, if and is used to conjoin two uncertain propositions, then the conjunction itself
will become uncertain.

◦ The relevant role of context in our model is not to permit the derivation of related additional
meanings, but instead to select which specific mode of uncertainty is going to be used.

◦ Notice that this does not introduce a source of non-compositionality in our system: Both modes
of uncertainty — pure probability and the simpler approximation — function completely com-
positionally.

◦ The limited form of ambiguity that may be attributed to our system stems entirely from the
choice of the mode of uncertainty, which is motivated on cognitive grounds.

◦ In contrast, in Hertwig et al. (2008)’s analysis, and is treated as truly lexically ambiguous, and
its final interpretation requires context as an additional parameter.

• Lastly, I want to stress that our approach, in its current form, is limited to the explanation of the
conjunction of two events, as expressed by the conjunction of two propositions.

◦ The related phenomenon of concept conjunction, as discussed for instance by Hampton (1988),
shares a number of similarities with conjunction fallacies, but at the same time displays some
crucial differences, at least at the linguistic level.

◦ For example, in the case of noun-noun compounds, such as school furniture, the denotation of
the expression is not constructed by simply intersecting the denotations of its component parts,
but the interpretation function operates in non-trivial ways on these meanings (Jackendoff
2010).

◦ This is not the case for the conjunction of events (propositions, in our case), where the result
is not an entirely novel type of event, but is indeed the boolean meet of the two sub-events.
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5 Monads and uncertainty

• As a preface to what follows, we need to familiarize ourselves with the related notion of semir-
ings.

• A semiring is:

◦ Some set A,

◦ With two distinguished elements 0 and 1, and

◦ Two binary operations + and · ,

◦ Such that the following axioms are satisfied, for all x, y and z ∈ A:

(4) (x+ y) + z = x+ (y + z)

(5) x+ y = y + x

(6) x+ 0 = 0 + x = x

(7) (x · y) · z = x · (y · z)
(8) x · 1 = 1 · x = x

(9) x · 0 = 0 · x = 0

(10) x · (y + z) = (x · y) + (x · z)
(11) (x+ y) · z = (x · z) + (y · z)

• In the case of the probability semiring, A is the real interval [0, 1], with 0 and 1 representing the
two identity elements and + and ·, defined respectively as addition (+) and multiplication (·).

• A monad can intuitively think of them as a way to map between different types of objects, in
particular as a way to map simple objects into more complex ones and relations between the
simple objects to relations between the more complex ones.

• The fact that probability distributions form a monad in the category of measurable spaces was
an early discovery in category theory (Lawvere 1962, Giry 1982).

• In our case, we can view the the probability monad maps from semantic types to probability
distributions over the inhabitants of the types.

◦ For example, if we lift a proper name like Kim using the probability monad, we would get
a probability distribution over individuals; i.e., the semantic type e would be mapped to ♢e,
where the latter is a probability distribution over inhabitants of e.

◦ If we lift a predicate like slept (i.e., an arrow), we would get a function from probability
distributions over individuals to probability distributions over truth values; i.e., the semantic
type e → t would be mapped to ♢e → ♢t.

• A monad is a particular type of mathematical structure, a type of endofunctor that is equipped
with two natural transformations that encode the notions of embedding and joining/composing/combining
(this intuition is from Kuhnle 2013).

◦ Monads are thus good at modelling embedding relations and also at compositionally combin-
ing results.

◦ Related to this is their ability to map one space of objects and relations to a more complex
space of objects and relations while preserving properties of the input space.
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Figure 1: Some inhabitants of P (t)

◦ See Asudeh and Giorgolo (2020: chapter 3) for background on category theory, including
endofunctors, natural transformations, and monads.

• Formally our monad is defined by the triple ⟨P, η, ⋆⟩.

◦ P is a functor that operates in the way described above: It maps our semantic types to prob-
ability distributions over the inhabitants of the type and lifts the mappings between the types
so that they operate between probability distributions.

– For instance, in the case of the type t of truth values the inhabitants of P are going to look
like the distributions shown in Figure 1.

◦ Unit, η, is an operation that creates a special type of probability distribution that corresponds
to a categorical judgement, i.e. assigning the entire probability mass to a single element of a
semantic type.

