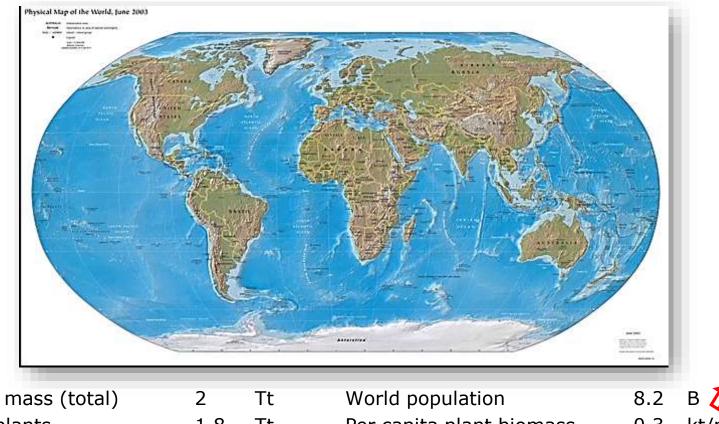
Energy from Biomass

Agenda

- World biomass inventory Global challenges: Tree losses, deforestation of tropical/rainl forests
- Biomass energy resources, farming and harvesting
 - Renewable biomass principle,
 - US geographical bio-energy farming areas
 - Biomass energy density, heating value, GHG emission
- Biomass-Energy conversion methods
 - Direct combustion
 - Biomass to gas and liquid, ethanol production
 - pyrolysis, Fischer-Tropsch process
- Current biomass utilization
 - Transportation fuels, ethanol, biodiesel
 - Share in total electricity generation
- Strategic Issues biomass utilization


Photosynthesis

 $\begin{aligned} Photosynthesis: photochemical + biochemical (endoenergetic) reaction, needs \ 2(hv = 1.9eV, \lambda = 0.7\mu) \\ nCO_2 + mH_2O \rightarrow \xrightarrow{chlorophyll} C_n(H_2O)_m + nO_2 + \Delta H \ (= 4.07eV / C \ atom) \\ C_n(H_2O)_m = carbohydrate \ sugar, \ starch, \ cellulose \ (mostly: n \approx m) \end{aligned}$

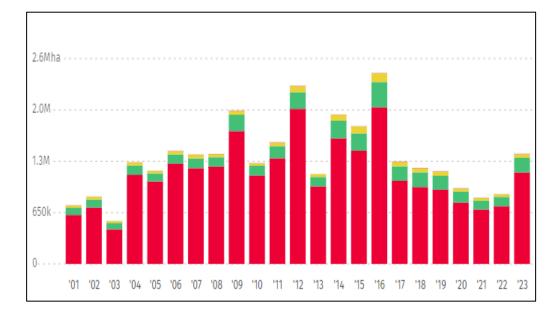
 $^{\circ}$

World Biomass Energy Resources/Prospects

m F	
/_fro	Livi
lerg)	Lan
Ē	For
	Net

Living mass (total)	2	Tt
Land plants	1.8	Tt
Forests	1.6	Tt 🕥
Net annual production	0.4	Tt/a
Energy stored in biomass	2.5.1	0 ²² J

World population	8.2	в 🚺
Per capita plant biomass		kt/p 🕥
Energy gained in biomass	3.102	²¹ J/a
Biomass energy consumption	6·10	¹⁹ J/a
Food energy consumption	2.10	¹⁹ J/a


Biomass energy gained $30 \cdot 10^{20} \text{ J/a} \rightarrow \text{Biomass energy consumed} \sim 10^{20} \text{ J/a}$ Sustainable at present few-% levels. But avoid substantial consumption increases $\rightarrow O_2$ - Atmosphere!

