Fluid Dynamics Elements

Elements of Fluid Dynamics: Ideal Laws

Pushing particles from V_1 to V_2 requires work $\Delta w = \Delta (E_{kin} + V_{pot})$. Static pressure *p*.

Ideal incompressible, non-viscous liquid, "streamlines" (irrotational flow, no inertia)

Number density :
$$\rho = const. \quad \left[\# N/cm^3 \right]$$

Mass density : $\rho_m = m \cdot \rho = const. \quad \left[g/cm^3 \right]$
Flux (# particles / time) through tube $x - scn$ area $A = A_{\perp}$
 $\dot{N} = \frac{dN}{dt} = \rho \cdot u \cdot A \rightarrow \frac{dm}{dt} = \rho_m \cdot (\underline{u} \cdot A) = \rho_m \cdot \dot{Q}$
 $\int_{dV/dt}$

Incompressibility $(\rho_1 = \rho_2) \rightarrow$ equal # of particles (*N*) flow out of V_1 and into V_2 .

$$\dot{N}_1 = \rho \cdot u_1 \cdot A_1 = j_1 \cdot A_1 = \rho \cdot u_2 \cdot A_2 = j_2 \cdot A_2 = \dot{N}_2$$

Continuity Equation

$$\Rightarrow j_m \cdot A = \rho_m \cdot u \cdot A = \frac{dm}{dt} = const.$$

Application of Fluid Dynamics: Ideal Laws

Pushing particles from V_1 to V_2 requires work $\Delta w = \Delta (E_{kin} + V_{pot})$. Static pressure p. $\Delta w_{1\to 2} = [(p_2 \cdot A_2) \cdot u_2 - (p_1 \cdot A_1) \cdot u_1] \Delta t = \frac{\Delta m}{\rho_m} (p_2 - p_1)$ $Loss(?) \quad \Delta E_{kin} = (1/2) \cdot \rho_m \cdot (A_2 \cdot u_2^3 - A_1 \cdot u_1^3) \Delta t$ $Gain(?) \quad \Delta V_{Pot} = \Delta m (v_{Pot,2} - v_{Pot,1}), \quad \Delta m = \rho_m \cdot A \cdot u \cdot \Delta t$

$$\frac{\Delta m}{\rho_m} (p_1 - p_2) = (1/2) \Delta m (u_2^2 - u_1^2) + \Delta m (\upsilon_{Pot,2} - \upsilon_{Pot,1})$$

Ideal incompressible, non-viscous liquid, "streamlines" (irrotational flow, no inertia)

Number density :
$$\rho = const. \quad [\# N/cm^3]$$

Mass density : $\rho_m = m \cdot \rho = const. \quad [g/cm^3]$
Flux (# particles / time) through tube $x - scn$ area $A = A_{\perp}$
 $\dot{N} = \frac{dN}{dt} = \rho \cdot u \cdot A \rightarrow \frac{dm}{dt} = \rho_m \cdot (\underline{u} \cdot A) = \rho_m \cdot \dot{Q}$
 $\int_{V/dt} V/dt$

Incompressibility $(\rho_1 = \rho_2) \rightarrow \text{equal } \# \text{ of } particles (N)$ flow out of V_1 and into V_2 .

$$\dot{\mathsf{V}}_1 = \rho \cdot \boldsymbol{u}_1 \cdot \boldsymbol{A}_1 = \boldsymbol{j}_1 \cdot \boldsymbol{A}_1 = \rho \cdot \boldsymbol{u}_2 \cdot \boldsymbol{A}_2 = \boldsymbol{j}_2 \cdot \boldsymbol{A}_2 = \dot{\boldsymbol{N}}_2$$

Continuity Equation

$$\Rightarrow j_m \cdot A = \rho_m \cdot u \cdot A = \frac{dm}{dt} = const.$$

Application of Fluid Dynamics: Ideal Laws

Ideal incompressible, non-viscous liquid, "stream lines" (irrotational flow, no inertia)

Number density :
$$\rho = const. \quad \left[\# N/cm^3 \right]$$

Mass density : $\rho_m = m \cdot \rho = const. \quad \left[g/cm^3 \right]$
Flux (# particles / time) through tube $x - scn$ area $A = A_{\perp}$
 $\dot{N} = \frac{dN}{dt} = \rho \cdot u \cdot A \rightarrow \frac{dm}{dt} = \rho_m \cdot \underbrace{\left(u \cdot A \right)}_{V/dt} = \rho_m \cdot \dot{Q}$

