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The direct functionalization of C–H bonds constitutes a
powerful strategy to construct and diversify organic molecules.
However, controlling the chemo- and site-selectivity of this
transformation, particularly in complex molecular settings,
represents a significant challenge. Metalloenzymes are ideal
platforms for achieving catalyst-controlled selective C–H bond
functionalization as their reactivities can be tuned by protein
engineering and/or redesign of their cofactor environment. In
this review, we highlight recent progress in the development of
engineered and artificial metalloenzymes for C–H functionali-
zation, with a focus on biocatalytic strategies for selective C–H
oxyfunctionalization and halogenation as well as C–H amina-
tion and C–H carbene insertion via abiological nitrene and
carbene transfer chemistries. Engineered heme and nonheme
iron dependent enzymes have emerged as promising scaffolds
for executing these transformations with high chemo-, regio-,
and stereocontrol as well as tunable selectivity. These
emerging systems and methodologies have expanded the
toolbox of sustainable strategies for organic synthesis and
created new opportunities for the generation of chiral building
blocks, the late-stage C–H functionalization of complex mol-
ecules, and the total synthesis of natural products.
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Introduction
The development of catalytic methods for selective Ce
H functionalization constitutes an area of intense
research owing to the well-established potential of these
transformations toward streamlining the synthesis and
late-stage functionalization of complex molecules,

including biologically active natural products and drugs
[1e4]. Synthetic approaches to this important trans-
formation often involve the use of high-energy reactants
(e.g., peroxides, oxaziridines, iminoiodanes) in combi-
nation with transition metal catalysts to target (stereo)
www.sciencedirect.com C
electronically activated CeH bonds in a substrate
molecule [1e4]. Alternatively, ‘directing’ groups are
exploited to functionalize CeH bonds proximal to a

preexisting functional group (e.g., carboxylic group) [1e
4]. Given the abundance of CeH bonds in complex
molecules, however, controlling the chemoselectivity,
regioselectivity, and stereoselectivity of these trans-
formations, particularly toward ‘isolated’ and/or unac-
tivated CeH bonds, remains an outstanding challenge.
In this context, exploiting engineered enzymes has
represented an attractive avenue for achieving tunable
catalyst-controlled selectivity in CeH functionalization
(Figure 1a) [5e9].

In nature, enzyme-mediated CeH oxyfunctionaliza-
tion and halogenation reactions are implicated in the
biosynthesis of a myriad of secondary metabolites and
natural products [10]. Major enzyme classes involved
in these transformations include members of the cy-
tochromes P450 and nonheme iron (NHI)- and a-
ketoglutarate (aKG)-dependent dioxygenases/halo-
genases superfamilies. These enzyme classes utilize a
distinct catalytic machinery (Figure 1b), consisting of
a heme cofactor and mononuclear NHI center,
respectively, to produce high-valent iron-oxo in-

termediates capable of abstracting a H atom from a
substrate, ultimately resulting in the selective
oxyfunctionalization (or halogenation) of a specific
CeH bond within the molecule [11e14]. Through
natural evolution, these enzymes have specialized to
recognize a broad range of structurally diverse sub-
strates and to perform CeH oxyfunctionalization (or
halogenation) reactions, under mild reactions, with an
excellent degree of chemo-, regio-, and
stereoselectivity.

Inspired by the remarkable functional versatility of
these metalloenzymes in the context of biosynthetic
pathways, the past decade has witnessed increasing
efforts and progress toward adapting these enzymes,
via protein engineering, to recognize non-native sub-
strate and/or tuning their regioselectivity and ster-
eoselectivity properties to generate biocatalysts for
synthetic applications and sustainable chemistry [5e
9]. In this review article, we highlight recent exam-
ples of selective CeH oxyfunctionalization and halo-
genation reactions achieved by means of engineered
P450s and NHI-dependent enzymes (Figure 1), with

an emphasis on their applications for the late-stage
functionalization and synthesis of complex
urrent Opinion in Green and Sustainable Chemistry 2021, 31:100494
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Figure 1

(a) C–H functionalization reactions catalyzed by engineered and artificial metalloenzymes. (b) Structure and catalytic center of representative he-
moproteins (myoglobin and cytochrome P450) and NHI-/aKG-dependent enzymes.

2 Synthetic Enzymes
molecules and natural products. In addition to these
transformations, which rely on the inherent reactivity
of the parent enzymes, significant progress has also

been made in the development of engineered and
artificial metalloenzymes for realizing new types of
CeH functionalization transformations not found (or
previously known) in the biological world. Seminal
contributions from the Arnold group and our own
laboratory have recently demonstrated that heme-
dependent enzymes and proteins such as cyto-
chrome P450s, myoglobin, and cytochrome c, can be
adapted and exploited to catalyze non-native carbene
and nitrene group transfer reactions involving a high-
valent iron-carbenoid or iron-nitrenoid species [15].