Biomass

Example Indonesia: Deforestation for Biofuels

Tree Losses	1.16 Mha
Forestry	186.0 kha
Agriculture	45.8 kha
Urbanization	3.8 kha
Commodity (Plant Oil Prod)	1,160.0 kha

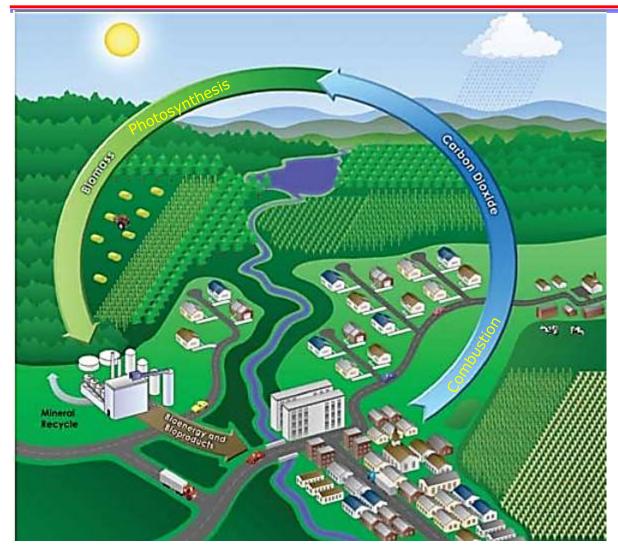
World Biomass Losses

Tree Losses	2001-2020	
Canada	57.5 Mha	Drivers
United States	47.9 Mha	Wildfires
Indonesia	30.8 Mha	Forestry Agriculture Urbanization
DRC Congo	19.7 Mha	Commodity
China	12.1 Mha	

https://www.globalforestwatch.org/dashboards/country/IDN/?category=forest-change

Example Deforestation in Brazil

Tropical forests 2% of surface.


2017: lost 15.8.10⁶ ha of tropical forests. Humans have destroyed ½ of original forest cover.

2020 -2021: Brazilian **rainforest lost 10,476 square kilometers** – an area 13 times the size of New York City (*Imazon*, a Brazilian research institute).

Every year: Earth loses tropical forestland = size of Bangladesh (Global Forest Watch).

Related: "Rental" of Argentina's former forest areas for soy oil production.

Biomass Renewable Energy: Principle

Sustainable use of ethanol from cellulosic biomass could reduce emissions of greenhouse gases (CO₂).

<u>Dedicated "fuel</u> <u>plantations</u>": Photosynthetic production of <u>new biomass</u> takes up some of the carbon dioxide released in combustion of biofuel (bioethanol), not all.

Task of scalability: Grow biomass as fast as it is burned!

www.ornl.gov/info/ornlreview/v33_2_00/bioenergy.htm

Harvesting Bio-Energy

Principle: Capture energy carrying carbohydrates from plants \rightarrow combust fuel (directly or after refining).

- Grow annual energy crops: corn (maiz), rape soybean, sugar cane,..., algae. Competes with food production/food chain
- 2) Harvest fast-growing trees, underbrush, grasses, oil palms Compromises soil, natural forest/habitat, lessens CO₂ sequester.

3) Collect organic waste (\rightarrow Combustion)

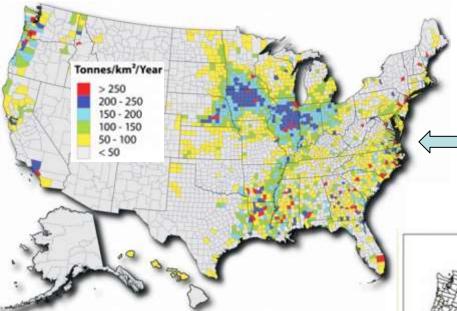
Rural Resources:

Forest residues and wood (mill, saw)wastes

Crop residues

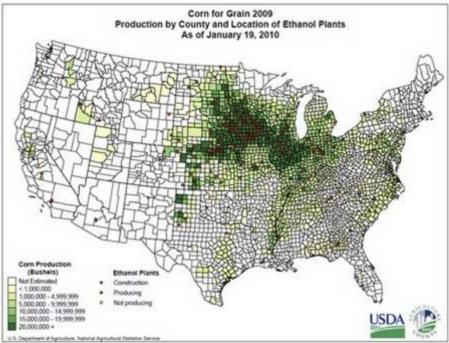
Manure biogas

Urban Resources:


Urban wood waste Land fill gas (LFG) Wastewater treatment biogas Food processing residue No known negative side-effects.

