

Advanced Nuclear Science Education Laboratory Experiment Summary

ANSEL Faculty Instructors

Prof. Frank Wolfs

Research:

Large Underground Xenon (LUX) collaboration, preparation for dark-matter experiment with (2-phase xenon) detector@ DUSEL, Advanced trigger (DDC-8DSP) development@Rochester

 \sim

Prof. Udo Schrőder

Research:

Heavy-ion reactions @ LNS Catania/Italy.
Development of radiation detectors and electronics.
Collaboration with UR Laboratory for Laser Energetics:
* Radio-chemical tritium transport, fusion@fission energy issues

* Neutron diagnostics for high energy density research

There will be guest lectures and instruction on various topics by additional expert faculty and professionals.

Nuclear Science Education at UR

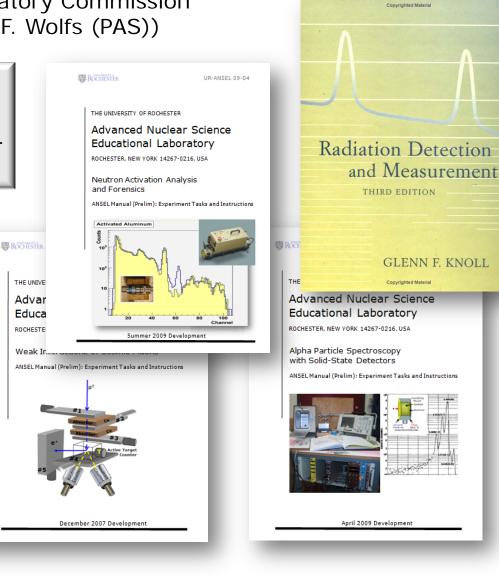
 \geq ST 2010 (ANSEL long term commitment by chemistry and physics)

Physics x Chemistry, Undergraduate/Graduate Course+Lab Offered every year (< 12 students) Advanced Nuclear Science Educational Lab (ANSEL) Lecture (1.5 h/week) + Lab (2 x 2.5h/week)

Chemistry x Physics, Graduate Course

Alternating with ANSEL, one semester every AY (5-10 students?) *Nuclear Science & Technology* (Intro to nuclear structure, scattering & reactions, applications, selected special topics)

Physics x Chemistry (Eng) UG Courses with Nuclear S&T Component

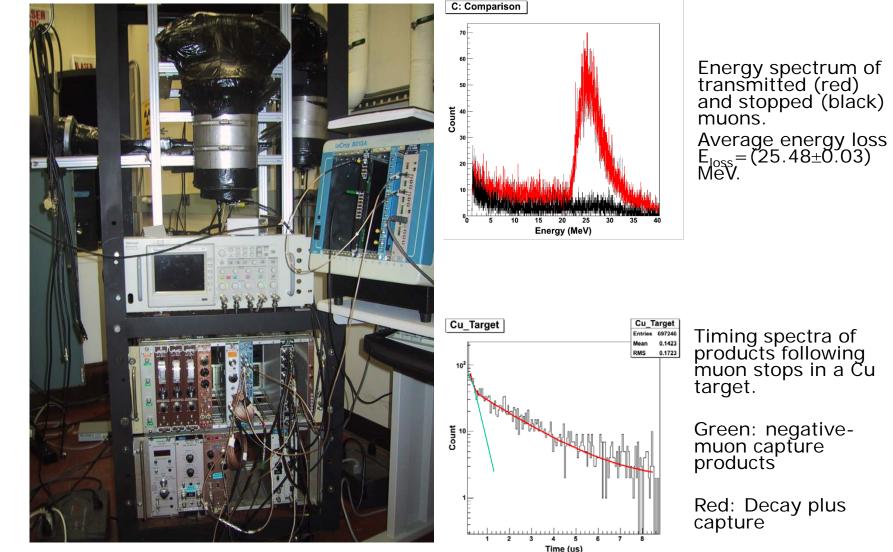

Offered every other year: 20th Century Particle Physics Offered once each year: Energy: Science, Technology & Society

Advanced Nuclear Science Educational Laboratory

Funded by the Nuclear Regulatory Commission (NRC-38-07-508, Co-PI with F. Wolfs (PAS))