Via protein engineering, efficient biocatalysts for a
growing number of ‘abiological’ reactions including
olefin cyclopropanations [16e20] and aziridination
[21], carbene YeH bond (Y = N, S, Si, B) insertions
[22e26], sigmatropic rearrangements [27,28], and
aldehyde olefinations [29] have been reported.
Important ramifications of this research have recently
enabled expansion of the reaction scope and toolbox
of engineered and artificial nitrene and carbene
transferases for the selective conversion of CeH
bonds into new carbonenitrogen and carbonecarbon
bonds (Figure 1a) in both intramolecular and inter-
molecular settings, which will be surveyed here.
Altogether, the classes of biocatalysts highlighted
here are expanding the repertoire of sustainable,
biocatalytic strategies for the catalyst-controlled se-
lective functionalization of CeH bonds in organic
molecules and complex natural products. While not
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covered here, readers are directed to excellent re-
views on other enzymes classes (e.g., flavin-
dependent enzymes) of synthetic relevance for se-

lective CeH oxyfunctionalization and halogenation
[13,30e32], while more comprehensive reviews on
artificial metalloenzymes can be found elsewhere
[33].
Selective C–H hydroxylation by engineered
oxygenases

Hydroxylation is one of the most prevalent CeH func-
tionalization reactions found in nature, being involved in

biosynthesis of steroid hormones, antibiotics, and a va-
riety of secondary metabolites in plants, fungi, and mi-
crobes as well as in the breakdown of xenobiotics and
metabolisms of drugs in both humans and other organ-
isms [10]. A central role in these oxyfunctionalization
reactions is played by cytochromes P450 mono-
oxygenases, which have been evolved to recognize and
oxidize a diverse range of substrates across all kingdoms
of life. Inspired by the functional versatility of cyto-
chromes P450, increasing efforts have focused on engi-
neering and tuning these biological catalysts for the late-
stage CeH functionalization of complex scaffolds,

including biologically active natural products. One of
the earliest examples in this area entailed the develop-
ment of engineered P450-based catalysts for the late-
stage CeH hydroxylation of artemisinin (Figure 2a), a
complex sesquiterpene lactone with antimalarial activity
[34]. Zhang et al. initially identified a promiscuous
variant of the bacterial fatty acid hydroxylase P450BM3
www.sciencedirect.com
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Figure 2

Representative examples of selective C–H hydroxylations mediated by engineered P450s and Fe/aKG-dependent dioxygenases. (a–c) Regioselective
and stereoselective oxyfunctionalization of artemisinin (a), parthenolide (b), and testosterone (c) with engineered P450BM3 variants. (d) Modeled
complex of 7(S)-selective P450BM3 variant IV-H4 with artemisinin (ART). Key secondary structural elements in the P450 enzymes are labeled. Adapted
from Ref. [38]. (e) Chemoenzymatic synthesis of meroterpenoids. (f) Site-selective oxyfunctionalization of diterpenes with natural Fe/aKG-dependent
dioxygenases and an engineered P450BM3 variant.
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from Bacillus megaterium [35] that is capable of hydrox-
ylating this natural product with poor selectivity at the

aliphatic position C7 and C6a. Starting from this variant,
a panel of highly regioselective and stereoselective
biocatalysts for the synthesis of 7(S)-, 7(R), and 14-
hydroxy-artemisinin at a preparative scale were ob-
tained via re-engineering of the enzyme active site in
combination with a ‘P450 fingerprinting’ strategy [36]
www.sciencedirect.com C
for rapidly identifying P450 variants that feature diverse
regioselectivity and stereoselectivity properties

(Figure 2a). Via chemoenzymatic fluorination [37], the
7(S)-selective P450 variant could be applied to produce
artemisinin-derived drugs (e.g., artemether) in which a
metabolically labile CeH bond is protected via a H/F
substitution (Figure 2a). Recently, a computational
study by Huang and coworkers has provided insights
urrent Opinion in Green and Sustainable Chemistry 2021, 31:100494
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4 Synthetic Enzymes
into the origin of the divergent regioselectivity and
stereoselectivity in these artemisinin hydroxylating
biocatalysts [38]. Using a combination of molecular
dynamics simulations and QM/MM calculations, it was
found that a conformational change of a b hairpin at the
entrance of the substrate channel (b1 motif) and an a-
helical region (b0-helix motif) next to the heme cofactor
were critical for reshaping the binding pocket and

repositioning of the substrate within the enzyme active
site (Figure 2d), resulting in the divergent site-
selectivity observed experimentally. In another study,
Kolev et al. applied a similar strategy based on P450
fingerprint-based predictions and active site mutagen-
esis, for the development of three regioselective and
stereoselective P450BM3-based catalysts for hydroxyl-
ation of position C9 and C14 and epoxidation of the C1,
C10 double bond in parthenolide, a plant-derived
terpene with antileukemic activity (Figure 2b) [39].
While the parent enzyme strongly favored the epoxida-