– Basically this is a way to integrate certainty into our model of uncertainty. Formally we
define it as follows (where we represent probability distributions as functions from types to
the interval [0, 1], or more generally to any base set of a semiring):

(12) η(x) = λy.

{
1 if y = x

0 otherwise
where x represents an element of any semantic type (e.g. an individual, a truth
value, a collection of individuals)

– For instance in the case of ηt, its application to the truth value T will result in the distribution
shown in Figure 2.

◦ Bind, ⋆, is how we combine uncertainties.

– Its definition is based on the definition of joint probability.
– Recall that the joint probability of two events is computed as follows:

(13) P (A and B) = P (A) · P (B|A)

– It is important to notice that joint probability, as in (13), is not what we are actually trying
to model in the case of two conjoined propositions (e.g., Linda is a bank teller and Linda is
active in the feminist movement).
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Figure 3: Example distribution over {a, b, c}.

– What we want is derived from joint probability, but is in fact somewhat coarser, and is at
the core of the process in our model that constructs the probability of an event from the
linguistic elements that describe it.

– This coarsened notion of joint probability, which we will discuss in what follows, arises as the
byproduct of the interactions of the uncertainties associated with the composed expressions.

◦ There is also another difference between the way the bind operation is used and what is
standardly meant by joint probability in (13).

– While the joint probability of two events gives us the likelihood of both atomic events oc-
curring together, bind returns the probability distribution of what we can consider another
truly atomic event.

– In other words, bind effectively combines the results of several relevant joint probabilities.
– This will become clearer in looking at some examples below, but first we define bind as in

(14).
(14) m ⋆ k = λy.

∑
x∈S m(x) · k(x)(y)

where S is the set of elements measured by the probability distribution m

– Bind takes two arguments, a probability distribution (m) and a function (k) from elements
of the domain of the probability distribution m to probability distributions over elements of
a (possibly different) set.

– The resulting probability distribution is obtained by collecting all possible ways in which we
can obtain the various results from this second set, and by scaling them (hence the use of ·)
using the likelihood that they emerge from the first distribution.

– The results are collected together using summation (
∑

).
– Let’s look at an example to better understand the workings of bind. Assume that the first

argument of bind is represented by the probability distribution over some type A with three
inhabitants, {a, b, c}, as represented in Figure 3.

◦ The second argument of bind is a function that maps each element of {a, b, c} to a probability
distribution over some type, let’s say the type of truth values.

– For instance we could have the function in Figure 4.

◦ The standard joint probability would give us the distribution shown in Figure 5.
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Figure 4: Example of a function from {a, b, c} to probability distributions over truth values.
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Figure 5: Pure joint probability for {a, b, c} and {T, F}.

– But bind actually generates a distribution probability over the final type of its second argu-
ment, so the result we get is instead the one shown in Figure 6.

– What bind returns for T in Figure 6 is the sum of a-T, b-T and c-T in Figure 5; similarly for F
and a-F, b-F, and c-F. You can check this by eye.

• Thanks to these proofs we can substitute any semiring for the probability semiring and still use
our monadic calculus to derive the meaning of complex expressions.

• Giorgolo and Asudeh (2014) offered a semiring that we called the the one semiring as a candidate
solution for the problem of conjunction fallacies.

• We used the results of Yates and Carlson results, which are summarized in Table 1.
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T

Figure 6: The result of applying bind to its two arguments
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Likelihood
of event A

Likelihood
of event B

Observed rating Intuition

U(nlikely) U P (A and B) ≤ P (A), P (B) Probabilistically correct
(No Linda Effect)

U L(ikely) P (A) ≤ P (A and B) ≤ P (B) Probabilistically incorrect
(Standard Linda Effect)

L L P (A), P (B) ≤ P (A and B) Probabilistically incorrect
(Strong Linda Effect)

Table 1: Results reported by Yates and Carlson (1986).

◦ The first row shows the result of the conjunction of two events that are unlikely.

– For example, given the Linda context in (1) above, the two component events could be Linda
is pro-life and Linda is a bank teller and their conjunction Linda is a pro-life bank teller, which
we take as shorthand for Linda is pro-life and Linda is a bank teller.

– Yates and Carlson observe that the conjoined event is deemed by experimental participants
to be (even) less likely than the component events. This is probabilistically correct, as it
upholds the standard law for the joint probability of two events in (3). The probabilistically
correct result therefore displays no Linda effect and we label it as such.