Switchgrass

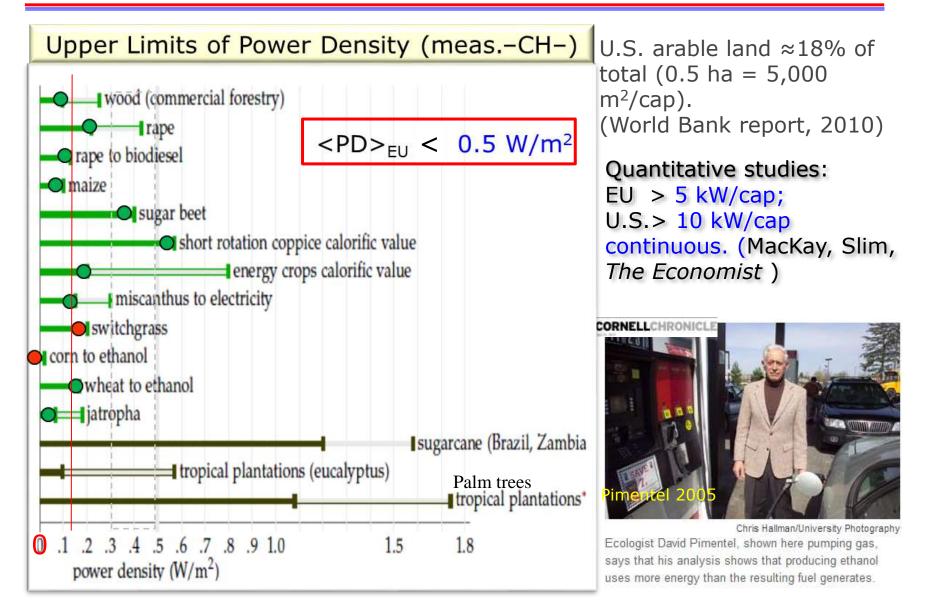
U.S. Bio-Energy Generation

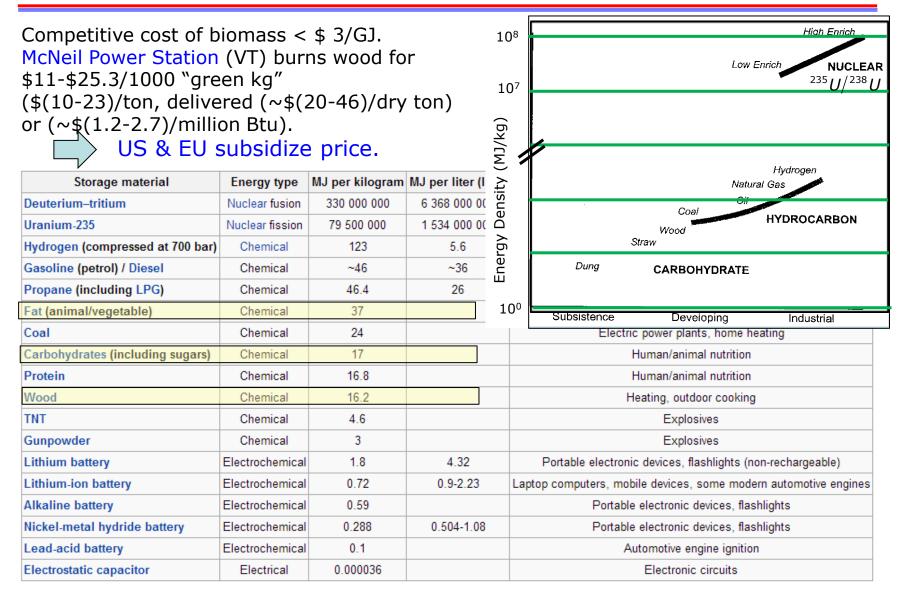


US: Corn grain monoculture used to produce feedstock for liquid transportation fuel (bio-ethanol, diesel).

- → Midwest biomass power plants located near agricultural areas
 - ts as
- → Prairie lands for future switch grass harvesting ? (GW Bush adm)

Strong agriculture lobby→ subsidies (farm bill, industrial agr.) Biomass feedstock categories: crop residues (average 2003-2007), forest and primary mill residues, secondary mill and urban wood waste, biogas (methane) from landfills, domestic wastewater treatment, animal manure.


http://www.nrel.gov/docs/fy06osti/39181.pdf.