To provide students with hands-on experience in nuclear experimentationdetection and analysis

	fer	UR-AN	ISEL 07-01
Adv Edu	IVERSITY OF ROCHEST anced Nucle cational Lat	ear Scier poratory	
EZDA	ROCHESTER, NEW VORK 14267-0216, USA EZDAQ The Network Data Acquisition System User's Manual Jan Töke		
			3
	December	2007	
-	-	-	_


ANSEL Lab/Lecture Plan

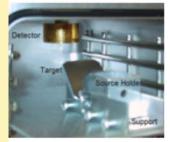
	Intro to nuclear properties, radiation, detection	Weeks	1-5
•	Basic properties of nuclei, nuclear decay.		
•	Principles of interactions of nuclear radiation with matter, radiation protection.		
•	Response of scintillation, gas and solid-state detectors to radiation.		
•	Use of oscilloscopes, basic nuclear counting electronics.		
•	Signal processing, data acquisition, data analysis.		
	Measurements of activities and lifetimes		6-7
•	Measurements of source activities.		
•	Lifetime measurements β -delayed γ emission, long and short (ns/ms \rightarrow min/d).		
•	Lifetime of μ^+ in weak decay (μs), μ^- in weak capture (50-100 ns, for heavy nuclei)	•	
	Material imaging and testing		8-9
•	Material imaging and testing with γ -rays (PET scan, γ - γ angular correlation).		0-7
•	Neutronics, n detectors, n diffusion.		
•	Thermal neutron activation with a neutron source, measurement of β or γ and anal	vsis.	
•	Neutron activation with a neutron generator, "phase-lock" method, fast (n, γ), (n,	5	e).
	Mössbauer measurements		10-11
•	Principle of recoil-less nuclear resonance absorption.		10-11
•	Mössbauer instrumentation in absorption and emission, Geiger, gas, solid-state de	tectors.	
•	Calibration of velocity scale.		
•	Measurement ⁵⁷ Fe X rays and 14.4-keV Mössbauer γ rays with different absorbers		
		-	

• Determination of Fe abundance in mixtures, magnetic splitting in ⁵⁷Fe enriched foil, isomer shift, chemical shifts for chemical compounds in different oxidation states.

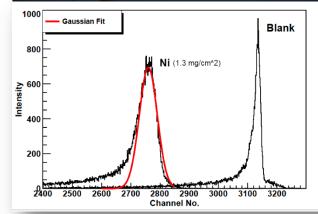
LO

Interactions of Cosmic Muons μ^{\pm} with Matter

9

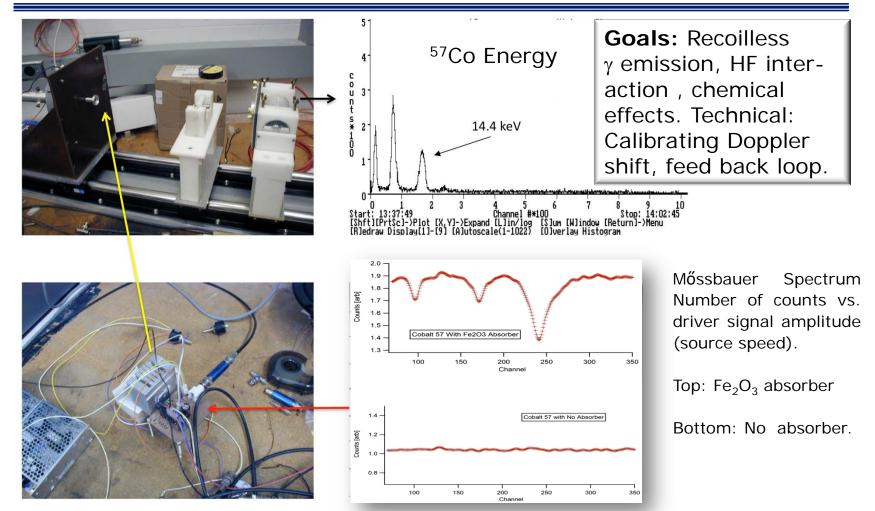

ANSEL: Material Testing with α Particles

Main goals: Z and density dependence of energy loss. Mean and variance of E_{loss} distribution, straggling. Technical: preamp/amp/ DAQ setup in simple experiment source and pulser calibration. Later: backscattering imaging