◦ The second row shows the combination of an unlikely event, such as Linda is a bank teller,
with a likely event, such as Linda is a feminist.

– Yates and Carlson observed that participants rate the unlikely event as less likely than the
conjunction of the two events and the conjunction in turn as less likely than the likely event.

– This is probabilistically incorrect, as it does not uphold (3).
– In other words, this is Tversky and Kahneman’s standard Linda effect and we label it as

such.

◦ The third row shows a scenario that Yates and Carlson tested but that Tversky and Kahneman
did not.

– It is the combination of a likely event, such as Linda is leftwing, with another likely event,
such as Linda is a feminist, such that the conjunction would be Linda is a leftwing feminist,
which we take as shorthand for Linda is leftwing and Linda is a feminist.

– Yates and Carlson observed that participants rate the conjunction of the likely events as
(even) more likely than each likely event on its own.

– This is again probabilistically incorrect, given (3). We label this a Strong Linda Effect, as it
features two errors of the kind observed by Tversky and Kahneman (1983).

• Giorgolo and Asudeh (2014) used a simple discrete set as the base for the semiring: {I(mpossible),
U(unlikely), P(ossible), L(ikely), C(ertain)}. I and C correspond to 0 and 1 respectively.

◦ The only additional condition that needs to be imposed so that I and C behave as boolean
values is that, for all x in our set, x+ C = C.

◦ There are sixteen possible well-behaved semirings that we can define for this set.

• Giorgolo and Asudeh (2014) showed that of these semirings, only one semiring both correctly
models conjunction and predicts the Yates and Carlson (1986) pattern of results.
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+ I U P L C
I I U P L C
U U U P L C
P P P P L C
L L L L L C
C C C C C C

· I U P L C
I I I I I I
U I U U U U
P I U P P P
L I U P L L
C I U P L C

Table 2: The one semiring.

• The one semiring is shown in Table 2.

◦ This semiring is not homomorphic to the probability semiring, meaning that we cannot repro-
duce its behaviour using probability theory.

◦ This semiring is just a min-max semiring, if we impose the strict order I < U < P < L < C,
where · is min and + is max.

6 A Gricean explanation?

• Recall that the Linda scenario is as follows, where > indicates “ranked likelier than” (by experi-
mental participants, according to the original work by Tversky and Kahneman 1983):

(15) Linda is 31 years old, single, outspoken and very bright. She majored in philosophy.
As a student, she was deeply concerned with issues of discrimination and social justice,
and also participated in anti-nuclear demonstrations.
Linda is active in the feminist movement. [F(eminist)M(ovement)]

>Linda is a bank teller and is active in the feminist movement. [B(ank)T(eller)&FM]

>Linda is a bank teller. [BT]

• The ranking that Tversky and Kahneman observed is FM > BT&FM > BT.

• Probability theory would instead dictate the ranking BT,FM ≥ BT&FM.

• As noted above, Giorgolo and Asudeh (2014) developed a semiring that we called the the one
semiring to tackle this problem.

◦ The one semiring, which models a lazy probabilistic evaluation in the absence of stakes, in-
stead yields the ranking FM > BT&FM, BT.

• We just need to break the tie between BT&FM and BT in order to capture the ranking that Tversky
and Kahneman actually observed.

• How could Gricean reasoning do this?

◦ The context that Tversky and Kahneman provide for the Linda example (mutatis mutandis for
their other stimuli) is such that Linda is a bank teller flouts the Maxim of Relation (Relevance):
It is not relevant to the prior context that Linda is a bank teller, whereas it is potentially
relevant that she is a feminist.
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◦ Thus, the statement that Linda is a bank teller creates an unnecessary implicature that would
cause participants to reconsider the context in an aberrant way, perhaps calculating that the
experimenters for some bizarre reason believe that bank tellers are generally interested in “is-
sues of discrimination and social justice”, but this likely clashes with the real world knowledge
of most competent adults, who have no reason to believe that bank tellers should particularly
care about such things.

• Thus, the one semiring gives us the ranking FM > BT&FM and the Maxim of Relation gets us
BT&FM > BT.

◦ In other words, FM > BT&FM is a kind of entailment, while BT&FM > BT is a kind of implica-
ture.

