Power from Nuclear Transmutation

(Fission and Fusion)

The Diablo Canyon NPPT produced CO_2 -free electricity at 2¢/kwh, half the state's (CA) average cost.

ALC: NO. OF ALC: NO.

W. Udo Schröder, 202

-3-Nucl

Agenda

- Nuclear stability & particle radiation Potential biological hazards
- Energy Generation from Nuclear Fission

 U.S./World trends,
 Nuclear fuel resources (U.S.),
 Fission chain reaction and reactor control,
 Reactor types,
 Fuel cycles, radioactive waste & storage.
- New Nukes: Advanced Nuclear Energy Technologies Small modular plants, Advanced (Gen IV) reactors, U & Th breeder reactors, subcritical reactors, Closed fuel cycle, Non-fission applications: Radioisotope Thermoelectric Generators (RTG)
- Energy from nuclear fusion reactions
 Fusion energetics, critical
 Principles of magnetic and inertial confinement
- Strategic Issues for Nuclear Power
 Sustainability, reliability, scalability, safety, eco-footprint, cost

 \sim

U.S./World Trends in Nuclear Energy Production

Steady increase of nuclear power output over 30y. Efficiency $\varepsilon \nearrow$ Now: $\varepsilon \ge 90\% \rightarrow$ equivalent: 24 quads of oil. NPP lifetime 40a $\rightarrow > 60a$

World 2023 (US): 440 (92) reactors; 400 (100) GW, 2.5 PWh → Modernize !

ŝ

U.S. Uranium Resources/Used Fuel Elements

Basic Nuclear Properties

Classical Model of Atom

Isotope Terminology

 $\begin{array}{c} A_{number}^{mass} & 14 \\ C_{number}^{atomic} & 6 \end{array}$ $\begin{array}{c} A_{number}^{neutron} & 0 \\ N_{number}^{neutron} & 0 \\ \end{array}$

¹²C =stable isotope >>>¹⁴C or C-14<<< =radioactive isotope Atom of element Z: Z negatively charged electrons orbit around a Z-times positively charged, small nucleus in center of atom.

Nucleus= (Z protons, N neutrons), mass number A = N+Z Nuclear radii range from $R_{Nucleus} \approx (1-10) \cdot 10^{-15}$ m. (1 fm= 10^{-15} m)

Nuclear radius $R_{Nucleus} \ll R_{Atom}$ atomic radius ($1\text{\AA}=10^{-10} \text{ m}$)

Ω

Basic Energetics: Nuclear Rearrangement Energies

Ś

Fuel Energy Density

From Wikipedia, Nov. 2012

Nuclear fuel has highest known material energy density ($\sim 10^7$) \rightarrow potentially lowest environmental impact ("footprint")

Energy Release in n_{th} -Induced Fission

β –Delayed Neutrons

87% of fission energy (≈200 MeV) promptly in fission ≤ 10⁻¹⁴ s 13% emitted in β-decays of fission fragments, range of life times → delayed emission of β⁺, β⁻, ν_e, γ, n

0.65% of neutrons from ²³⁶U fission are delayed (occur after fission) \rightarrow = Essential for sustaining chain rxn + control function

"Ignition" possible? \rightarrow self-sustaining chain reaction

δ

Self-Sustaining Fission Chain Reaction

Leo Szilard 1938 Neutron multiplication through fission: k=2.4, minus losses (capture, leaking, escape,..) \rightarrow effective k < 1. One **n** used in each fission \rightarrow effective multiplication **k-1**

$$\frac{dN_n/dt \approx (k-1)N_n/\tau}{N_n(t) \approx N_n(0) \cdot e^{(k-1)t/\tau}}$$

k >1: avalanche of n τ = time between generations ($\tau \sim 40\mu$ s in critical reactors $\tau \sim$ ns in explosive devices) $k_{eff} = k_{prompt} + k_{delayed}$ Reactor Control: delayed n's

Characteristic time period

$$T = \frac{\tau}{(k_{eff} - 1)} \stackrel{k_{eff} \approx 1}{\underset{e.g.,k_{eff} = 1.03}{k_{eff} \approx 1}$$

Most fission neutrons are lost or not useful for further fission. Fission fragments = "reactor poison" $\rightarrow k_{eff} < 1$ stops chain reaction!

Fission and n-Capture Probabilities ("Cross Sections")

Central Problem: Ignition of a self-sustaining fission reaction. → Moderate & recycle fission neutrons!