tion reaction (77% select.), the site-selectivity of the
P450 could be efficiently steered to favor either C9 or
C14 hydroxylation with over 80e90% regioselectivity
and excellent stereoselectivity (C9: >99% de) by means
of three to seven active site mutations. The enzymati-
cally produced C9(S)- and C14-hydroxy-parthenolides
served as key intermediates for further chemoenzymatic
diversification via acylation, carbamoylation, alkylation,
and OeH carbene insertion chemistries to yield a panel
of novel ‘parthenologs’ [40,41]. By profiling their activ-
ity against multiple human cancer cell lines, partheno-

logs with significantly enhanced antileukemic and
anticancer activity were identified, highlighting the
value of P450-mediated chemoenzymatic CeH late-
stage functionalization for tuning the pharmacological
properties of a bioactive natural product and for drug
discovery applications. More recently, the You group
reported the engineering of two P450BM3 variants for
the site-selective hydroxylation of two aliphatic sites
(C9: 90% select.; C7: 49% select.) in cyperenoic acid, a
sesquiterpenoid with antiangiogenic activity [42].

The selective CeH oxyfunctionalization of steroid

substrates has also attracted considerable attention,
owing to the relevance of these compounds for hormone
therapy and other pharmacological applications.
Achieving selective hydroxylation in steroid molecules
poses a significant challenge due to large number of
unactivated and energetically similar C(sp3)eH bonds
in these molecules. Engineered variants of P450BM3 and
other P450s (e.g., CYP106) have provided a valuable
source of biocatalysts for steroid hydroxylation [43e48].
Targeting testosterone, the Reetz group was able to
optimize the modest regioselectivity (1:1 ratio) of an

initial P450BM3 variant (P450BM3(F87A)) to achieve 2b-
and 15b-hydroxylation with high selectivity (91e94%)
on screening about 9000 active site enzyme variants by
HPLC (Figure 2c) [45]. Using a similar approach but
combined with mutability landscape analysis (=
Current Opinion in Green and Sustainable Chemistry 2021, 31:100494
systematic analysis of all 19 amino acid substitutions at
20 active site positions), the same group more recently
reported the development of P450BM3 variants capable
of catalyzing the highly regioselective and diaster-
eoselective hydroxylation of testosterone at the C16
position with both a- and b-stereoselectivity [48].
Subsequent work from this group further enabled the
directed evolution of a P450BM3 variant with high 7b-
selectivity (90%) for testosterone hydroxylation [49]. In
this case, site-saturation mutagenesis of 15 active site
positions followed by multisite mutagenesis using a
binary (= 2 amino acid) code was effective toward
refining the desired 7b-selectivity (3 / 90%). Impor-
tantly, the aforementioned P450-based catalysts were
found to retain comparable regioselectivity and stereo-
selectivity for the hydroxylation of other related steroid
molecules, including androstenedione, nandrolone, and
boldenone [49]. Using a protein engineering strategy
based on ‘glycine scanning mutagenesis’ guided by

comparison of P450BM3 active site with that of steroid
C19-demethylase CYP19A1, Chen et al successfully
engineered a small library of P450BM3 variants (~30)
that are capable of oxidizing androstenedione and
dehydroepiandrostenedione at a wide range of aliphatic
CeH sites (C2, C6, C7, C15, and C16) with good to
excellent regioselectivity and stereoselectivity (48e
97%) [50]. Notably, this approach also led to the iden-
tification of stereodivergent biocatalysts for dehydro-
epiandrosterone oxidation at C7 (7a:93% selectivity, 7b:
97% selectivity; up to 970 TON) and for dihydroxylation

of these steroid substrates (e.g., C2/C16 and C7/C15)
with good activity and selectivity.

As a complementary approach to protein engineering,
substrate engineering has also been investigated for
altering and tuning the selectivity of P450-catalyzed
hydroxylations. The biosynthetic P450 enzyme PikC
catalyzes the hydroxylation of macrolides YC-17 and
narbomycin, which are recognized and bound by the
enzyme through a key desosamine group [51]. By
swapping this moiety with alternative amine-containing
‘anchoring’ groups, the Sherman group was able to

obtain different regioselectivity patterns for the hy-
droxylation of YC-17 analogs in combination with a
PikCD50N variant [52]. Expanding upon this concept
and utilizing a panel of 13 triazole anchors, the same
group later reported the late-stage hydroxylation of a 11-
membered macrolactone at up to three different
aliphatic sites and with 67e96% regioselectivity using a
single engineered PikC variant [53]. A related strategy
was investigated by Lange et al using a series of nitro-
phenylsulfonamide (nosyl)-based anchoring groups and
P450BM3 as the biocatalyst [54]. This approach was

shown to enable the hydroxylation of a model substrate
(vabicaserin) at multiple aromatic and aliphatic CeH
sites with variable selectivity depending on the nature
of the anchoring group. Overall, this substrate engi-
neering approach provides an attractive complement to
www.sciencedirect.com
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Metalloenzymes for selective C–H functionalization Ren and Fasan 5
protein engineering for tuning the selectivity of P450-
catalyzed hydroxylations, although it requires the
installation and removal of the anchoring group as
additional steps toward the desired transformation.