◦ This is analogous to the standard Gricean explanation of exclusive or: Using only inclusive or
and and, we derive a ∨ b ∧ ¬(a ∧ b), where the first conjunct is an entailment and the second
is a scalar implicature.

• Asudeh and Giorgolo (2020) pursued a different strategy.

◦ We concluded that a Gricean explanation based around the Maxim of Relation is explana-
torily weak, since what counts as relevant is hard to define formally or to capture systemat-
ically (they boil down to the same thing, in our view), Relevance Theory notwithstanding
(Sperber and Wilson 1986, 1995).

◦ We therefore thought it profitable to investigate whether there was some other structure
that might yield the conjunction fallacy pattern, under reasonable assumptions.

◦ This does invalidate Gricean explanations in other domains, for us.

7 Let’s get tropical

• It is clear that experimental participants are not in general using the probability semiring, oth-
erwise the Linda effect would not be observed, but it consistently has been (see Lu 2016 for a
useful recent review).

• The one semiring does not fully capture the Linda effect — it requires an appeal to Gricean
reasoning.

• Here we take a different approach and instead use the family of semirings commonly known as
tropical semirings (Simon 1988, Pin 1998).

◦ These have previously found linguistic applications in weighted finite-state automata and trans-
ducers (Kuich and Salomaa 1986), which have been used for morphological analysis, machine
translation, and speech recognition and synthesis, among other applications (Mohri and Sproat
1996, Mohri et al. 2008, Mohri 2009).

• Tropical semirings can be defined using various base sets.

◦ Here we choose to use the set of real numbers R as the base.

◦ Having chosen a base set, we can either construct a min-plus semiring or a max-plus semiring.

– But the min-plus and max-plus semirings are isomorphic, which means that we can freely
choose either one.

14
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Figure 7: Percentages of zero, single, and double conjunction fallacies by likelihood of component
propositions (see Lu 2016: 522, Fig. 3).

– In fact, given the equivalence of the min-plus and max-plus semirings, there is no motivation
for the assumption that speakers necessarily use one instead of the other.

– We therefore assume that speakers freely use both.

• This will be important in explaining the pattern of data reported in the literature, as shown in
Figure 7, which is based on Lu (2016: 522, Fig. 3).

◦ This bar graph shows the proportions of different kinds of conjunction fallacies that experi-
mental participants made.

• A zero on the x-axis of conjunction errors in Figure 7 indicates that the conjunction of the two
component propositions was ranked as less likely than either of the component propositions on
its own, i.e. that things are as they should be according to probability theory.2

◦ This is what we called No Linda Effect in Table 1 above.

• A one on the x-axis is the classic Linda effect, in which the conjunction is ranked as more likely
than one of the component propositions, but less likely than the other.

◦ What we called a Standard Linda Effect in Table 1 would be an instance of this.

• A two on the x-axis indicates that the conjunction is ranked as more likely than both of the two
component propositions.

◦ This is what we called a Strong Linda Effect in Table 1.

• The results can be summarized as follows.
2Technically it’s “less likely than or equal in likelihood to”. I’ll use “less likely than” or “more likely than” as shorthand

for “less likely than or equal in likelihood to” and “more likely than or equal in likelihood to”, respectively. It’s less
cumbersome.
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◦ Given a conjunction of a likely proposition (e.g., Linda is a feminist, in light of the context in the
Linda scenario) and an unlikely proposition (e.g., Linda is a bank teller), the vast proportion of
responses were conjunction fallacies (nearly 70%), and most of the remaining responses were
probabilistically correct (about 25%).

◦ There is thus a clear peak at one conjunction error.

◦ The remaining data is particularly interesting.

– If instead two likely propositions are conjoined (e.g., Linda is a feminist and Linda is leftwing,
in the Linda scenario), a slightly larger proportion of responses were without conjunction
errors (just over 40%) and the remaining responses were split almost evenly between one
error and two errors (just over and just under 30%, respectively).

– The pattern for the conjunction of two unlikely propositions (e.g., Linda is a bank teller and
Linda is pro-life, in the Linda scenario) is virtually identical.

◦ There are three key things to notice in these results with respect to a conjunction of two likely
or two unlikely propositions.