Incompressibility $(\rho_1 = \rho_2) \rightarrow \text{equal } \# \text{ of } particles (N)$ flow out of V_1 and into V_2 .

$$\dot{\mathsf{V}}_1 = \rho \cdot \mathsf{U}_1 \cdot \mathsf{A}_1 = j_1 \cdot \mathsf{A}_1 = \rho \cdot \mathsf{U}_2 \cdot \mathsf{A}_2 = j_2 \cdot \mathsf{A}_2 = \dot{\mathsf{N}}_2$$

Continuity Equation

$$\Rightarrow j_m \cdot A = \rho_m \cdot u \cdot A = \frac{dm}{dt} = const.$$

Bernoulli Equation

$$\frac{\Delta m}{\rho_m}(p_1 - p_2) = (1/2)\Delta m(u_2^2 - u_1^2) + \Delta m(v_{Pot,2} - v_{Pot,1}) \implies p + (1/2)\rho_m u^2 + \rho_m v_{Pot} = \frac{E}{V} = const.$$

Apply *Bernoulli Equation* to flow of water with gravitational energy $\Delta V_{pot} = V_{pot} = m \cdot g \cdot h$

In free fall through potential difference $\Delta V_{pot} = m \cdot g \cdot h$, no static "backup" pressure differential $(p=0) \rightarrow$ "jet"

$$E_{kin} per \Delta V \rightarrow (1/2) \rho_m u^2 = \rho_m \cdot g \cdot h \rightarrow u = \sqrt{2g \cdot h}$$

If stream with velocity u exits through area A, \rightarrow Volume flow rate $\dot{Q} := \dot{V} = dV/dt$ and power P =

$$\dot{Q} = \frac{dV}{dt} = A \cdot u = A \cdot \sqrt{2 \cdot g \cdot h} \quad [] = Volume/Time$$

$$P = \dot{Q} \cdot (\rho_m \cdot g \cdot h) \approx 45 \cdot A \cdot h^{3/2} \ kW$$

 \mathbf{v}

Apply *Bernoulli Equation* to flow of water with gravitational energy $\Delta V_{pot} = V_{pot} = m \cdot g \cdot h$

In free fall through potential difference $\Delta V_{pot} = m \cdot g \cdot h$, no static "backup" pressure differential $(p=0) \rightarrow$ "jet"

$$E_{kin} per \Delta V \rightarrow (1/2) \rho_m u^2 = \rho_m \cdot g \cdot h \rightarrow u = \sqrt{2g \cdot h}$$

If stream with velocity u exits through area A, \rightarrow Volume flow rate $\dot{Q} := \dot{V} = dV/dt$ and power P =

$$\dot{Q} = \frac{dV}{dt} = A \cdot u = A \cdot \sqrt{2 \cdot g \cdot h} \quad [] = Volume/Time$$

$$P = \dot{Q} \cdot (\rho_m \cdot g \cdot h) \approx 45 \cdot A \cdot h^{3/2} \ kW \quad \text{Rule of Thumb}$$

$$\int \frac{dM}{dt}$$

Example: Head at h=175 m, diameter of penstock $d=3 m (A = \pi \cdot (d/2)^2 = 2.41 m^2)$ $u = \sqrt{2 \cdot g \cdot h} = \sqrt{2 \cdot 9.81 \cdot 175} \frac{m}{s} = 58.6 \frac{m}{s}$ $\dot{Q} = A \cdot u = 2.41 m^2 \cdot 58.6 \frac{m}{s} = 141.3 \frac{m^3}{s} = 1.4 \cdot 10^5 L/s$ $\rightarrow P = 251 MW (= P_{max})$ contained in flow

Fluid Resistance/Parasitic Drag

Estimation of parasitic drag, angle of particle flow component perpendicular to obstacle area.