In addition to late-stage CeH functionalization, selec-
tive P450 catalysts can offer new opportunities for the
chemoenzymatic synthesis of complex molecules and

natural products [5]. In a first example of this applica-
tion, an engineered P450BM3 variant (called 8C7) was
applied to exert a regioselective allylic oxidation (~60%
selectivity) useful for completing the total synthesis of
nigelladine A [55]. The enzymatic hydroxylation step
overcome limitations of chemical oxidation methods
which showed poor selectivity and led to a mixture of
products. Leveraging the propensity of P450BM3 variants
to favor the regioselective and stereoselective hydrox-
ylation of sclareolide at C3 [36], Renata et al combined
gram-scale P450-catalyzed C3 hydroxylation of sclar-

eolide and sclareol to produce key intermediates for the
concise total synthesis of eight oxidized meroterpenoid
natural products (Figure 2e) [56�].

Along with cytochromes P450, mononuclear NHI-
dependent oxidases such as aKG-dependent dioxyge-
nases and Rieske dioxygenases participate in a broad
range of oxidative processes implicated in the biosyn-
thesis of natural products and metabolic degradation of
xenobiotics [57,58]. While being well characterized
from a structural and biochemical standpoint, the syn-

thetic potential of NHI-/aKG-dependent dioxygenases
has remained relatively underexplored. In early studies,
Hüttel and coworkers demonstrated the value of
members of this enzyme superfamily for the preparative
scale of cis- and trans-3-hydroxy and 4-hydroxy-proline
using proline hydroxylases from different microbial
strains [59]. These enzymes along with related pipecolic
acid hydroxylases (GetF, PiFa) could be used for the
regioselective and stereoselective hydroxylation of L-
pipecolic acid and 3- and 4-methyl-proline derivatives
[60]. Previously, a L-isoleucine dioxygenase was utilized
by the Shimizu group for the synthesis of 4(S)-hydroxy-
isoleucine from L-isoleucine [61]. More recently, the
Renata group investigated the substrate scope of leucine
5-hydroxylase GriE, which is involved in the biosyn-
thesis of griselimycin [62], and found that in addition to
the native substrate (leucine), this enzyme is capable of
catalyzing selective d-hydroxylations in several aliphatic
amino acids (11), supporting 150 to 10,000 turnovers
and resulting in the isolation of desired oxidized prod-
ucts in 18e92% yields [63]. In addition, this biocatalytic
reaction could be applied to generate a key intermediate
for the chemoenzymatic total synthesis of manzacidin C

at a subgram scale. Further exploiting the ability of wild-
type GriE to perform a double C5 oxidation in leucine
derivatives, various g-substituted proline analogs could
be prepared with high stereocontrol via a concise two-
step chemoenzymatic route. The same enzyme was
www.sciencedirect.com C
later exploited to implement an even shorter (5 vs. 9
steps) route for the total synthesis of manzacidin C [64].
In subsequent studies, stereoselective CeH hydroxyl-
ations catalyzed by a naturally occurring lysine 3-
hydroxylase (KDO1) [65] and lysine 4-hydroxylase
(GlbB) [66] were exploited for realizing concise routes
for the total synthesis of tambromycin [67] and the
proteasome inhibitor cepafungin I [68], respectively.

The GlbB-catalyzed hydroxylation reaction was carried
out at the multigram scale, demonstrating the scalability
of the biocatalytic transformation [69]. In another
recent study, Narayan et al used two Fe/aKG-dependent
enzymes, CitB and ClaD, for the selective benzylic
hydroxylation of a variety of o-cresol substrates [70].
The resulting products were found to undergo dehy-
dration to generate reactive o-quinone methide de-
rivatives, which could be further diversified chemically
by means of a Michael addition or an inverse electron-
demand DielseAlder reaction. In addition, this bio-

catalytic protocol could be applied to enable the
chemoenzymatic synthesis of the chroman natural
product (�)-xyloketal D. In another important contri-
bution, Zhang et al. reported a chemoenzymatic strategy
to access a total of nine diterpene natural products
belonging to the subfamilies of ent-kauranes, ent-
atisanes, and enr-trachylobanes (Figure 2f) [71��]. In
this case, two biosynthetic ent-kaurane hydroxylating
enzymes, namely the Fe/aKG-dependent dioxygenase
PtmO6 and class I P450 monooxygenase PtmO5, along
with an engineered P450BM3 variant

(MERO1(M177A)), were applied to execute highly
regioselective and stereoselective hydroxylations on a
precursor terpene scaffold (ent-steviol) as key steps for
affording the target diterpene natural products by
chemoenzymatic means. While the aforementioned
studies have relied on wild-type Fe/aKG-dependent
dioxygenases, Zwick et al. recently demonstrated the
feasibility of tailoring the selectivity of these enzymes
by protein engineering to fit the desired synthetic needs
[72]. After recognizing the ability of GetI to catalyze the
selective g-hydroxylation if citrulline, this enzyme was
re-engineered into a functional arginine 4-hydroxylase

via swapping four active site residues found in some
homologous arginine C3/C4 hydroxylases. Albeit
featuring modest catalytic activity (94 TTN), the
engineered GetI variant maintained excellent stereo-
selectivity for the desired lysine g-hydroxylation reac-
tion and proved useful for the synthesis of a dipeptide
fragment of the antibiotic enduracidin [72].
Metalloenzyme-catalyzed C(sp3)–H
halogenation