1. There is a small peak in both cases at zero conjunction errors.
2. Over a quarter of responses for both cases make two conjunction errors, which does not

happen for the actual Linda effect cases (where such errors occur in only about 5% of
responses).

3. The proportion of one conjunction error and two conjunction errors in both cases is almost
the same (about 30%).

• The two take home points are these.

1. It seems that experimental participants are somewhat confused about how to rank the con-
junction of two likely or two unlikely propositions relative to the component propositions.

◦ Thus we observe nearly a random distribution of responses among zero, one, and two
conjunction errors.

2. However, only the responses at one conjunction error and two conjunction errors seem to be
fully randomly distributed with respect to each other: Each of these two error types has about
the same proportion of responses.

◦ There is a small peak at zero errors, which indicates that somehow the conjunction of two
likely or two unlikely propositions a) is a bit more likely to cause zero errors than it is to
cause one error or two errors; and b) is less likely to lead to an error than the Linda case of
a conjunction of a likely and an unlikely proposition.

• In order to explain how tropical semirings give us a way to model the data trends shown in
Figure 7, we have to define them and see how they can be used to represent uncertainty for our
purposes.

• We start with the min-plus semiring. The semiring is defined on the set R∪{+∞}, the set of real
numbers together with positive infinity.

◦ The two operations are defined as follows:

(16) x+ y = min(x, y)
(17) x · y = x+ y

where min is a function that returns the smallest of two numbers. The unit of +, 0, is +∞,
and the unit of ·, 1, is 0.
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Figure 8: The likelihood of the proposition p represented as a point in the trueness/falseness space.

• The max-plus semiring is specified in a similar way.

◦ The semiring is defined on the set R ∪ {−∞}, the set of real numbers together with negative
infinity. The two operations are defined as follows:

(18) x+ y = max(x, y)
(19) x · y = x+ y

where max is a function that returns the greatest of two numbers. The unit of +, 0, is −∞,
and the unit of ·, 1, is again 0.

• When a proposition is lifted in the monadic space of tropical semirings it becomes a function
from truth values to elements of its base set (R∪{+∞} for the min-plus semiring and R∪{−∞}
for the max-plus semiring).

◦ This means that we can represent the function in its tabular form as a two-coordinate vector
— one coordinate representing the value assigned to T(true) and the other the value assigned
to F(alse). This in turns means that we can represent a proposition graphically as a vector in
the “trueness/falseness” space, as shown in Figure 8.

◦ The “trueness” component (the projection of the vector on the “trueness” axis) of the vector
represents some measure of confidence in the fact that p is true, while the “falseness” compo-
nent represents the same for the fact that p is false.

◦ We can get a single measure of the likelihood of p by checking the angle α formed by the
vector and the “trueness” axis: an angle of 0° represents total confidence in the truth of the
proposition, an angle of 45° represents a completely uncertain judgement, while an angle of
90° represents absolute falsehood.

• To bootstrap the analysis we assign some fixed values to the atomic propositions that we are
going to conjoin.

◦ The values for the components of the vectors are arbitrary and reflect the general assumptions
about the likelihood of the atomic propositions used in the analysis of the Linda effect.

◦ In our case a likely proposition will be associated with a vector that forms an angle smaller
than 45°, while an unlikely proposition will form an angle larger than 45°.

◦ An example is shown in Figure 9.
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Figure 9: Examples of likely and unlikely propositions in the trueness/falseness space.

• We noted above that, given the equivalence of the min-plus and max-plus tropical semirings,
there is no reason to assume that people use only one and not the other.

◦ We therefore assume that people have both tropical semirings at their disposal and may use
either one or even both.

– In other words, we assume that people have cognitive equivalents of both semirings.

◦ In the Linda scenerio, we assume as part of the experimental conditions, that the proposition
Linda is a bank teller is unlikely and the proposition Linda is a feminist is likely.

– This is the same assumption that Tversky and Kahneman (1983) make.

◦ We therefore assign each some value in the monadic space — on the false side of 45◦ in the
case of the unlikely proposition and on the true side in the case of the likely proposition —
and keep the assumption constant across both tropical semirings.

◦ In the case of the conjunction of the unlikely and likely propositions — which leads to the ob-
served Linda effects/conjunction fallacies in the psychological literature — the two semirings
yield identical ordering results, as shown in Figure 10a and Figure 10b.