Continuous flow of particles (mass m), Number density $\rho \left[\#/cm^3 \right]$, mass density $\rho_m = m \cdot \rho$ Mass flux density : $j_m(u) = m \cdot \rho \cdot u = \rho_m \cdot u \left[g/cm^2 \cdot \Delta t \right]$

Flow speed $u = u_{\perp} (\perp \text{ to area A}) \rightarrow \text{Kinetic energy density } e_{kin} = \frac{1}{2}m \cdot \rho \cdot u^2$ Energy flux per Δt onto area $A = A_{\perp} (\perp \text{ to wind direction})$:

$$\Delta E = \frac{1}{2} \left(m \cdot \rho \cdot u^2 \right) \cdot \left(\underbrace{A \cdot u \cdot \Delta t}_{T_{\Delta V}} \right) \rightarrow Power \ P = \frac{1}{2} A \cdot m \cdot \rho \cdot u^3 \rightarrow \boxed{P = \frac{1}{2} A \cdot \rho_m \cdot u^3}$$

Get force exerted on area A from : $P = F \cdot u \rightarrow F =: F_{drag}$ $\boxed{F_{drag} = \frac{1}{2} A \cdot \rho_m \cdot u^2}$

Effective (projected) area hit directly by wind : $A_{\perp} = C_d \cdot A_{total}$

$$F_{drag} = D = \frac{1}{2}C_{d} \cdot A_{total} \cdot \rho_{m} \cdot u^{2}$$
$$F_{lift} = L = \frac{1}{2}C_{L} \cdot A_{total} \cdot \rho_{m} \cdot u^{2}$$

Derivation valid for parasitic drag, e.g., air resistance. Often, experimentally determined **Drag Coefficients** represent total drag/resistance.

Fluid-Dynamic Power Transfer

At obstacle (turbine), u slows, stream-lines diverge, flow speed decreases, $\mathbf{u_2} = \mathbf{u_{wake}} < \mathbf{u_1} = \mathbf{u_{wind}}$

$$E_{kin} = \frac{1}{2} \cdot (\rho_m \cdot \Delta V) \cdot u_1^2, \quad volume \ \Delta V$$

through A in Δt :
Volume $\Delta V(u_1) = A \cdot u_1 \cdot \Delta t$.

Power flux
$$\perp A$$
: $P_i = \frac{\Delta E_{kin}}{\Delta t} = \frac{1}{2} \cdot \left(\rho_m \cdot A_i \cdot u_i^3\right)$

Continuity: $j_1 A_1 = \rho A_1 \cdot u_1 \approx \rho A_2 \cdot u_2 = j_2 A_2$ \rightarrow Average speed $\overline{u} := (u_1 + u_2)/2$ for mass flow $\dot{M} = \rho_m \cdot \Delta V / \Delta t = \rho_m A \overline{u}$ Volume $\Delta V(\overline{u})$ transfers to turbine $(\rho_m A \overline{u})$

$$\Delta P = P_1 - P_2 \approx \frac{(\rho_m A \overline{u})}{2} \left(u_1^2 - u_2^2 \right) = \frac{(\rho_m A)}{4} \left(u_1 + u_2 \right) \left(u_1^2 - u_2^2 \right)$$

Fluid-Dynamic Power Transfer

At obstacle (turbine), u slows, stream-lines diverge, flow speed decreases, $\mathbf{u_2} = \mathbf{u_{wake}} < \mathbf{u_1} = \mathbf{u_{wind}}$

$$E_{kin} = \frac{1}{2} \cdot (\rho_m \cdot \Delta V) \cdot u_1^2, \quad volume \ \Delta V$$

through A in Δt :
Volume $\Delta V(u_1) = A \cdot u_1 \cdot \Delta t$.

Betz.

Limit

Delivered to turbine:
$$\Delta P =: C_{Turbine} P_{wind} \text{ defines power coefficient } C_{Turbine} \rightarrow C_{Turbine} \approx \frac{1}{2u_1^3} \cdot (u_1 + u_2) \cdot (u_1^2 - u_2^2) = \frac{1}{2} \cdot (1 + x) \cdot (1 - x^2) \text{ with } x := \frac{u_2}{u_1}$$

Maximum power: $d(\Delta P)/dx = 0 \rightarrow x|_{\Delta P=\max} = 1/3 \rightarrow self regulating stable$

Effective mean speed $\overline{u} := \frac{1}{2}u_1(1+x) = \frac{2}{3}u_1$ $C_{Turbine} = \frac{\Delta P}{P_{Wind}} \le \frac{16}{27} = 0.593$

 $\overline{u} := (1-a)u_{Wind}$ $a = linear (axial) induction factor of turbine = f(#blades, A_i)$

Power Generation in Impulse Turbines

Heads > 300m @ atm. P

Momentum transfer $\Delta p_{|}$ by *m* colliding with bucket (C),

Bucket area A_c is hit per Δt by (velocity jet u, bucket u_c) $\Delta m \approx j_m(u-u_c) \cdot A_c \cdot \Delta t$, rel.momentum $p = \Delta m \cdot (u-u_c)$,

 $(u - u_c) =$ speed relative to bucket initally $u_c \ll u$, increases in time.