Enzymatic chlorination/bromination provides an
attractive and environmentally friendly alternative to
the installation of halogen groups in a target substrate
[13,30,31]. In addition to modulating the physico-
chemical properties of a molecule, CeH halogenation
urrent Opinion in Green and Sustainable Chemistry 2021, 31:100494
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6 Synthetic Enzymes
can provide useful synthetic handles for further elab-
oration and structural diversification (e.g., via metal-
catalyzed cross coupling, nucleophilic substitution,
etc.). In nature, two major classes of enzymes, i.e.,
flavin-dependent and NHI-dependent halogenases,
mediate CeH halogenation reactions in a regiose-
lective and stereoselective manner. While a detailed
account of flavin-containing halogenases can be found

elsewhere [13,30e32], here we will focus on recent
progress in C(sp3)eH halogenations by Fe/aKG-
Figure 3

Representative applications of C(sp3)–H halogenation mediated by natural an
epi-hapalindole C catalyzed by WelO5 and AmbO5. (b) Regiodivergent chlorin
variants. (c) Amino acid chlorination mediated by BesD and related halogena

Current Opinion in Green and Sustainable Chemistry 2021, 31:100494
dependent halogenases. Similar to Fe/aKG-dependent
dioxygenases, these enzymes rely on a high-valent
Fe(IV)-oxo species to form a substrate carbon radical
(C�) via H atom abstraction which undergoes halo-
genation via rebound to an iron-coordinated chloride/
bromide ligand. A conserved glycine or alanine residue
in place of aspartate or glutamate residue in the Fe/
aKG dioxygenases provides an open coordination site

for halide binding to the iron active center
(Figure 1c).
d engineered Fe/aKG-dependent halogenases. (a) Halogenation of 12-
ation of a martinelline-derived fragment mediated by engineered WelO5*
ses. (d) SadA(D157G)-mediated halogenation of N-succinyl-L-leucine.

www.sciencedirect.com
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Metalloenzymes for selective C–H functionalization Ren and Fasan 7
The synthetic application of NHI-/aKG-dependent
halogenases has been limited by the fact that their
substrates are typically tethered to an acyl or peptidyl
carrier protein [73]. In a recent study, Liu et al discov-
ered two biosynthetic aKG-dependent halogenases,
namely WelO5 from Hapalosiphon welwitschii and AmbO5
from cyanobacterium Fischerella ambigua, that are capable
of processing 12-epi-hapalindole C and analogs thereof as

free-standing substrates [74,75] (Figure 3a). While
these enzymes share an overall 79% sequence identity,
AmbO5 was found to exhibit a broader substrate scope
which included various hapalindole-type alkaloids [76].
More recently, the Buller group subjected a related
halogenase, WelO5*, to a protein engineering campaign
aimed at optimizing its activity and altering its regio-
selectivity for the chlorination of a core analog of
martinelline, a potent bradykinin receptor agonist [77�].
After two round of active site engineering, a WelO5*
variant (CB2) with enhanced catalytic activity

(0.1 / 33 TON) for the regioselective chlorination of
this substrate at the C9 position was obtained
(Figure 3b). In addition, a regiodivergent variant (CA1)
capable of chlorinating the same substrate at the C12
position with high stereoselectivity was isolated.
Although a competing hydroxylation reaction was found
to dominate in the latter case, this study provided an
important proof-of-principle demonstration of the pos-
sibility of tuning the activity and regioselectivity of
aKG-dependent halogenases via protein engineering.

In another study, the Chang group discovered a radical
halogenase, BesD, that catalyzes the regioselective g-
chlorination of lysine without the requirement of a
carrier protein, showcasing the first example of the
NHI-/aKG-dependent halogenase acting on a free-
standing amino acid [78] (Figure 3c). Via bioinformatic
analyses, the same authors later identified a BesD-
related halogenases which are capable of chlorinating
lysine and ornithine at the g and d position to produce
both monochlorinated and dichlorinated products (e.g.,
HalB-D) [79] or capable of mediating subterminal
chlorination of the aliphatic side chain in leucine and

derivatives thereof (e.g., HalE). Although these re-
actions lacked stereoselectivity and their scalability was
not investigated, these studies highlighted the potential
of Fe/aKG-dependent halogenases for the C(sp3)dH
halogenation of amino acid substrates. Finally, Mitchell
et al. reported the successful reprogramming of the aKG
hydroxylase SadA into a halogenase [80]. After replacing
a conserved iron-binding aspartate residue (Asp157)
with a glycine residue typically found in aKG halo-
genases [81], the resulting SadA(D157G) variant was
shown to be able to catalyze the g chlorination (or

bromination) of its native N-succinyl-L-leucine sub-
strate with conserved regioselectivity and stereo-
selectivity (Figure 3d). This study suggests that a
similar strategy could be applied to convert other aKG
dioxygenases into selective halogenases.
www.sciencedirect.com C
Engineered and artificial metalloenzymes
for C–H amination

