

Agenda

Reading Assignments

Resources and Utilization

• Global & local wind resources/patterns

Technology

 \sim

- Wind tower design and functionality
 - Wind speed distributions
 - Turbine power generation, design parameters
 - Blade aerodynamics, lift and drag, wake turbulence
- Wind farms, design and operations
 - Onshore and offshore windfarms, useful life
 - Construction parameters, cost, GHG emissions
- Strategic issues
 - Performance
 - Ecological impact, wildlife habitat

Wind power in national and international energy mix

First US Wind Farms

Altamont Pass (CA), started around 1980 >1,000 towers, 0.5 GW, many inoperable after 1982

 $^{\circ}$

Global Wind Patterns

Westerlies and NE trade winds near 30^o latitudes. High-altitude jet stream (v > 300 km/h)

Regional and local wind patterns are influenced by terrain features (friction, uplifts and downdrafts), thermal gradients, bodies of water, movement and interactions of large air masses. Latitudinal variation of solar insolation \rightarrow Equator updraft S \rightarrow N upper air flow destabilized by **Coriolis** force (deviation to right on northern hemisphere) \rightarrow Pattern breaks up into 3 regions (cells) per hemisphere.

ROC 43.16° N, 77.61° W

US Instant Wind Patterns

March 30, 2017 10:35 am EST (time of forecast download)

top speed: 33.7 mph average: 9.7 mph

1 mph

Anticyclone storm in Mid West, calm at east coast Seattle New York Chicago Columbus Denver San Jose Los Angeles Phoenix San Diego Dallas Houston

http://hint.fm/wind/index.html

US Wind Resources Potential

Sea Breeze-Land Breeze

Heat capacity (thermal inertia) of water is higher than heat capacity of land.

Due to thermal convection, air over warmer part ascends 1, creates low-pressure region L 2, filled in by airflow 7 from high H 5 over colder water.

Day-time: Sea breeze 7 Return flow 6.

Radiation cooling of land during night depletes heat content of land faster than of body of water (lake, ocean), producing high-pressure domain 5 on land, low L 2 over water.

Night-time: Land breeze 7 Return flow 6.

Valley and Mountain Breezes

When the mountain slopes warm during the day, warm air rises up the slopes of surrounding mountains and hills to create a valley breeze.

At night, denser cool air slides down the slopes to settle in the valley, producing a mountain breeze.

Similarly: Mountain passes, ridges, spires can channel winds.

Environmental concerns: Birds use these wind patterns efficiently.

00

Art. *Encyclopædia Britannica Online*. Web. 7 Mar. 2013. <<u>http://www.britannica.com/EBchecked/media/111214/Wh</u>en-the-valley-floor-warms-during-the-day-warm-air>.

W. Udo Schröder, 2024

Agenda

Reading Assignments

Resources and Utilization

• Global & local wind resources/patterns

Technology

5

- Wind tower design and functionality
 - Wind speed distributions
 - Turbine power generation, design parameters
 - Blade aerodynamics, lift and drag, wake turbulence
- Wind farms, design and operations
 - Onshore and offshore windfarms, useful life
 - Construction parameters, cost, GHG emissions
- Strategic issues
 - Performance
 - Ecological impact, wildlife habitat

Wind power in national and international energy mix

Basic Wind Tower Construction

Giant Wind Towers: Offshore Windfarm

Alpha Ventus Windfarm 60MW \$ 325 M (\$5.42/W) EWE 47.5%; E.ON and Vattenfall each 26.25%

Altitude Dependence of Mean Wind Speed

Close to ground level, uneven landscape (buildings, trees, power lines) produces friction & turbulent wind patterns (wind shear) = obstacles to laminar flow.

General altitude dependence on wind direction and speed due to combined effect of Coriolis force and friction ("roughness length").

Wind Speed Distributions

Frequency (%), fixed
$$\Delta u \rightarrow \frac{\Delta P(u_n)}{\Delta u}$$
; Normalization $\sum_n \frac{\Delta P(u_n)}{\Delta u} = 100\%$

Tower Design & Aerodynamics

Wind Turbines Designs: Vertical-Axis

Horizontal axis wind turbine

central column

blade

Aerodynamic principles of VAWT are similar: lift and drag on air foil.

Advantage: because of axial symmetry need no yaw drive to optimize for wind direction.

Disadvantage: More resistance to air flow (solidity), heavier & complex rotor,

Many different designs, offered by a number of companies for small power outputs (kW) \rightarrow so far economically disadvantaged.