W. Udo Schröder, 2024

Energy_from_Biomass

Bio-Energy Crops Energy/Power Density

Fuel Energy Density

Biofuel Properties/Emission/Ecoprint

Fuel	Net calorific value (MJ/kg)	Carbon content (%)	(including	cle CO ₂ emissions production) note 1	Annual total CO ₂ emissions to heat a typical house (20,000 kWh/yr)			
			kg/GJ	kg/MWh	kg	kg saved compared with oil	kg saved compared with gas	
Hard coal	29	75	134	484	9680	-2680	-4280	
Oil	42	85	97	350	7000	0	-1600	
Natural gas	38	75	75	270	5400	1600	0	
LPG	46	82	90	323	6460	540	-1060	
Electricity (UK grid)	-	-	150	530	10600	-3600	-5200	
Electricity (large scale wood chip combustion)	-	-	16	58	1160	5840	4240	
Electricity large scale wood chip gasification)	-	-	7	25	500	6500	4900	
Wood chips (25% MC) Fuel only	14	37.5	2	7	140	6860	5260	
Wood chips (25% MC) Including boiler	14	37.5	5	18	500	6500	4900	
Wood pellets (10% MC starting from dry wood waste) See note 3	17	45	4	15	300	6700	5100	
Wood pellets (10% MC) Including boiler See note 3	17	45	7	26	660	6340	4740	
Grasses/straw (15% MC)	14.5	38	1.5 to 4	5.4 to 15	108 to 300	6892 to 6700	5292 to 5100	

http://www.biomassenergycentre.org.uk/portal/page?_pageid=75,163182&_dad=portal&_schema=PORTAL

Agenda

- World biomass inventory Global challenges: Tree losses, deforestation of tropical/rainl forests
- Biomass energy resources, farming and harvesting
 - Renewable biomass principle,
 - US geographical bio-energy farming areas
 - Biomass energy density, heating value, GHG emission
- Biomass-Energy conversion methods
 - Direct combustion
 - Biomass to gas and liquid, ethanol production
 - pyrolysis, Fischer-Tropsch process
- Current biomass utilization
 - Transportation fuels, ethanol, biodiesel
 - Share in total electricity generation
- Strategic Issues biomass utilization

Wood Pellets for Burning/Co-Firing

Energy_from_Biomass

15

Fuel properties: Biomass contains H_2O +volatiles (aliphatic carbon atoms (open chains) + aromatic hydrocarbons (1-6 six-carbon rings characteristic of benzene series), \rightarrow low efficiency in burning.

Co-firing of biomass with coal \rightarrow higher overall thermal.

IEA : Capital cost of dedicated biomass plants=(3-5)x cost of co-fire plants

 \rightarrow cost of electricity from coal/biomass co-firing

= 50% of electricity from biomass.

Starting materials: compacted sawdust + other wastes from sawmilling and other wood products, like palm kernel shells, coconut shells, whole-tree removals, tree tops, branches left over after logging (which otherwise would help replenish soil nutrients).

Manufacturing pellets

- \rightarrow hammer mill produces uniform dough.
- \rightarrow press dough through a die with holes (6-8mm dia.)
- \rightarrow compressing heats pellets, lignin plasticizes = natural glue preserving pellet shape in cooling.
- Europe (Germany): The MAP-program pays > € 2,000 for replacement of fossilfuel boiler with pellet boiler, low-interest loans, 7% VAT (instead of 19%) for wood pellets.

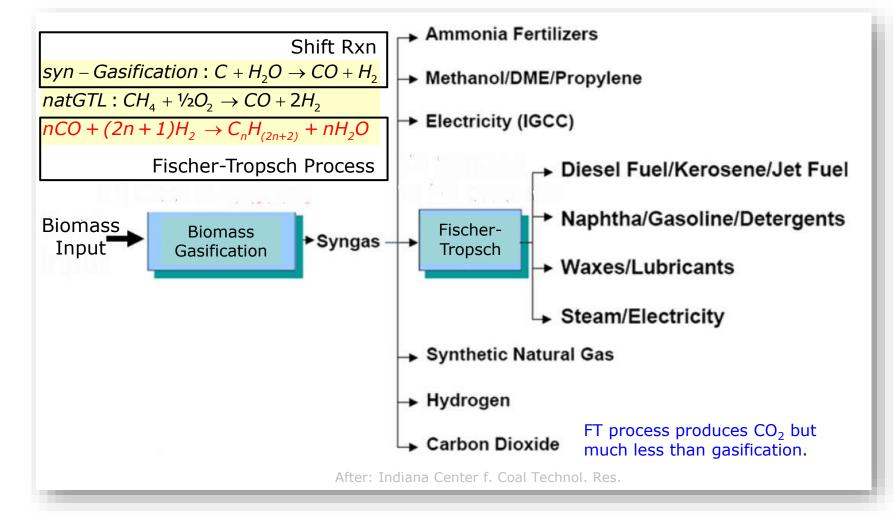
Also in US \rightarrow

2013 NEW HAMPSHIRE Wood Pellet Boiler Rebate Program

30% Rebate (with max \$6,000) in NEW HAMPSHIRE for Whole House Wood Pellet Heating Systems