The development of biocatalysts for selective CeH
amination reactions is attractive to synthetic chemists
due to the ubiquitous presence of nitrogen-based
functionalities in pharmaceuticals and bioactive com-

pounds. Biocatalytic systems for CeN bond formation
include transaminases, ammonia lyases, and imine re-
ductases which involve the transformation of oxidized or
activated carbon centers [82e87]. A major breakthrough
toward the direct conversion of CeH bonds into CeN
bonds involved the discovery of the ability of heme-
dependent enzymes and proteins to serve as bio-
catalysts for nitrene transfer reactions [21,88e92], a
transformation previously limited to transition metal
catalysts. In particular, engineered P450s as well as
myoglobin and other heme-dependent enzymes were

found to activate azide-containing substrates to catalyze
intramolecular CeH amination reactions [88] as well as
aziridination [21], sulfimidation [92] and other nitrene-
mediated transformations [93]. These reactions were
determined to be mediated by an electrophilic iron-
nitrenoid intermediate, with P450-catalyzed CeH
amination involving a stepwise H atom abstraction/
radical rebound mechanism [91,94�]. Interestingly, the
naturally occurring P450 BezE from Streptomyces sp. was
later discovered to exploit a similar nitrene transfer
mechanism as part of the biosynthesis of benzastatins
[95].

Important contributions have recently enhanced the
efficiency and expanded the scope of these biocatalytic
CeH amination reactions. Both engineered P450s and
myoglobin variants [88,90], along with metallo-
substituted derivatives thereof [90,96], were found to
be able to catalyze the intramolecular CeH amination of
arylsulfonyl azides to produce sultam products
(Figure 4a). The efficiency of these reactions is however
significantly lower than that typically exhibited by P450
enzymes as monooxygenases. Based on mechanistic

considerations, Steck et al. recently applied a rational
design strategy to generate P450BM3-based CeH
aminases with dramatically enhanced CeH amination
efficiency (460 / 14,800 TON) [97��]. Specifically,
mutations directed at disrupting the native proton relay
network and other conserved structural elements in the
enzyme active site were shown to suppress an unpro-
ductive (reductive) pathway in the catalytic cycle,
leading to a significant enhancement of the desired Ce
H amination reactivity. This approach also guided the
discovery of two atypical P450s, XplA, and BezE, as

efficient CeH aminases capable of supporting over
12,000 TON in this reaction (Figure 4a) [97��]. In
another study, Moore et al. investigated the impact of
substituting the conserved heme-coordinating histidine
residue in myoglobin, with both proteinogenic (Cys, Ser,
Tyr, Asp) and noncanonical amino acids (3-(30-pyridyl)-
urrent Opinion in Green and Sustainable Chemistry 2021, 31:100494
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Figure 4

C(sp3)–H amination reactions mediated by engineered and artificial metalloenzymes. (a) Intramolecular C–H amination of sulfonyl azides catalyzed by
various engineered P450s, P411s, metallosubstituted myoglobins/P450s, and NHI-dependent enzymes with representative TON and enantioselectivity
values (n.d. = not determined). The graph describes the activity of engineered P450BM3, XplA and BezE variants for the C–H amination of tri-
isopropylbenzenesulfonyl azide reported by Steck et al. [97��]. (b) Intramolecular C–H amination of azidosulfonylamines with engineered P411s. (c)
P411-catalyzed intermolecular amination of benzylic and allylic C–H bonds.
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alanine, p-aminophenylalanine, and b-(3-thienyl)-
alanine). The resulting myoglobin variants were found
to be able to catalyze the intramolecular CeH amina-

tion of triisopropylbenzenesulfonyl azide with up to 650
TON, showcasing the feasibility of exploiting pyridine-,
thiophene-, and aniline-based noncanonical amino acids
for metalloprotein engineering (Figure 4a) [98].

In terms of reaction scope, Yang et al. leveraged the
intramolecular nitrene transfer reactivity of engineered
serine-ligated P450 enzymes (also dubbed ‘P411s’)
Current Opinion in Green and Sustainable Chemistry 2021, 31:100494
[21,89,92] to catalyze the intramolecular CeH amina-
tion of a broad range of sulfamoyl azides to produce
protected diamine products (Figure 4b) [94�]. The best
biocatalyst evolved for this reaction, called P411Diane1,
allowed for the efficient and enantioselective (70e99%
ee) amination of benzylic and allylic CeH bonds to
afford both 1,2- and 1,3-diamines, some of which were
not accessible with small molecule catalysts [94�].
Furthermore, using directed evolution, the authors ob-
tained two P411Diane1-derived variants capable of cata-
lyzing the stereodivergent amination of unactivated
www.sciencedirect.com
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secondary aliphatic C(sp3)eH bonds. Mechanistic
studies showed the involvement of a stepwise, radical-
based nitrene CeH insertion mechanism similar to
that previously observed for P450-catalyzed intra-
molecular CeH amination [91].