Darrieus type VAWT @ Sandia Lab.

erodynamic brake

CONTRACT CONTRACTOR

Aerodynamics: Lift and Drag on Airfoils

Maximum lift at laminar (steady) air flow around foil at high angle of attack. Flow direction changed by airfoil. Large angles of attack $\alpha \rightarrow$ boundary layer (streamlines) separates from air foil, generate turbulence and loss of lift \rightarrow stall.

Airstream Deflection by Airfoils

$$\vec{F} = \frac{d}{dt} \left(air \, mass \times \vec{u} \right) = \left[\rho_{\#} \cdot \boldsymbol{u} \cdot \boldsymbol{A} \right] \cdot d \left(\boldsymbol{m} \cdot \vec{u} \right)$$

Momentum change $dp = m \cdot u \cdot \tan \alpha$

Lift is generated mostly as reaction to downward deflection of air mass: action=reaction Newton's Law

Lift depends on asymmetric shape (camber) and incline (angle of attack α) of air foil relative to air flow. Air stream deflected downwards.

Low lift camber requires high speed to generate lift.

Airstream Pressure Differential by Airfoils

Reduced static pressure on top Bernoulli's Principle \rightarrow partial lift

Additional (lesser) lift & drag source:

Difference in Bernoulli pressures between above and below airfoil. Depends on curvature of the "camber" → force differential

$$\begin{aligned} p_{t} + (1/2) \rho_{m} \cdot u_{t}^{2} &= p_{b} + (1/2) \rho_{m} \cdot u_{b}^{2} \\ \frac{F_{Lift}}{A} &= p_{b} - p_{t} = \frac{1}{2} \rho_{m} \left[u_{t}^{2} - u_{b}^{2} \right] \\ F_{Lift} &\propto A \cdot \Delta u \left(\alpha, \ldots \right) \cdot \overline{u} > 0 \end{aligned}$$

Lift force: $F_{Lift} = \begin{bmatrix} L = C_L \cdot A \cdot \left(\frac{1}{2}\rho_m \cdot u\right) & depends \\ on (wind speed)^1 \\ C_L = coefficient of lift A = A(\alpha) = total airfoil (wing) \\ area facing wind (\bot) with relative speed u (really \Delta u) \end{bmatrix}$

Lift depends on shape (camber) and incline (angle of attack α) of air foil relative to air flow. Air stream deflected downwards.

Most Popular Aerodynamic Blade Profile

Velocity u_B of blade relative to air increases with radial distance r from hub \rightarrow lift increases with r for a given angle of attack \rightarrow mechanical strain.

For constant blade profile:

- 1) Lift is low close to root, large at tip.
- 2) Narrowing required by hub/nacelle.
- 3) Effective angle of attack decreases with $r \rightarrow loss$ of lift @v =const. efficiency.

Relative wind direction & speed

Remedy:

- 1) Use larger chord close to root.
- 2) Twist blade by 10° -20° from root to tip.

Aerodynamic Power Transfer

 \rightarrow Average speed $\overline{u} := (u_1 + u_2)/2$ for mass flow $\dot{M} = \rho_m \cdot \Delta V / \Delta t = \rho_m A \overline{u}$ Volume $\Delta V(\overline{u})$ transfers power differential to turbine

$$\Delta P = P_1 - P_2 \approx \frac{(\rho_m A \overline{u})}{2} (u_1^2 - u_2^2) = \frac{(\rho_m A)}{4} (u_1 + u_2) (u_1^2 - u_2^2) \rightarrow =: C_{Turbine} P_{wind}$$

W. Udo Schröder, 202

Aerodynamic Power Transfer

At turbine (obstacle), u slows, stream-lines diverge, wind speed decreases, $\mathbf{u_2} = \mathbf{u_{wake}} < \mathbf{u_1} = \mathbf{u_{wind}}$

$$E_{kin} = \frac{1}{2} \cdot (\rho_m \cdot \Delta V) \cdot u_1^2, \quad volume \ \Delta V$$

through A in Δt :
Volume $\Delta V(u_1) = A \cdot u_1 \cdot \Delta t$.

