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Agenda

Resources and Utilization

• Global & local wind resources/patterns

Technology

• Wind tower design and functionality

– Wind speed distributions

– Turbine power generation, design parameters

– Blade aerodynamics, lift and drag, wake turbulence

• Wind farms, design and operations 

– Onshore and offshore windfarms, useful life

– Construction parameters, cost, GHG emissions 

• Strategic issues

– Performance

– Ecological impact, wildlife habitat

Wind power in national and international energy mix
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First US Wind Farms
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Altamont Pass (CA), started around 1980 >1,000 towers, 0.5 GW, many 
inoperable after 1982   

To protect birds in the Altamont 
Pass, ½ of all turbines are shut 
down during November-
December, the other ½ during 
January-February. 

Entire project has been rebuilt 
with newer turbines.



Global Wind Patterns
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Latitudinal variation of solar insolation → Equator updraft 
S → N upper air flow destabilized by Coriolis force 
(deviation to right on northern hemisphere)
→ Pattern breaks up into 3 regions (cells) per hemisphere.   

Westerlies and NE trade 
winds near 300 latitudes.
High-altitude jet stream 
(v > 300 km/h)

Regional and local wind 
patterns are influenced by 
terrain features (friction, 
uplifts and downdrafts), 
thermal gradients, bodies 
of water, movement and 
interactions of large air 
masses. 

ROC 43.160 N, 77.610 W



US Instant Wind Patterns
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http://hint.fm/wind/index.html

Anticyclone storm in Mid West, calm at east coast

Windpattern animation

Windpattern 
animation

L

http://hint.fm/wind/index.html
../assets/VIDEOS/Wind_Pattern_20150326.mp4


US Wind Resources Potential
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Topographical Enhancements



Sea Breeze-Land Breeze
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Radiation cooling of land during night 
depletes heat content of land faster 
than of body of water (lake, ocean), 
producing high-pressure domain 5 on 
land, low L 2 over water.
 
Night-time: Land breeze  7
Return flow 6.

Heat capacity (thermal inertia) 
of water is higher than heat 
capacity of land.

Due to thermal convection, air 
over  warmer part ascends 1, 
creates low-pressure region L 
2,  filled in by airflow 7 from 
high H 5 over colder water.

Day-time: Sea breeze 7
Return flow 6.



Valley and Mountain Breezes
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When the mountain slopes warm during 
the day, warm air rises up the slopes of 
surrounding mountains and hills to 
create a valley breeze. 

At night, denser cool air slides down the 
slopes to settle in the valley, producing a 
mountain breeze.

Similarly: Mountain passes, ridges, 
spires can channel winds. 

Environmental concerns: Birds use these 
wind patterns efficiently. 

Art. Encyclopædia Britannica Online. Web. 7 Mar. 2013. 

<http://www.britannica.com/EBchecked/media/111214/Wh

en-the-valley-floor-warms-during-the-day-warm-air>.

http://www.britannica.com/EBchecked/media/111214/When-the-valley-floor-warms-during-the-day-warm-air
http://www.britannica.com/EBchecked/media/111214/When-the-valley-floor-warms-during-the-day-warm-air
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Basic Wind Tower Construction
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17th-century windmill 
(Northern Germany).

Manual yaw control of 
nacelle and pitch control 
of rotors (sails).

Modern rotor blades are 
aerodynamically 
optimized (“airfoils”).



Giant Wind Towers: Offshore Windfarm 
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Alpha Ventus Windfarm 60MW
$ 325 M ($5.42/W)
EWE 47.5%; E.ON and Vattenfall each 26.25%



Altitude Dependence of Mean Wind Speed
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Close to ground level, uneven 
landscape (buildings, trees, power 
lines) produces friction & turbulent 
wind patterns (wind shear) = 
obstacles to laminar flow.

General altitude dependence on 
wind direction and speed due to 
combined effect of Coriolis force and 
friction (“roughness length”). 
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Wind Speed Distributions
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Empirical fit of wind speed distribution dP(u)/du: 2-parameter Weibull distribution
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Wind Turbines Designs: Vertical-Axis

W. Udo Schröder, 2024

W
in

d
 P

ow
e
r 

2
4

14

Aerodynamic principles of 
VAWT are similar: lift and 
drag on air foil.

Advantage: because of 
axial symmetry need no 
yaw drive to optimize for 
wind direction.  

Darrieus type VAWT 
@ Sandia Lab.

Horizontal axis 
wind turbine

Disadvantage: More resistance to air 
flow (solidity), heavier & complex rotor, 

Many different designs, 
offered by a number of companies for 
small power outputs (kW) → so far 
economically disadvantaged.

Aerodynamics



Aerodynamics: Lift and Drag on Airfoils
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Maximum lift at laminar (steady) air flow 
around foil at high angle of attack. Flow 
direction changed by airfoil.
Large angles of attack  → boundary layer 
(streamlines) separates from air foil, generate 

turbulence and loss of lift → stall.

Stall

Angle of Attack

C
o
e
ff
ic

ie
n
t 

o
f 
L
if
t

Stall

Laminar 
Flow

Incident 
Flow

Rel. 
wind 
direction

Angle of Attack 

Lift

Drag

Wind Direction

Rotor Blade Cross 
Section=Airfoil



Airstream Deflection by Airfoils 
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Newton’s Law
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Undisturbed airflow 

actionFp 

Lift depends on asymmetric shape 
(camber) and incline (angle of 
attack ) of air foil relative to air 
flow. Air stream deflected 
downwards.

Low lift camber requires high 
speed to generate lift.

Lift is generated mostly as 
reaction to downward deflection 
of air mass: action=reaction

reactionF
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Airstream Pressure Differential by Airfoils 
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Most Popular Aerodynamic Blade Profile
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Velocity uB of blade relative to air increases 
with radial distance r from hub → lift 
increases with r for a given angle of attack 
→ mechanical strain. 

For constant blade profile: 

1) Lift is low close to root, large at tip.
2) Narrowing required by hub/nacelle.
3) Effective angle of attack decreases with 

r → loss of lift @v =const.  efficiency. 

Remedy: 

1) Use larger chord close to root. 

2) Twist blade by 100 -200 from root to tip.

Relative wind direction & speed

r



Aerodynamic Power Transfer
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Aerodynamic Power Transfer

W. Udo Schröder, 2024

W
in

d
 P

ow
e
r 

2
4

2
2

1;Wind WindP u u=

2 Wakeu u=
1z u t = 

A
A1 A2

At turbine (obstacle), u slows, 
stream-lines diverge, wind speed 
decreases, u2 =uwake < u1= uwind
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Bladeu

L∙sinD∙cos For an air foil exposed to an air flow, there is always 
an induced drag associated with lift countering thrust:
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Operational Turbine Power Limits
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After: Fay & Golomb, Energy and the Environment, 
Oxford U. Press, New York, 2012

Operational range of turbines

       ucut-in≤ uWind ≤ ucut-out

Large range is not economical: electric generator has 
rotational (power output, frequency) requirements 
and limitations.
→  Rated (nominal) wind speed urated ≈ ucut-out/2
→  Blades pitch (feather) if uwind  > 2·urated.

Capacity factor CF:=<Power>time/Powerrated.

Typical: CF ≈ 0.2-0.4

: wind Tipu u =

Output 
Limit
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Technical Summary:  Design of Wind Rotor Blades
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Large range 
of speeds

To avoid uneven load on blades, reduce camber area 
W and/or angle of attack with increasing r.
→ large factor→ stability, normal oscillations

Bending moment M r F= Technical strain
problem:
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