Biomass-Energy Conversion Methods

- 1.
- 2. Gasification
- 3. Liquefaction
- 4. Pyrolysis
- 5. Fermentation
- 6. Anaerobic digestion


- Combustion/co-combustion \rightarrow burned in boilers, furnaces, stoves, (with coal)
 - \rightarrow converted to syngas (H₂, CO,..)
 - \rightarrow converted to synfuel (Fischer-Tropsch)
 - \rightarrow thermal decomposition into gas, liquids, solids
 - \rightarrow +distillation: ethanol (C₂H₅OH), liquid fuel
 - \rightarrow mix of CO₂, CH₄ gas, low heat value

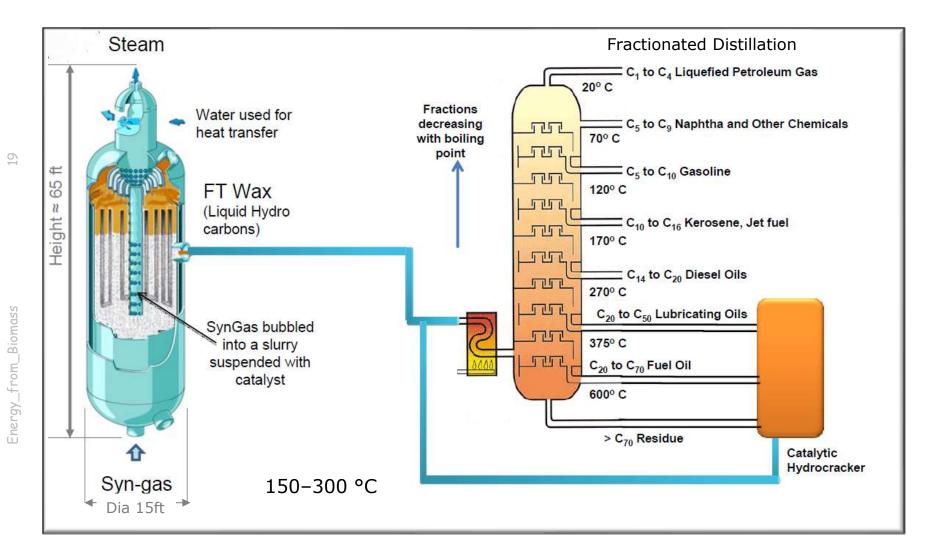
Europe 1940s: truck fueled by "wood gas" =(50% nitrogen, 20% carbon monoxide, 18% hydrogen, 8% carbon dioxide and 4% methane)

Biogas (CO, H_2 , CH_4) made by pyrolysis = heating of organic materials in the absence of O_2 .

Biomass to Gas and/or Liquid

Common scheme for biomass/coal gasification and subsequent liquefaction. Fischer-Tropsch Process = catalyzed chemical reaction converting CO and H_2 (from syngas) to mix of hydrocarbons of different weights.