In another notable contribution, the Arnold group
evolved a P411-based catalyst, called P411CHA, for the

intermolecular CeH amination of benzylic CeH bonds
in the presence of tosyl azide [99]. This reaction could
be applied for the aminofunctionalization of several
ethylarene substrates with variable yield (16e85%) but
with high enantioselectivity (92e99% ee). More
recently, the same group further expanded the scope of
this reaction to enable the amination of benzylic and
allylic CeH bonds using a hydroxylamine ester as the
nitrene precursor [100]. Starting from an initial P411
variant catalyzing this reaction with negligible activity
(<1 TTN), two significantly improved biocatalysts were

obtained through several rounds of directed evolution
(up to 3930 TTN) [100]. The evolved enzymes, called
P411BPA and P411APA, displayed good to excellent levels
of chemoselectivity, regioselectivity, and enantiose-
lectivity (64e96% ee) toward the amination of benzylic
and allylic CeH bonds (Figure 4c). Compared with the
method involving tosyl azide as nitrene precursor [99],
this strategy has the key advantage of providing direct
access to primary amines as the products.

In addition to heme-dependent enzymes and pro-

teins, recent studies showed that NHI-dependent
enzymes are also able to catalyze non-native nitrene
transfer reactions [101�,102�]. Goldberg et al. found
that PsEFE, an ethylene-forming aKG-dependent
iron dioxygenase, exhibit a basal, promiscuous ac-
tivity toward the aziridination of styrene with tosyl
azide. Via multiple rounds of directed evolution, an
evolved PsEFE variant carrying five mutations was
identified that shows improved activity and enan-
tioselectivity for the styrene aziridination reaction
(120 TON, 88% ee) as well as for the CeH
amination of arylsulfonyl azides (Figure 4a) [101�].
Interestingly, the catalytic efficiency of the enzyme
in both reactions could be significantly improved
(130 / 730 TON) by replacing aKG with N-
oxalylglycine as the iron coordinating ligand. In a
separate study, Vila et al. reported that different
types of mononuclear NHI enzymes, including
Rieske dioxygenases (e.g., naphthalene dioxygenase)
as well as aKG-dependent dioxygenases (TauD,
Gab, AsqJ, H6H) and halogenases (WelO5) can
catalyze the intramolecular CeH amination of sul-
fonyl azides (Figure 4a) [102�]. The naphthalene

dioxygenaseecatalyzed reaction could be carried out
at a gram scale in a bioreactor, demonstrating the
scalability of this transformation. Importantly, these
studies demonstrated that different members of the
NHI-dependent enzyme superfamily can exhibit
www.sciencedirect.com C
non-native nitrene transferase activity, laying the
basis for their further development and optimization
in the context of other CeH aminations and
nitrene-mediated transformations.
C–C bond formation via C–H
functionalization

While various classes of enzymes are known to catalyze
the formation of CeC bonds (e.g., aldolases, SAM-
dependent methyl transferases, PLP-dependent en-
zymes) [103e106], these transformations encompass a
narrow range of chemistries. Over the past few years,
important progress has been made toward expanding the
reaction scope of biocatalysts to enable new types of Ce
C bond forming transformations via direct CeH
functionalization.

Engineered myoglobins have proven to be efficient and

versatile biocatalysts for olefin cyclopropanations and
other abiological carbene transfer reactions [15e
17,24,107]. Recently, Vargas et al. demonstrated that
engineered myoglobin-based carbene transferases are
capable of functionalizing unprotected indoles in the
presence of ethyl diazoacetate, furnishing a broad range
of C3-functionalized indole derivatives in high yield (up
to 99%) and with excellent chemoselectivity and
regioselectivity [108�]. This biocatalytic method could
be leveraged to implement a more streamlined (3 vs. 4e
5 steps) chemoenzymatic route for the synthesis of the

nonsteroidal anti-inflammatory drug indomethacin
(Figure 5a) compared with previously available
methods. Mechanistic studies established that this
indole CeH functionalization reaction involves an
electrophilic substitution reaction via a zwitterionic in-
termediate [109]. A similar reaction was later reported
using engineered variants of YfeX, a hemoprotein found
in E. coli [110], and P411 enzymes [111]. The latter
biocatalysts could be applied for the regiodivergent
functionalization of C2 and C3 position in N-methyl
indole (98% and 91% regioselect., respectively).