^{nat}U: 99.3% ²³⁸U, 0.7% ²³⁵U

Fission cross sections \rightarrow typically small, ²³⁸U: $\sigma_{f} \sim 1 b$ for $E_{n} > 1 MeV$ $\approx 0 b$ for $E_{n} < 1 eV$ dominating: scattering (~8 b) + capture ²³⁵U: $\sigma_{f} \sim 1-2 b$ for $E_{n} > 1 MeV$ $\sim 10^{3} b$ for $E_{n} < 1 eV$ *large*!! dominating: (n, f) fission

Observed ^{nat}U fission is due to (0.7%) ²³⁵U

→isotopically enrich 235 U, > 4% -20% for higher efficiency (∞ output fission energy/input neutron energy)

Slow neutrons \rightarrow large $\sigma_{f}!$

Slowing-down (moderation) of fission *n*'s by elastic *n* scattering on light moderator nuclei (H, C,...)

Neutron Energy Moderation

Fission neutrons too energetic, \rightarrow "thermalize" to maximize $\sigma_{n,fiss}$ for ²³⁵U ! \rightarrow multiple elastic scattering ("moderation") moderator: small σ_{cant} !

Need: 2 MeV \rightarrow 0.025 eV/2MeV (= 10⁻⁸) Must "miss" ²³⁸U capture resonances $(2eV < E_n < 10keV)$

H₂O, D₂O, Be, C(graphite), prevent n leakage

Needed: moderator and fuel coolant

Control rods (Cd,..) capture n's $\rightarrow k_{eff} \approx 1$

W. Udo Schröder, 2024

Reactor Control and Safety

"Reactivity $d\rho/dT$ "; $\rho = (k_{eff} - 1)/k_{eff}$

Reduce by n absorbers *Cd*, *B* (control rods, moderator) Automatic: fission products= "reactor poisons"

Temperature dependent reactivity coefficient $d\rho/dT < 0$ Negative reactivity desirable (self-regulating).

In BWR/PWR

Doppler Effect: broadening of resonance and n spectrum leads to increased ncapture by $^{238}U \rightarrow d\rho/dT < 0$

Density Effect: hot moderator expands, lower density \rightarrow longer mean free path, less moderating efficiency $\rightarrow d\rho/dT < 0$

Dilatation Effect: hot moderatordelays slowing down $\rightarrow d\rho/dT < 0$

 $d\rho/dT = -(0.5-1)x10^{-4}/{}^{0}C$ PWR $d\rho/dT = -1x10^{-3}/{}^{0}C$ Breeder, EA

Principle Boiling Water Reactor

Conventional Gen-II Nuclear BW Power Plant 1-2GW

17

Fail-safe operation **Negative Reactivity**

Negative feedback loops: Reaction subsides when

- coolant gets too hot or disappears (less dense, less moderation)
- fuel gets too hot (*n* capture increases)
- control rods are not moved out

Passive safety:

Pressure reactor vessel $\sim 1'$ thick steel, pressure tubes,

Reactor containment building with several 3-5-feet-thick concrete walls, concrete + water shielding on top of reactor vessel, gravitation replaces mechanical pumps.

PWR Primary and Secondary Cooling Systems

MB 3618A

W. Udo Schröder, 2024

Nuclear Fuel Storage & Transport

Uranium and **Thorium** Fuel Cycles

"Spent fuel" still contains 97% of nuclear energy $(^{235,238}U, ^{239,240}Pu) + FF \& MA$

Fuel Cycle: Fuel Enrichment

Gas Diffusion Isotope Enrichment

NPP (7TWh/a output) needs \approx 6 GWh/a for 0.7 \rightarrow 6% ²³⁵U

	Weapons- Grade U (HEU)	Reactor- Grade U (LEU)	Natural U
²³⁴ U ²³⁵ U ²³⁸ U	0.12	0.025	0.0057
	94.00	3.500	0.7193
	5.88	96.475	99.2750

Intermediate enrichment ~20% needed for research & radio-pharma reactors

Preferred technology: Gaseous diffusion of UF_6 (¹⁹F mono-isotopic)

Laser ionization possible, economics

US: NPP (7TWh/a output) needs 250 GWh/a for enrichment

Yucca Mountain (NV) Depository

W. Udo Schröder, 2024

109

101

104

Number of years

105

1 Sv (Sievert) = 100 rem, biolog. equivalent to 1J/kg X-rays Radiotoxicity: R(Sv)=(Dose in Sv/decay), Activity/kg

Agenda

- Nuclear stability & particle radiation Potential biological hazards
- Energy Generation from Nuclear Fission

 U.S./World trends,
 Nuclear fuel resources (U.S.),
 Fission chain reaction and reactor control,
 Reactor types,
 Fuel cycles, radioactive waste & storage.
- New Nukes: Advanced Nuclear Energy Technologies Small modular plants, Advanced (Gen IV) reactors, U & Th breeder reactors, subcritical reactors, Closed fuel cycle, Non-fission applications: Radioisotope Thermoelectric Generators (RTG)
- Energy from nuclear fusion reactions
 Fusion energetics, critical
 Principles of magnetic and inertial confinement
- Strategic Issues for Nuclear Power
 Sustainability, reliability, scalability, safety, eco-footprint, cost