Thermal Power Plants

Agenda: Thermal Power Plants

- Operational principle of cyclic thermodynamic engines Entropy, heat, and work in Carnot cycle
- Reciprocating (piston) engines Steam cylinder Otto internal combustion cycle Stirling engine
- Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles
- Steam & Gas turbine power plants Combined-cycle
- Chemistry of complete & incomplete combustion Examples
- Carbon (CO₂) capture processes

Next: Power from nuclear transmutation Andrew & Jelley Chs. 9 & 10

 \sim

Low/Medium Pressure Steam Turbines

Gas Power Turbine: Parts & Operation (GE)

In Operation

Combustion gases-working fluid

Air intake at turbo compressor stage. Fuel/air mix injected in annular combustion chambers. Combustion gas drives turbine directly: power stage.

Turbo compressor raises air pressure (x20) & temperature.

Fuel/air mix is ignited in combustion chambers. → Super heated compressed fuel/air mix drives power rotors. Exhaust gas is still hot.

Turbine for Gas Power Plants

SGT-800 Power generation 47.00MW(e) Fuel: Natural gas*, Frequency: 50/60Hz Electrical efficiency: 37.5% Heat rate: 9,597kJ/kWh (9,096Btu/kWh) Turbine speed: 6,608rpm Compressor pressure ratio: 19:1 Exhaust gas flow: 131.5kg/s Exhaust temperature: 544°C (1,011°F) NOx emissions (with DLE, corrected to 15% O2 dry): ≤ 15ppmV

Available for different power outputs (5-375 MW), revolutions 3,000-17,000 rpm, 50/60 Hz electric. Efficiencies 0.35- 0.60

Combined Cycle Power Plants (CCGT)

Combined Cycle Power Plants (CCGT)

Combined-Cycle Gas Power Plant (General Electric)

2									ς.	
S	ħ	ø	α	m	Т	u	r	h	in	P
9	÷	-	ч			u		~		

Туре	D-17, triple pressure reheat, triple casing				
HP turbine steam pressure/temp	2,400 psi (165 bar)/1,112°F (600°C)				
Generator					
Туре	H26				
Rating	270 MW @ 0.85 PF				
Voltoge	19.5 kV				
Heat Recovery Steam Generato	r				
Туре	Triple pressure, reheat drum				
Control System					

Mark* Vie plant control with OpFlex* software

a la care	2/2
Technical Data (60 Hz)	
Overall Plant	
Vet Power Output	750 MW

Combined Cycle Efficiency	Greater than 61%				
NO _x emissions (at 15% O ₂)	2 ppm				
CO emissions	2 ppm				
Fuel	Natural gas and distillate oil				
Gas Turbine					
Туре	7F 7-series				
Net simple cycle output	250 MW				
Exhaust energy	Greater than 1,250 MMBtu/hr				
Combustor type	DLN 2.6+AFS (Axial Fuel Staged)				

Type

Brayton/Joule Open Turbine Cycle

Aircraft Turbo Fan Engine

 Counter-rotating compressor/fan turbines, combustion (twin swirlers).

Advanced materials, titanium-aluminide on turbine blades, composites + Ti on fan blades, By-pass ratio 9.6:1. Thrust up to 75,000 lbf (330 **kN**)

Engine	GE90-90B	GE90-94B	GE90-110B1	GE90-115B
Physical Information				
Fan/Compressor Stages	1/3/10	1/3/10	1/4/9	1/4/9
Low-Pressure Turbine / High-Pressure Turbine	6/2	6/2	6/2	6/2
Maximum Diameter (Inches)	134	134	135	135
Length (Inches)	287	287	287	287
Power Specifications				
Max Power at Sea Level (Shaft horsepower)	90,000	93,700	110,100	115,300
Overall Pressure Ratio at Max Power	40	40	42	42

Fin Steam & Gas Turbines

Agenda: Thermal Power Plants

- Operational principle of cyclic thermodynamic engines Entropy, heat, and work in Carnot cycle
- Reciprocating (piston) engines Steam cylinder Otto internal combustion cycle Stirling engine
- Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles
- Steam & Gas turbine power plants Combined-cycle
- Chemistry of complete & incomplete combustion Examples
- Carbon (CO₂) capture techniques

Combustion of Hydrocarbons

Currently, in most thermal power plants: Combustion of hydrocarbons \rightarrow Heat \rightarrow Mechanical Energy \rightarrow Electrical Energy

oxidizes fuel & releases heat energy.

Excess enthalpy in rxn products \rightarrow kinetic energy gas particles *Plus* $heat \rightarrow external$, potentially useful

$$q = h_R \left(\mathbf{T}_R, p_R \right) - h_P \left(\mathbf{T}_R, p_R \right) < 0$$
$$= h_P \left(\mathbf{T}_P, p_R \right) - h_P \left(\mathbf{T}_R, p_R \right)$$

Adiabatic combustion temperature $T_{\rm p} \rightarrow Reversible$ process.