The functionalization of C(sp3)eH bonds via carbene
CeH insertion are challenging transformations which
have typically required the use of noble metals (e.g., Rh,
Ir) as catalysts. By substituting the native heme cofactor
with iridium-porphyrin in a thermophilic P450 enzyme
(CYP119), Hartwig et al generated artificial metal-
loenzymes capable of promoting intermolecular carbene
CeH insertion in a series of phthalan derivatives
(Figure 5b) [112,113]. By protein engineering, these
biocatalysts could be optimized to catalyze this reaction

with up to 68% ee and 18:1 regioselectivity in the case of
substituted phthalans. In another study, Sreenilayam
et al. reported the intermolecular CeH functionaliza-
tion of phthalan with EDA using Mn- and Co-containing
myoglobin variants, thus demonstrating that metal-
loenzymes containing first-row transition metals are also
urrent Opinion in Green and Sustainable Chemistry 2021, 31:100494
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Figure 5

C–H functionalization reactions via metalloenzyme-catalyzed carbene transfer. (a) Indole functionalization by engineered myoglobin and P411 variants.
(b) Intermolecular carbene insertion by iridium-based P450s. (c) P411-catalyzed carbene insertion into benzylic/allylic C(sp3)–H bonds. (d) P411
catalyzed a-amino C–H carbene insertion with trifluorodiazoethane.
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capable of mediating carbene C(sp3)eH insertion
chemistry [114]. More recently, another major break-
through in this area was reported by the Arnold group

through the development of engineered cytochrome
P411 variants useful for the intermolecular alkylation of
benzylic, allylic, and a-amino C(sp3)eH bonds via
carbene CeH insertion [115��]. Using ethyl diazo-
acetate as carbene donor, a P411-based biocatalyst
optimized through multiple rounds of directed evolu-
tion (dubbed P411-CHF) enabled the functionalization
a broad range of substrates with up to 3750 turnovers
and up to 99% ee (Figure 5c) [115��]. In subsequent
studies, the scope of these P411-based biocatalysts
could be expanded to enable the functionalization of a-
amino C(sp3)eH bonds in the presence of 2-diazo-
1,1,1-trifluoroethane or 3-diazodihydrofuran-2(3H)-one
(Figure 5d) [116], two carbene donor reagents previ-
ously applied in the context of other hemoprotein-
catalyzed carbene transfer reactions [117,118]. In both
cases, the screening of a library of P411 active site var-
iants against a panel of target substrates yielded
substrate-matched biocatalysts with high enantiose-
lectivity and, in some cases, stereocomplementary
Current Opinion in Green and Sustainable Chemistry 2021, 31:100494
selectivity for the transformation of the substrate of
interest. Overall, the studies highlighted above have
begun to demonstrate the potential of engineered he-

moproteins for CeH functionalization via carbene
transfer chemistry. Despite this progress, the scope of
these transformations is currently limited to electroni-
cally activated C(sp3)eH bonds (i.e., benzylic/allylic
CeH bonds or CeH bonds in alpha to heteroatoms) and
simple substrates. An unmet challenge in this area thus
includes gaining the ability to functionalize less acti-
vated C(sp3)dH bonds and their application in more
complex molecular settings.
Outlook
As outlined above, the toolbox of biocatalytic methods
for the conversion of CeH bonds into new CeO, CeN,
and CeC bonds have grown significantly over the past
few years, creating new opportunities for the sustainable
synthesis of chiral building blocks, drug molecules and

complex molecules. The integration of metalloenzyme-
catalyzed oxyfunctionalizations into chemoenzymatic
scheme has provided a means to expedite the late-stage
CeH functionalization and total synthesis of complex
www.sciencedirect.com
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molecules, such as bioactive natural products. Impor-
tantly, these approaches have enabled chemists to
access new CeH sites and/or exploit disconnection
strategies previously inaccessible with purely chemical
methods, highlighting the value of these hybrid ap-
proaches. In the future, we expect these chemo-
enzymatic strategies will continue to expand to include
new classes of enzymes as well as new-to-nature

enzyme-catalyzed transformations such as biocatalytic
CeH amination and CeH carbene insertion reactions,
which are currently limited to small molecule sub-
strates. Initial successes in the application of P450-
catalyzed CeH aminations for the late-stage elabora-
tion and synthesis of natural products offer an encour-
aging preview of these future opportunities [91,94�]. As
noted previously, the scope of biocatalytic C(sp3)eH
carbene insertion reactions are currently limited to
electronically activated CeH bonds and extending their
scope for the functionalization to less activated CeH
sites in both small and complex molecules remains an
unmet challenge. Finally, the studies highlighted in this
review illustrate the potential of various classes of
metalloenzymes, namely heme and various types of
NHI-dependent enzymes, to be repurposed for new-to-
nature chemistry. This should continue to inspire the
investigation of metalloenzymes and metalloproteins for
novel chemical transformations and synthetic applica-
tions. Directed evolution and mechanism-guided
rational design and cofactor re-engineering can offer
powerful and complementary tools toward the devel-

opment of new and more efficient biocatalysts for these
applications. Ultimately, these systems will fulfil the
demand for new, sustainable methods for organic syn-
thesis as well as provide valuable new tools for applica-
tions in medicinal chemistry, drug discovery, and
chemical biology.
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