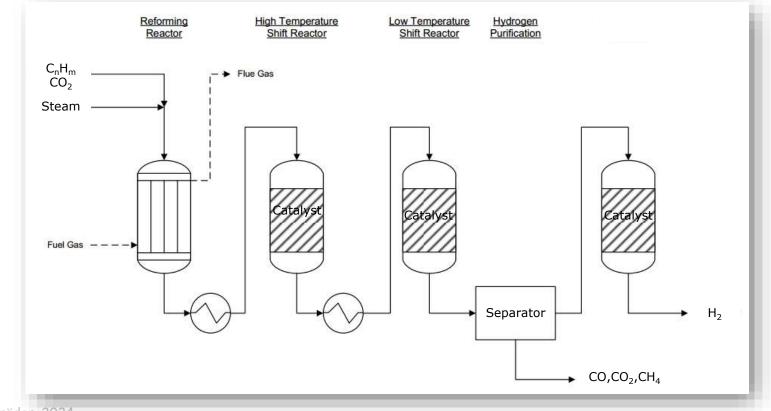
Fischer-Tropsch Synfuel Process

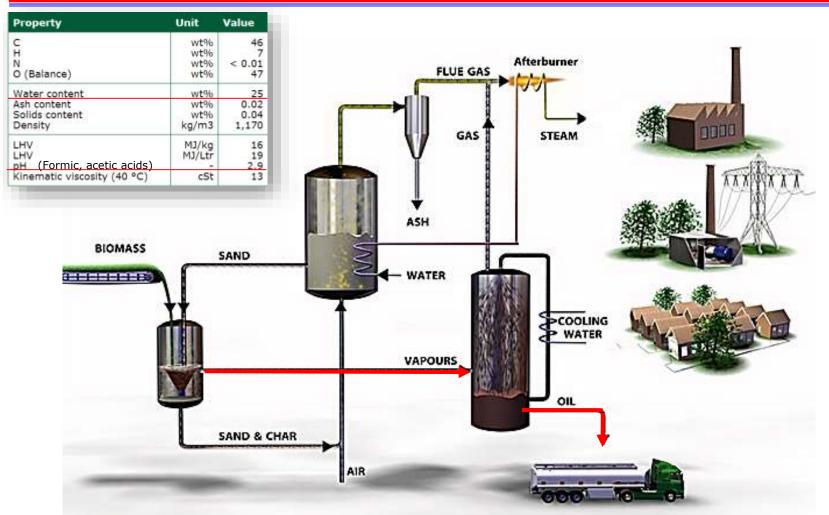

Fischer–Tropsch synthesis [150–300 °C (302–572 °F)] → mix of alkanes

Process: Catalytic conversion Syngas \rightarrow

 $(2n+1)H_2 + nCO \rightarrow C_nH_{(2n+2)} + nH_2O \rightarrow Diesel+...$

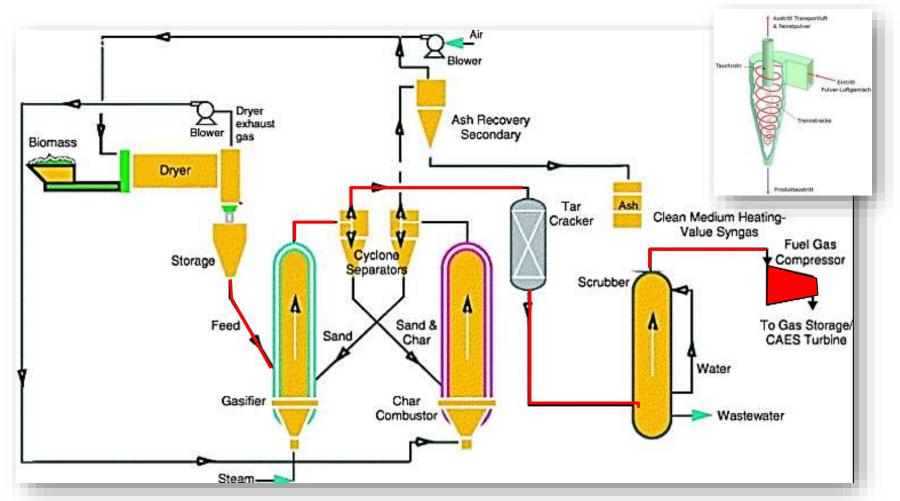
For methane feedstock \rightarrow steam reforming, $CH_4 + H_2O \rightarrow CO + 3H_2$ In addition, competing reactions \rightarrow small amounts of alkenes, alcohols, oxygenated hydrocarbons. Common catalysts: Co, Fe, Ru (Ni for methanation).