– For both semirings, the unlikely proposition that Linda is a bank teller comes out as more
false than the conjunction of this unlikely proposition with the likely proposition that Linda
is a feminist and this conjunction in turn comes out as more false than the likely proposition
on its own.

– Thus, both semirings capture the Linda effect.

• So how does this explain the results reported in Figure 7?

◦ Notice that Figure 7 (and a similar graph in Yates and Carlson 1986) is reporting total number
of responses and thus summing across all experimental participants.

◦ The mass of responses clearly peaks at one conjunction error (nearly 70%) in the case of the
conjunction of an unlikely and a likely proposition, with a smaller peak at zero conjunction
errors (about 25%).

– We assume that the small mass of responses at two conjunction errors is noise.

◦ There are two possible explanations for this, both of which converge on the same result.

1. If an individual in any particular response exercises the choice to use the min-plus or max-
plus semiring, they will commit a single conjunction error (i.e., a Linda effect).
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(a) Conjunction of an unlikely and a likely
proposition, given the min-plus tropical semiring.
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(b) Conjunction of an unlikely and a likely
proposition, given the max-plus tropical semiring.
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(c) Conjunction of two likely propositions,
given the min-plus tropical semiring.
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(d) Conjunction of two likely propositions,
given the max-plus tropical semiring.
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(e) Conjunction of two unlikely propositions, given
the min-plus tropical semiring.
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(f) Conjunction of two unlikely propositions, given
the max-plus tropical semiring.

Figure 10: Conjunction of propositions, given the min-plus (left column) or max-plus (right column)
tropical semirings.
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– Even if an individual were to use both semirings, the results in fact converge, as explained
above; this again results in a single conjunction error.

– It is only if an individual instead uses the probability semiring that they will not commit
a conjunction error.
· Thus, of the three semirings in play, two will lead to a Linda effect (one conjunction

error) — whether each semiring on its own or both together — and one will lead to
probabilistically accurate reasoning (zero conjunction errors).

– It is thus entirely unsurprising according to our tropical model that by far the greatest
mass of responses is gathered at one conjunction error when an unlikely proposition is
conjoined with a likely one.

– It is similarly unsurprising that there is another small peak at zero conjunction errors,
because one of the three semirings in play delivers that result.

• Let us now turn to the other two cases:

1. The conjunction of two likely propositions

2. The conjunction of two unlikely propositions.

• Here the two tropical semirings yield divergent results.

• Once again, we start by assigning the two component propositions some appropriate point in the
monadic space.

◦ For example, given the Linda scenario, we place the two likely propositions Linda is a femi-
nist and Linda is leftwing in the true part of the monadic space, as shown in Figure 10c and
Figure 10d.

◦ Similarly, we place the two unlikely propositions Linda is a bank teller and Linda is pro-life in
the false part of the monadic space, as shown in Figure 10e and Figure 10f.

• But now notice that the min-plus and max-plus semirings make different predictions.

◦ The min-plus semiring collapses the order of two likely propositions with their conjunction:
All three have the same angle in Figure 10c.

– However, it treats the conjunction of two unlikely propositions as more true than either
proposition on its own, as shown in Figure 10e.

◦ In contrast, the max-plus semiring collapses the order of two unlikely propositions with their
conjunction: All three have the same angle in graph Figure 10f.

– However, it treats the conjunction of two likely propositions as more false than either
proposition on its own, as shown in Figure 10d.

• This results in two possibilities for explaining the distribution of conjunction errors for the
Likely/Likely and Unlikely/Unlikely conjunctions in Figure 7.

◦ In both cases, about 40% of the responses in Figure 7 make zero conjunction errors, just over
30% make one conjunction error, and just under 30% make two conjunction errors.

◦ In effect, this is a near random distribution, but with a bit more of the probability mass associ-
ated with zero conjunction errors.
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1. The first possible explanation is that experimental partipants have a preference for the trop-
ical semiring that makes the greatest distinction: This would mean preferring the max-plus
semiring in the case of a conjunction of two likely propositions and preferring the min-plus
semiring in the case of a conjunction of two unlikely proposition.

◦ This would still correctly predict the (near) tie between Likely/Likely and Unlikely/Unlikely
at zero conjunction errors in Figure 7.