Fossil Fuel Combustion in Power Plants

 $C_{n}H_{m} + \underbrace{(n+m/4)}_{stoichiometric \ ratio} O_{2} \rightarrow nCO_{2} + (m/2)H_{2}O(+\Delta H)$ $Octane \ (complete \ combustion):$ $C_{8}H_{18} + 12.5O_{2} \rightarrow 8CO_{2} + 9H_{2}O$ Complete \ combustion in

Complete combustion in theoretical air $\boldsymbol{a}_{th} \approx 21\% \boldsymbol{O}_2 + 79\% \boldsymbol{N}_2$ Ratio $N_2/O_2 = 79/21 = 3.76$

Octane (complete combustion in air): $C_8H_{18} + 12.5 \cdot (O_2 + 3.76 N_2) \rightarrow 8CO_2 + 9H_2O + 47N_2$

$$\boldsymbol{a}_{th} = \left(\boldsymbol{O}_2 + 3.76 \; \boldsymbol{N}_2\right)$$

$$\begin{aligned} & Theoretical (balanced) air/fuel for C_8 H_{18} \rightarrow \\ & AF_{th} \coloneqq \frac{\# \ moles \ air}{\# \ moles \ fuel} = \frac{12.5(1+3.76)}{1} = 59.5 \\ & Theoretical \ air/fuel \ mass \ ratio \ for \ C_8 H_{18} \\ & AF_{m,th} \coloneqq \frac{g/mole \ air}{g/mole \ fuel} = 59.5 \cdot \frac{28.97g}{(8 \cdot 12 + 18 \cdot 1)g} = 15.12 \end{aligned}$$

In practical applications (ICE, or power plants), air amount available for combustion is mostly $a \neq a_{th}$

Heating Values for Fossil Fuels

Fuel	Symbol	Mol wt (g/mol)	FHV ^b (MJ/kg fuel) ^c	(A/F) _{st}	(h _r – h _p) ^b (MJ/kg product)	∆f (MJ/kg fuel)	FHV ^b (MJ/kg ^C)		
Pure compounds ^d			a de crea contra .			9 87 8 mg 80.0			
Hydrogen	H ₂	2.016	119.96	34.28	3.400	117.63	na		
Carbon (graphite)	C(solid)	12.01	32.764	11.51	2.619	32.834	32.764		
Methane	CH4	16.04	50.040	17.23	2.745	51.016	66.844		
Carbon monoxide	CO	28.01	10.104	2.467	2.914	9.1835	23.564		
Ethane	C ₂ H ₆	30.07	47.513	16.09	2.780	48.822	59.480		
Methanol	CH4O	32.04	20.142	6.470	2.696	22.034	53.739		
Propane	C ₂ H ₂	44.10	46.334	15.67	2.779	47.795	56.708		
Ethanol	C ₂ H ₆ O	46.07	27.728	9.000	2.773	28.903	53.181	Commercial fuels	FHV
Isobutane	C ₄ H ₁₀	58.12	45.576	15.46	2.769		53.142	Natural gas	36-42
Hexane	C6H14	86.18	46.093	15.24	2.838		54.013	Gasoline	47.4
Octane	C ₈ H ₁₈	114.2	44.785	15.12	2.778		53.246	Kerosene	46.4
Decane	C10H22	142.3	44.599	15.06	2.778		52.838	No. 2 off	43.5
Dodecane	C12H26	170.3	44.479	15.01	2.778		52.567	Anthracite coal	32-30
Hexadecane	C16H34	226.4	44.303	14.95	2.778		52.208	Bituminous coal	28-30
Octadecane	C18H38	254.5	44.257	14.93	2.778		52,102	Subbituminous coal Lignite	20-25 14-18
CRC Handbook of Chem	ical Properties							Biomass fuels Wood (fir) Grain	21 14

13

Manure

Post-Combustion CO₂ Capture: Amine Scrubbing Process

Efficiency of amine process: \geq 90% of CO₂ in the flue gas, energy intensive (steam: 2GJ/tCO₂), =30% of the plant power generation. CO₂ product purity >99%

(CC Cost: E.S. Rubin et al., Int. Jour. Greenhouse Gas Control 40, 382 (2015))

Post-Combustion Carbon Capture (Air/Flue Stream)

Main components of a direct CO_2 capture process using a liquid solvent. Partial recycling of chemical. Energy intense process (calciner).

Post-Combustion & DAC CO₂ (Hellisheidi CarbFix/Mammoth Plant)

Island: Process disposes of CO₂ (permanently) as *carbonate minerals* in subsurface basaltic rocks. Experimental research: two years after injection, 95% of the CO₂ was mineralized, contradicting earlier expectations. UNESCO Science Report (2021)

CO₂ Direct Air Capture (Trials)

Climeworks, which operates the world's largest direct air capture plant in Iceland, is participating in the U.S. DAC hub program. (Climeworks)

Proven CCS Technology

ESTS-4-2 Combustion

W. Udo Schröder, 2022

Other CO₂ Sequestration Concepts

U.S. Electricity Production 1949-2023

US >2010 Steady increase of primary energy carriers for electricity natural gas and renewables (hydro+wind+solar).

>2030 Large contributions of coal and hydro should decrease.

Fin Thermal Power Plants