Thermal Power Plants

Agenda: Thermal Power Plants

- Operational principle of cyclic thermodynamic engines Entropy, heat, and work in Carnot cycle
- Reciprocating (piston) engines Steam cylinder Otto internal combustion cycle Stirling engine
- Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles
- Gas turbine power plants Combined-cycle plants
- Chemistry of complete & incomplete combustion Examples
- Carbon (CO₂) capture processes

Next: Power from nuclear transmutation Andrew & Jelley Chs. 9 & 10

 \sim

Uniflow Steam Cylinder

Early Steam Engines (America's Centennial Exposition 1876)

George H. Corliss. Inventor, Providence, RI

American made Corliss steam engine at the Philadelphia exhibition.

Eye witness account: "It stood in excess of forty-five feet above the floor and has cylinders of forty-four inches in diameter with a ten foot stroke. Another characteristic is the huge fifty-six ton, thirty feet in diameter, and twenty-four inch face, flywheel which made up to thirty-six revolutions per minute." (McCabe)

America's CentennialExposition, $\rightarrow \rightarrow \rightarrow$ held in Philadelphia in 1876

The pictured steam engine powered all machines and devices in the exhibition. It was operated by a single engineer. W=1,400 hp

Ideal Otto Cycle

Ω

hermal PP

W. Udo Schröder, 2024

Energetics of Otto Cycle

 \mathbf{v}

Agenda: Thermal Power Plants

- Operational principle of cyclic thermodynamic engines Entropy, heat, and work in Carnot cycle
- Reciprocating (piston) engines Steam cylinder Otto internal combustion cycle Stirling engine
- Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles
- Gas turbine power plants Combined-cycle plants
- Chemistry of complete & incomplete combustion
 Examples
 - Carbon (CO_2) capture processes

Next: Power from nuclear transmutation Andrew & Jelley Chs. 9 & 10

Coal Power Plant (Photo & Schematic)

Modern coal power plant: 3-7 GW_{th}. Two turbines in tandem working with reheated steam. Practical for T < 700 ^oC.

Thermal PPT

Real Substances (Different Phases: *s*, *l*, *g*, *sc*)

All real substances have distinct physical phases:

solid ($T < T_{\text{freeze}}$), liquid ($T_{\text{freeze}} < T < T_{\text{boil}}$) and gas ($T_{\text{boil}} < T$) Phase transitions occur upon changes in internal energy by characteristic amounts: *latent heat (\Delta-enthalpy) of fusion or latent heat of vaporization*

σ

Using Real Gases/Vapor Working Media

Since 150 years practical use: steam = water vapor, water droplets (wet steam). \rightarrow Real gas molecules interact more, motion is less free, depending on ρ , *T*. \rightarrow Several phases.

10

Van der Waals Parameters			
Substance	a (L ² atm/mol ²)	b (L/mol)	
He	0.0341	0.0237	
H ₂	0.244	0.0266	
O ₂	1.36	0.0318	
H ₂ O	5.46	0.0305	
CCl ₄	20.4	0.1383	

EoS non-monotonic \rightarrow liquid-gas instability. High compression: real (vdW model) gases collapse (p decreases with decreasing V) \rightarrow liquefaction

> Correct EoS for unphysical instability: Maxwell Construction

Steam Tables

Absolute		<u>Specific</u> <u>Volume</u> (m ³ /kg)	Density -ρ- (kg/m ³)	Sp	Specific		
(kPa, kN/m ²)	Temperature (°C)			Liquid - h _l - (kJ/kg)	Evaporation - h _e - (kJ/kg)	Steam - h _S - (kJ/kg)	Entropy of Steam - S - (kJ/kgK)
0.8	3.8	160	0.00626	15.8	2493	2509	9.058
2.0	17.5	67.0	0.0149	73.5	2460	2534	8.725
5.0	32.9	28.2	0.0354	137.8	2424	2562	8.396
10.0	45.8	14.7	0.0682	191.8	2393	2585	8.151
20.0	60.1	7.65	0.131	251.5	2358	2610	7.909
28	67.5	5.58	0.179	282.7	2340	2623	7.793
35	72.7	4.53	0.221	304.3	2327	2632	7.717
45	78.7	3.58	0.279	329.6	2312	2642	7.631
55	83.7	2.96	0.338	350.6	2299	2650	7.562
65	88.0	2.53	0.395	368.6	2288	2657	7.506
75	91.8	2.22	0.450	384.5	2279	2663	7.457
85	95.2	1.97	0.507	398.6	2270	2668	7.415
95	98.2	1.78	0.563	411.5	2262	2673	7.377
100	99.6	1.69	0.590	417.5	2258	2675	7.360
101.331)	100	1.67	0.598	419.1	2257	2676	7.355
110	102.3	1.55	0.646	428.8	2251	2680	7.328
130	107.1	1.33	0.755	449.2	2238	2687	7.271
150	111.4	1.16	0.863	467.1	2226	2698	7.223
170	115.2	1.03	0.970	483.2	2216	2699	7.181
190	118.6	0.929	1.08	497.8	2206	2704	7.144
220	123.3	0.810	1.23	517.6	2193	2711	7.095
260	128.7	0.693	1.44	540.9	2177	2718	7.039
280	131.2	0.646	1.55	551.4	2170	2722	7.014
320	135.8	0.570	1.75	570.9	2157	2728	6.969