Delivered to turbine:
$$\Delta P \coloneqq C_{Turbine} P_{wind} \quad defines \quad power \ coefficient \ C_{Turbine} \rightarrow C_{Turbine} \approx \frac{1}{2u_1^3} \cdot (u_1 + u_2) \cdot (u_1^2 - u_2^2) = \frac{1}{2} \cdot (1 + x) \cdot (1 - x^2) \quad with \ x \coloneqq \frac{u_2}{u_1}$$

Maximum power: $d(\Delta P)/dx = 0 \rightarrow x|_{\Delta P=\max} = 1/3 \rightarrow self regulating stable$ Effective mean speed $\overline{u} := \frac{1}{2}u_1(1+x) = \frac{2}{3}u_1$ $C_{Turbine} = \frac{\Delta P}{P_{Wind}} \le \frac{16}{27} = 0.593$ $\frac{Betz}{Limit}$

 $\overline{u} := (1-a)u_{Wind}$ $a = linear (axial) induction factor of turbine = f(#blades, A_i)$

Lift Induced Drag

For an air foil exposed to an air flow, there is always an induced drag associated with lift countering thrust:

$$L = \frac{1}{2}C_L \cdot (\rho_m \cdot A) \cdot \overline{u}^2, \qquad D = \frac{1}{2}C_d \cdot (\rho_m \cdot A) \cdot \overline{u}^2$$

Effective force (thrust) is \perp rotation axis

$$L_{eff} = L \cdot \sin \phi - D \cdot \cos \phi = L \cdot \sin \phi \left[1 - \left(\frac{C_d}{C_L} \right) \cdot \cot \phi \right]$$

 $Drag/lift ratio: g = C_d/C_L$

Long air foil (propeller/rotor blade)→ large changes in effective wind speed. Equalize blade loading by chord/camber variationalong foil.

'Twist" angle:
$$\cot\phi(r) = \left(\frac{3\lambda}{2R}\right) \cdot r$$
 Large near tip

Use typical / representative $r \approx (2/3) \cdot R \rightarrow cot\phi \approx \lambda$ $L_{eff} \sim L \cdot \sin \phi \cdot [1 - g \cdot \lambda] \rightarrow$

$$C_{Power} \leq C_{Betz} \cdot \left[1 - \boldsymbol{g} \cdot \lambda\right]$$

Modern turbines: g ~ 0.02, λ ~ 10

23

W. Udo Schröder, 2024

Operational Turbine Power Limits

Operational range of turbines

 $u_{\text{cut-in}} \leq u_{\text{Wind}} \leq u_{\text{cut-out}}$

Large range is not economical: electric generator has rotational (power output, frequency) requirements and limitations.

→ Rated (nominal) wind speed $u_{rated} \approx u_{cut-out}/2$

→ Blades pitch (feather) if $u_{wind} > 2 \cdot u_{rated.}$

Capacity factor CF:=<Power>_{time}/Power_{rated}. Typical: $CF \approx 0.2-0.4$

Properties of Wind Energy Turbine Systems				
Rated electrical power (kW)	3,600	2,500	2,000	1,500
Rotor diameter (m)	104	100	80	70.5
Rated wind speed (m/s)	14	12.5	15	13
Cut-in wind speed (m/s)	3.5	3.5	4.0	4.0
Cut-out wind speed (m/s)	27	25	25	25
Rotor speed (rpm)	8.5-15.3	-	9–19	12-22
Rated power/area (kW/m ²)	0.424	0.318	3.98	0.384
Rated power coefficient	0.257	0.270	0.196	0.290
Tip speed ratio	3.3-6.0	2	2.5-5.3	3.4-6.2

Properties of Wind Energy Turking Systems

" Data from http://www.gewindenergy.com and http://www.vestas.com.

After: Fay & Golomb, Energy and the Environment, Oxford U. Press, New York, 2012

24

Vind Power 2

Technical Summary: Design of Wind Rotor Blades

Technical strain Bending moment $\vec{M} = \vec{r} \times \vec{F}$ problem: "Thrust" = Force on one blade $T = F = (\rho_m A) \bar{u}^2$ \rightarrow produces desired torque moment on rotor Use mean $\bar{u} = (1-a)u_{Wind} = (2/3)u_{Wind}, \ u_{Wake} = (1/3)u_{Wind}$

Per circular strip dr @r, $dT = (\rho_m \cdot 2\pi \cdot r \cdot dr) \cdot \overline{u}^2 \triangleq d\overline{\rho}/dt$

To avoid uneven load on blades, reduce camber area W and/or angle of attack with increasing r. \rightarrow large factor \rightarrow stability, normal oscillations

Wind velocities measured rel. to blades at rest

$$u_{Blade} = u_{Blade}\left(r\right) = r \cdot \Omega_{Roto}$$

Large range of speeds

Angle of attack α :wind direction relative to chord Effective wind speed $u_{\alpha} = (2/3)u_{Wind} / \sin \phi$

26

W. Udo Schröder, 2024