Fischer-Tropsch Products


W. Udo Schröder, 2024

Reforming and Shift Reactions

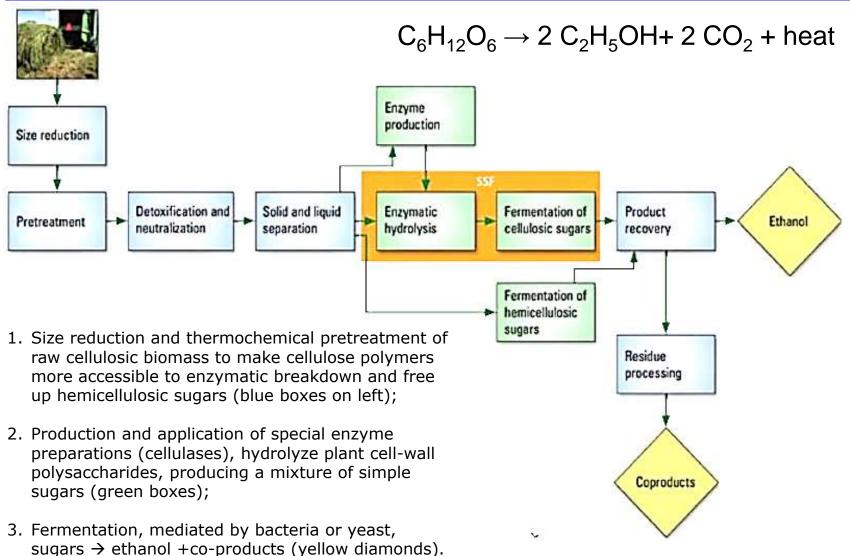
Main high-temperature, catalytic reactions of carbon oxides, hydro-carbons with H_2O, H_2 :Steam reforming: $C_nH_m + nH_2O \leftrightarrow (n+m/2)H_2 + nCO$ (syngas) endothermic, catalyticWater-gas shift: $CO + H_2O \leftrightarrow CO_2 + H_2$, (syngas) exothermic, catalyticMethanation: $CO + 3H_2 \leftrightarrow CH_4 + H_2O$,
 $CO_2 + 4H_2 \leftrightarrow CH_4 + 2H_2O$,exothermic, catalytic



Biomass Pyrolysis

Fast pyrolysis: organic materials heated to 450 - 600 °C in the absence of air \rightarrow organic vapors, pyrolysis gases, charcoal. Condense vapors to bio-oil. Typical conversion (60-75) wt.% of feedstock. **Ash**= (inorganic matter): limestone, iron, aluminum, clay, silica, and trace elements Zn, Co, B, Pb, As, Cd, Cr, Se (concentrations < 1000 ppm).

Biomass Gasification

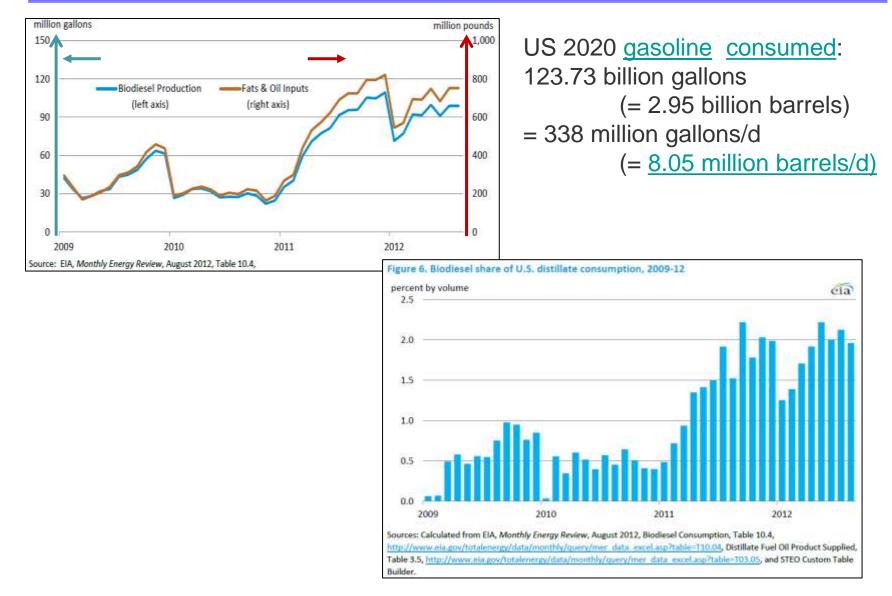


The (SilvaGas) process indirectly heats the incoming biomass to generate a medium heating value (11-14 MJ/Nm³) gas (rather than low heating). Sand is used as a heat transfer medium to rapidly heat the incoming biomass and convey char from the gasification reactor into the process combustor. Steam reforming, shift reactions.