◦ And it also allows for the almost uniform distribution between Likely/Likely and Unlikely/Unlikely
in the other cases (one and two conjunction errors in Figure 7).

2. The second possible explanation is that experimental participants try both semirings, but in
the face of the inconsistent results that this delivers (i.e., the min-plus and max-plus semirings
give inconsistent answers for the Likely/Likely case and also for the Unlikely/Unlikely case),
at least some participants back off to proper probabilistic reasoning and use the probability
semiring, such that more responses occur in the zero conjunction error part of the response
mass for both Likely/Likely and Unlikely/Unlikely.

◦ Both of these explanations would thus predict the distribution of data, but using different
mechanisms. Therefore there are distinct empirical predictions at play here which could some-
how be tested experimentally.

• The tropical model also behaves well logically, as illustrated in Figure 11.

◦ The key observation is that — despite the fact that conjunction does not behave absolutely
logically (likewise disjunction), which is after all necessary to model the Linda effect — con-
junction and disjunction still form duals.

◦ We use the likely proposition that Linda is a feminist and the unlikely proposition that Linda is
a bank teller to demonstrate this.

◦ The dashed line in Figure 11 once again represents total uncertainty as to the truth/falsity of
a proposition.

◦ The feminist proposition is assigned a vector in the true space, so below the dashed line,
whereas the bank teller proposition is assigned the symmetrical vector in the false space, so
above the dashed line.

◦ The min-plus semiring treats the conjunction of bank teller and feminist as more true than false;
this vector is labelled “bank ∧min fem” in Figure 11.

– We also observe that the min-plus semiring treats the disjunction of bank teller and feminist
as more false than true and that, crucially, it assigns the disjunction the symmetrical vector
in the false space; this vector is labelled “bank ∨min fem” in Figure 11.

◦ The max-plus semiring behaves as the dual of the min-plus semiring in the positive quadrant
and therefore, in contrast, treats the conjunction of bank teller and feminist as more false than
true (see the vector labelled “bank ∧max fem” in Figure 11) and the disjunction of bank teller
and feminist as more true than false (see the vector labelled “bank ∨max fem” in Figure 11).

– Moreover, the two vectors are likewise symmetrical.

• In sum, the tropical model seems to give a structured and interesting explanation of the Linda
effect, without falling back on general Gricean pragmatics, as was the case for the one semiring.
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Figure 11: Conjunction and disjunction symmetries, given the min-plus or max-plus tropical semir-
ings.

◦ We should stress that we do not believe that the tropical model should be in the business
of predicting actual observed frequencies of responses, but rather should simply predict and
explain the pattern of responses.

◦ In other words, the tropical model is a grammatical model that constitutes a competence theory
of the Linda effect, which we believe is the correct aim in the cognitive sciences (Pylyshyn
1973).

8 Conclusion

• Tversky and Kahneman’s work on conjunction fallacies has been very influential in cognitive
science.

◦ They explain the Linda effect as stemming from a representativeness heuristic.

• But subsequent work has shown the landscape to be more complex.

◦ People do not tend to make conjunction fallacies if stakes are introduced or if they are prompted
to reason probabilistically, e.g. to think about frequencies (Yates and Carlson 1986).

◦ This suggests that there may be factors involved in the Linda scenario that lead people to relax
their probabilistic competence in the absence of a specific need to use it.

• We think this kind of trade-off receives a better explanation in terms of the satisficing heuristic
(Simon 1956) than in terms of representativeness: People use a simpler and cognitively less
taxing method when there is no particular cost to making errors or when accuracy is not em-
phasized, but use the cognitively more taxing method when there are such costs or accuracy is
emphasized.

• The psychological models that have previously been proposed for conjunction fallacies are nev-
ertheless unified in their non-compositionality: Conjunction (and) is not treated as a standard
compositional logical operator.
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◦ This is, in our view, a serious defect which we have sought to remedy by offering a composi-
tional treatment instead.

◦ In particular, we have developed a model in which the behaviour of natural language and is
closely connected to the basic logical meaning of conjunction as a propositional connective,
which upholds a key aspect of Grice’s program (Grice 1989) and takes seriously his Modified
Occam’s Razor: ‘Senses are not to be multiplied beyond necessity’ (Grice 1978: 118).
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