PHYSICAL SEMINAR
MONDAY,
FEBRUARY 29, 2016
4:00 P.M.
HUTCHISON HALL 473
DEPARTMENT OF CHEMISTRY
UNIVERSITY OF ROCHESTER

Guest Speaker:
Professor Dustin Froula
University of Rochester
Laboratory for Laser Energetics

“Raman Amplification of High Power Laser Pulses”

Abstract: Exploring the physics at the laser-intensity frontier is an exciting challenge. Present-day petawatt-class lasers provide on-target focused intensities of 10^{22} W/cm2. Raman amplification opens a potential route for focused intensities in the range 10^{23} to 10^{25} W/cm2 as well as providing a cost-effective route for high-energy petawatt laser pulses. Raman amplification is a process by which a long energetic pump pulse transfers its energy to a counter-propagating short seed pulse through a resonant electron plasma wave. A recent comprehensive series of large-scale multidimensional particle-in-cell simulations has identified the optimal parameter space for this interaction. At the Laboratory for Laser Energetics (LLE), we plan to perform a careful and systematic experimental investigation, aided by state-of-the-art numerical modeling, into the physics of Raman amplification and the associated laser–plasma instabilities that are notorious for limiting the efficient energy extraction. (Professor Froula received a secondary appointment as an Assistant Professor in the Physics in Astronomy Department in 2013.)

Host: Professor Ignacio Franco, email: franco@chem.rochester.edu