 $p = 1 \ bar = 101.33 \ kN/m^2$

Water $0^{\circ}C \rightarrow 100^{\circ}C$. $\rightarrow 419 \text{ kJ/kg}$

→ Specific enthalpy H_2O : $h_{water}(100^{\circ}C) = 419 \text{ kJ/kg}.$

Specific enthalpy of evaporation (latent heat): $h_{evap}(100^{\circ}C) = 2,257kJ/kg$

h_{steam}(100^oC)=2.676MJ/kg

Latent Heat

Steam Tables/P-H Graphs

Water as a Working Power Medium

To use steam as driving gas for thermal engines, heat energy has to be transferred to water at T_I (e.g., 25°C)

A) heat 1mol liquid H₂O to 100°C **B-C**) evaporate all H₂O (@ 100°C) **D**) heat vapor beyond $100°C \rightarrow T_h$

p = 1 atm (bar)= 101.33 kN/m² → Water boils @ at 100°C → Need 419 kJ/kg H₂O to heat water from 0°C to T= 100°C.

→ @ $p=101.33 \text{ kN/m}^2$ and $100^{\circ}C$ Specific enthalpy H₂O: $h_{water}(100^{\circ}C) = 419 \text{ kJ/kg}.$

Specific enthalpy of evaporation (latent heat): $h_{evap}(100^{\circ}C) = 2,257 \text{ kJ/kg}$ (not applicable to ideal gas)

Total heat required at p = const. to convert H_2O to steam @100°C :

 $h_{steam}(100^{\circ}C) = (419 + 2,257)kJ/kg = 2,676 kJ/kg = 2.676 (MJ/kg) = 0.74 kWh/kg$

L-G mixture	$h_s(x) = (1-x) \cdot h_{water} + x \cdot h_{steam}$
Similar:	$u_s(x) = (1 - x) \cdot u_{water} + x \cdot u_{steam}$

Extensive variables

(*U*, *H*, *S*,..)

S-T Diagram for Steam Carnot Process

W. Udo Schröder, 2024

Rankine Steam Cycle

Carnot cycle: highest possible work output per q for T=const. processes. Works well for ideal gases (simple molecules, high T)

Disadvantage for real gases and moderate T, because phase coexistence region limits gas T_h per q_{in} $q = T \cdot \Delta S$ in Carnot process, i.e., T_h is limited \rightarrow low ε

Rankine cycle: (Thermodynamically robust)

 $e \rightarrow f$ Compressor (pump) injects H₂O under *p* $f \rightarrow a$ Economizer heats H₂O under pressure. $a \rightarrow b$ Evaporator boils H₂O under *p* = const. $b \rightarrow c$ Superheater heats steam @high *p* = const. $c \rightarrow d$ Turbine produces work, expands steam

 $w_{Turbine} = H_c - H_d = \Delta (U + p \cdot V) = \int_c^d V \cdot dp \quad (S = const.)$

 $d \rightarrow e$ condenser liquifies vapor @ $p < p_{at}$. Heating and cooling occur at p=const.

Low/Medium Pressure Steam Turbines

Agenda: Thermal Power Plants

- Operational principle of cyclic thermodynamic engines Entropy, heat, and work in Carnot cycle
- Reciprocating (piston) engines Steam cylinder Stirling engine Otto internal combustion cycle
- Steam power plants
 Isotherms of real gases
 Steam and air as working media
 S-T cycles for Carnot, Rankine, and Brayton cycles
- Gas turbine power plants Gas turbine operation, enthalpy balance Combined-cycle plants
- Chemistry of complete & incomplete combustion Examples
- Carbon (CO₂) capture processes

Next: Power from nuclear transmutation Andrew & Jelley Chs. 9 & 10

Gas Power Turbine: Parts & Operation (GE)

Air intake at turbo compressor stage. Fuel/air mix injected in annular combustion chambers. Combustion gas drives turbine power stage (4).

hermal PPT

 $\frac{10}{2}$

Turbo compressor raises air pressure (x20) & temperature.

Fuel/air mix is ignited in combustion chambers. → Super heated compressed fuel/air mix drives power rotors. Hot gas exhaust.