Pyrolysis Plant

Biological Bio-Ethanol Production

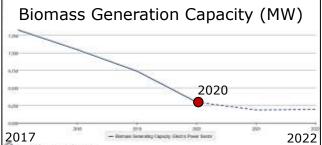
4. Distillation/dehydration to remove water.


Agenda

- World biomass inventory Global challenges: Tree losses, deforestation of tropical/rainl forests
- Biomass energy resources, farming and harvesting
 - Renewable biomass principle,
 - US geographical bio-energy farming areas
 - Biomass energy density, heating value, GHG emission
- Biomass-Energy conversion methods
 - Direct combustion
 - Biomass to gas and liquid, ethanol production
 - pyrolysis, Fischer-Tropsch process
- Current biomass utilization
 - Transportation fuels, ethanol, biodiesel
 - Share in total electricity generation
- Strategic Issues biomass utilization

Agenda

- World biomass inventory Global challenges: Deforestation of tropical forests
- Biomass energy resources, farming and harvesting
 - US geographical bio-energy farming areas
 - Energy density, heating value, GHG emission
- Biomass-Energy conversion methods
 - Direct combustion
 - Biomass to gas and liquid, ethanol production
 - pyrolysis, Fischer-Tropsch process
- Biomass utilization
 - Share in total electricity generation
 - Transportation fuels, ethanol, biodiesel
- Potential Energy crops, strategic issues
 - Switchgrass, algae cultures, geo-engineering
 - Strategic issues of biomass utilization


US Biofuel Consumption: Ethanol & Biodiesel

Biomass Renewable Electricity Capacity and Generation

US Energy Information Administration: Short Term Energy Outlook 2021:

US: Diminishing importance of biomass for electricity generation.

	Year			2017 - Hernes Lessing Capital Flows Lesson 2022			
	2020	2021	2022				
Electric Generating Capacity (MW)				Renewable Electricity Generation (billion	kilowatt	hours)(G	Nh)
Electric Power Sector (a)		2012/2010		Electric Power Sector (a)	07.5	07.4	00.0
Biomass	6,295	6.184	6.190	Biomass	27.5	27.1	26.3
Waste	3,790	3,822	3,829	Waste	16.1	15.6	15.6
Wood	2,505	2,362	2,362	Wood	11.4	11.5	10.0
Conventional Hydroelectric	78,671	78,765	78,840	Conventional Hydroelectric	289.9	254.6	267.
Geothermal	2,483	2,500	2,525	Geothermal	16.5	16.0	16.
Large-Scale Solar (b)	47,586	63,333	81,531	Large-Scale Solar (b)	90.1	114.3	145.
Wind	118,045	135,042	141,903	Wind	336.7	377.3	420.
Other Sectors (c) Not Electricity				Other Sectors (c) Not Electricity			
Biomass	6,302	6.289	6.281	Biomass	28.6	28.0	28.
Waste	777	778	778	Waste	2.7	2.7	2.
Wood	5,525	5,510	5,503	Wood	25.8	25.3	25.
Conventional Hydroelectric	279	279	279	Conventional Hydroelectric	1.2	1.2	1.
Large-Scale Solar (b)	468	538	541	Large-Scale Solar (b)	0.8	0.9	0.
Small-Scale Solar (d)	27,724	33,487	41,276	Small-Scale Solar (d)	41.7	49.8	61.
Residential Sector	17,238	21,354	26,865	Residential Sector	25.4	30.6	38.
Commercial Sector	8,430	9,892	11,893	Commercial Sector	12.9	15.3	18.
Industrial Sector	2,056	2,241	2,518	Industrial Sector	3.5	3.9	4.
Wind	346	346	346	Wind	0.8	1.0	0.

Strategic Issues Renewable Bioenergy (Plants & Algae)

- 1. Energy density, heating value
- 2. Pollution from combustion, net emission of various GHG
- 3. CO₂ atmospheric residence time during vegetation regrowth (not ren.)
- 4. Climate/weather dependence
- 5. Use of arable land competes with food production \rightarrow food prices
- 6. Excessive use of water
- 7. Use of fertilizer feed stock (nitrogen, phosphates)
- 8. Deterioration of land by mono-crop plantations, deforestation (Indonesia)
- 9. Efficiency in fermentation process
- 10. Economics, subsidies

For scalability & sustainable use: Need technological breakthroughs