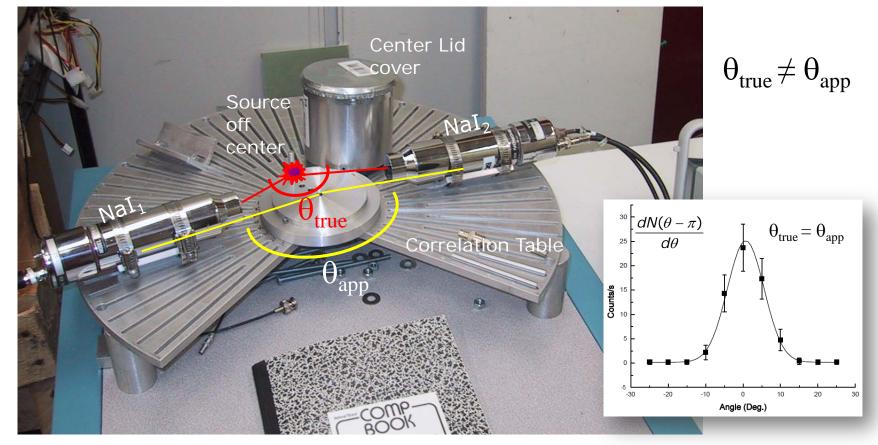


Experimental setup for α particle spectroscopy. Left: Setup with ORTEC 808 chamber, vacuum gauge and Tektronix scope. Right: (Top) View of backscattering test setup, chamber rack and shelf, Si detector.

(Bottom) target container with blank frames and mounted foils.

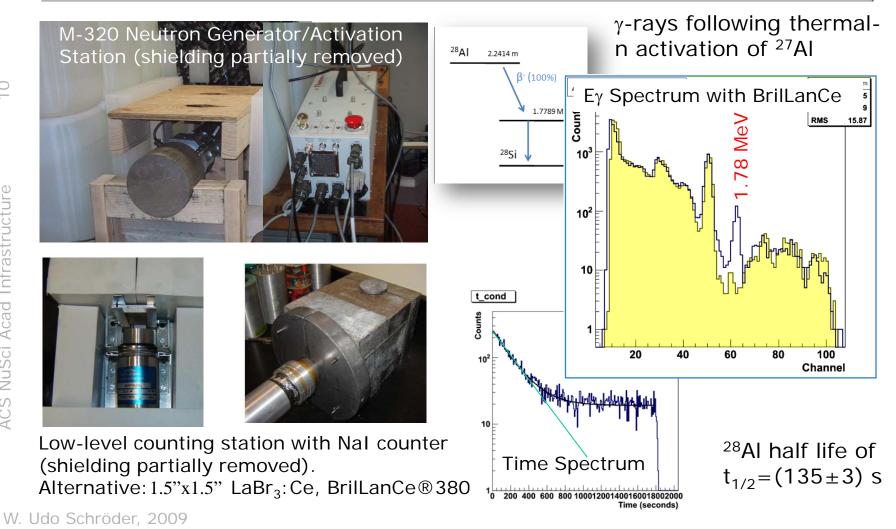


Energy spectrum of 5.4-MeV alpha particles from a ²⁴¹Am (100-nCi) alpha source. Peak on right: un-attenuated (Blank). Peak on left: transmission through a 1.3-mg/cm² Ni foil. Red curve: Gaussian fit curve.


ANSEL: Mőssbauer Spectroscopy

Top left: Mössbauer setup, showing the source driver on the left, the absorber holder in the middle, and the proportional counter on the left. Top right: energy spectrum collected with the Co source. Bottom left: speaker driver .

Goals: Introduce coincidence method, fast-slow circuitry, simple PET experiment.


 22 Na (2 back-to-back 511-keV γ -rays) source placed off center Triangulate unknown (hidden, off center) source position

0

ANSEL: Neutron Activation Analysis

Goals: Transmutation of nuclei, β delayed emission of characteristic γ rays. Thermal-n activation of materials using n source, pulsed n-generator. Technical: Pulsed n beam, mode-locked detection, coincidence electronics.

 $\frac{1}{2}$

ANSEL Training Applied in Detector R&D

Commissioning runs for n generator served for performance evaluation of new neutron detector N*

Future application in high-energy density plasma diagnostics (LLE)

M-320 Neutron Generator Station (shielding partially removed)

Test stand for n detector development