Angular Momentum Transfer in Turbines

Angular momentum to turbine (runner) by driving gas

$$\Delta \vec{L}_{T} = \vec{L}_{in} - \vec{L}_{out}$$
; Torque $M = \Delta L_{T} / \Delta t$; Power $P = M \cdot \Omega_{T}$

Turbine power depends on power blade geometry/angle of attack \rightarrow Task: maximize angular momentum transfer $\Delta \vec{L}_{\tau}$!

$$\boldsymbol{P} = \boldsymbol{\Omega}_{T} \cdot \boldsymbol{\rho}_{m} \cdot \dot{\boldsymbol{Q}} \cdot \left[\left(\vec{r}_{\perp} \times \vec{u}_{in} \right) - \left(\vec{r}_{\perp} \times \vec{u}_{out} \right) \right]$$
 Euler's Turbine Equation

Driving gas is injected coaxially \rightarrow brings in zero torque about rot axis. Power is maximized if exhaust gas carries maximum momentum perpendicular to rot axis \rightarrow coaxial inflow & radial outflow.

$$\dot{P}_{\max} = \dot{m} \cdot R \cdot \Omega_{\tau} \cdot \left(u_{out} \right)_{\perp}$$

 $R = injection radius for turbine, (u_{out})_{\perp} = gas velocity perp to axis$

High power produced by large turbines: high coaxial gas injection + radial outflow.

Gas Power Turbine (Siemens)

Turbine for Gas Power Plants

SGT-800 Power generation 47.00MW(e) Fuel: Natural gas*, Frequency: 50/60Hz Electrical efficiency: 37.5% Heat rate: 9,597kJ/kWh (9,096Btu/kWh) Turbine speed: 6,608rpm Compressor pressure ratio: 19:1 Exhaust gas flow: 131.5kg/s Exhaust temperature: 544°C (1,011°F) NOx emissions (with DLE, corrected to 15% O2 dry): \leq 15ppmV

21

Available for different power outputs (5-375 MW), revolutions 3,000-17,000 rpm, 50/60 Hz electric. Efficiencies 0.35- 0.60

W. Udo Schröder, 20

Combined Cycle Power Plants (CCGT)

Combined Cycle Power Plants (CCGT)

General Electric Combined-Cycle Power Plant

Steam Turbine

Type

Туре	D-17, triple pressure reheat, triple casing		
HP turbine steam pressure/temp	2,400 psi (165 bar)/1,112°F (600°C)		
Generator			
Туре	H26		
Rating	270 MW @ 0.85 PF		
Voltoge	19.5 kV		
Heat Recovery Steam Generato	r		
Туре	Triple pressure, reheat drum		
Control System			

Mark* Vie plant control with OpFlex* software

Technical Data (60 Hz)

Overall Plant			
Net Power Output	750 MW		
Combined Cycle Efficiency	Greater than 61%		
NO _x emissions (at 15% O ₂)	2 ppm		
CO emissions	2 ppm		
Fuel	Natural gas and distillate oil		
Gas Turbine			
Туре	7F 7-series		
Net simple cycle output	250 MW		
Exhaust energy	Greater than 1,250 MMBtu/hr		
Combustor type	DLN 2.6+AFS (Axial Fuel Staged)		

Brayton/Joule Open Turbine Cycle

a-b Compression (x 10-30), adiabatic q=0b-c Combustion (**p**=const.) c-d Turbine, adiabatic (q=0), $w_t \neq 0$ d-a Exhaust waste energy (**p**=const.) $|q_{b\rightarrow c} = h_c - h_b = c_p \cdot (T_c - T_b) > 0$ absorbed @ p = const $q_{d \rightarrow a} = h_a - h_d = c_p \cdot (T_a - T_d) < 0$ emitted @ p = const $w_{com} = h_b - h_a = c_p \cdot (T_b - T_a) > 0$ absorbed @ q = 0 $w_{t} = h_{c} - h_{d} = c_{p} \cdot (T_{c} - T_{d}) < 0$ emitted @ q = 0net work $w = w_t - w_{com} = (h_c - h_d) - (h_b - h_a)$ input $q_{h \rightarrow c} = h_c - h_h$ $\varepsilon = \frac{W}{q_{b\to c}} = \frac{\left(h_c - h_d\right) - \left(h_b - h_a\right)}{h_c - h_b}$ $\varepsilon = 1 - \frac{\left(h_d - h_a\right)}{\left(h_a - h_a\right)}$ Adiabatic EOS: $\varepsilon = 1 - \left(\frac{p_b}{p_b}\right)^{c_p}$

Turbine exhaust still very hot \rightarrow use again

Aircraft Turbo Fan Engine

 Counter-rotating compressor/fan turbines, combustion (twin swirlers).

Advanced materials, titanium-aluminide on turbine blades, composites + Ti on fan blades, By-pass ratio 9.6:1. Thrust up to 75,000 lbf (330 kN)

Engine	GE90-90B	GE90-94B	GE90-110B1	GE90-115B
Physical Information				
Fan/Compressor Stages	1/3/10	1/3/10	1/4/9	1/4/9
Low-Pressure Turbine / High-Pressure Turbine	6/2	6/2	6/2	6/2
Maximum Diameter (Inches)	134	134	135	135
Length (Inches)	287	287	287	287
Power Specifications				
Max Power at Sea Level	90,000	93,700	110,100	115,300
Overall Pressure Ratio at Max Power	40	40	42	42

Rolls Royce Aircraft Turbofan Engine

Fin Steam & Gas Turbines