Other Turbines

$$\rightarrow \text{ transfer } \Delta p = 2p \text{ to } cup \text{ in } \Delta t \rightarrow \text{Force } F = \Delta p/\Delta t$$

$$\rightarrow \text{ Force } F = 2p/\Delta t \approx 2 \cdot \left[j_m (u - u_c) \cdot A_c \right] \cdot (u - u_c) = 2\rho_m A_c (u - u_c)^2 \quad \text{Example of dissipative force}$$

$$\text{Energy (work) transfer to bucket } \Delta E = F \cdot \Delta x = F \cdot u_c \cdot \Delta t$$

$$\text{Power transferred to bucket } P = F \cdot u_c = \left[2\rho_m A_c \right] (u - u_c)^2 \cdot u_c$$

$$\text{Speed of bucket increases, maximum power transfer } P_{\text{max}} \rightarrow u_c = \frac{1}{3}u$$

$$P_{\text{max}} = \frac{2}{27} \left[\rho_m \cdot A_c \right] \cdot u^3 = \frac{4}{27} \left[\frac{1}{2} \rho_m \cdot u^2 \right] \cdot \left(A_c \cdot u \right) = \frac{4}{27} \frac{d}{dt} \left(\frac{1}{2} m \cdot u^2 \right)$$

$$\text{Converts } \leq 16\%$$
of incoming P

$$\frac{Q}{Q} = dV/dt$$

Angular Momentum Transfer in Reaction Turbines

Angular Momentum Transfer in Turbines

W. Udo Schröder, 2022

Angular Momentum Transfer in Hydro Turbines

Angular Momentum Transfer in Turbines

Gen Reaction Turbine Angular momentum to turbine (runner) by driving fluid (water)

 $|\Delta \vec{L}_{\tau} = \vec{L}_{in} - \vec{L}_{out}$; Torque $M = \Delta L_{\tau} / \Delta t$; Power $P = M \cdot \Omega_{\tau}$

Turbine power does not depend on many construction details but blade geometry \rightarrow maximize angular momentum transfer!

$$P = \Omega_{\tau} \cdot \rho_{m} \cdot \dot{Q} \cdot \left[\left(\vec{r} \times \vec{u} \right)_{in} - \left(\vec{r} \times \vec{u} \right)_{out} \right] \qquad \begin{array}{c} \text{Euler's Turb} \\ \text{Equation} \end{array}$$

Power is maximized if fluid brings in maximum angular momentum ($\beta_{in}=0^0$) and carries no angular momentum on the way out $(\beta_{out}=90^{\circ}) \rightarrow$ tangential inflow & radial outflow.

$$P_{\max} = \Omega_T \cdot \underbrace{\rho_m}_{=dm/dt} \cdot r_{in} \cdot u_{in} \cdot \cos \beta_{in} \rightarrow \underbrace{\rho_m}_{=dm/dt} \cdot r_{in} \cdot u_{in} \cdot \cos \beta_{in} \rightarrow \underbrace{\rho_m}_{=dm/dt} \cdot \frac{R}{P_{\max}} = \underbrace{m}_{R} \cdot R \cdot \Omega_T \cdot (u_{in})_{tang} \qquad \begin{array}{c} R = i \\ (u_{in}) \\ (u_{in}) \end{array}$$

injection radius for turbine, $(u_{in})_{tang} = tangential jet velocity$

Turbine

High power produced by large turbines: high water inflow + tangential injection ($\beta_{in}=0^{0}$) + radial outflow ($\beta_{out}=90^{0}$).

Synchronized el. power output steered by governor circuitry controlling gate position.

Turbine Types

Hydro turbines are impact or reaction turbines.

Francis Turbine, radial flow, dia 0.5-6 m Fully submerged, horizontal or vertical modes. Axial outflow.

Popular design, versatile & useful for very different effective heads

> Pelton impact/impulse turbine, tangential flow, fixed buckets, low head, low/medium flow.

Turbine Arrangements

Propeller turbines for low heads. Fixed blades or variable pitch. Schematics of power generation with a Kaplan turbine = high efficiency @all loads/heads because of adjustable propeller blades.

Francis turbine: Heads< 360 m. Guide vanes→ tangential injection → radial out flow "Runner"

Wikipedia