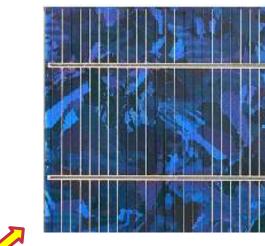
Agenda

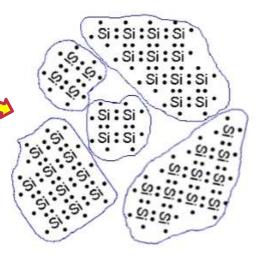
- Intro
- Solar insolation, power density, solar emission spectrum
- Utility size(solar farms) & residential PV arrays
- Silicon solar photo-voltaic (PV) technology
 - Semiconductor band structure, gap, junctions
 - Charge carriers in n-type and p-type semiconductors
 - Photocell operation, efficiency
 - Photo sensitive materials, silicon cell manufacture
 - Materials and emissions in construction
- US installations and performance, system cost and incentives
- Solar power strategic issues

Most Common Commercial Solar Cells

Continuous, repetitive structure. Rare in nature, needs to be grown in lab. \rightarrow expensive for large crystals.

Solar cells made from single crystal, $(200-300)\mu$ wafers. Mono-crystalline cells, most efficient, most expensive.


Multi-crystalline silicon:


Pieces made of more than one single-crystal, multiple domains.


Constituent crystals relatively small, easier to grow and cheaper. Also less efficient, free charge carriers have to cross boundaries.

Amorphous *a***-Si:H** $<\epsilon_G>=1.7eV$, high absorbance.

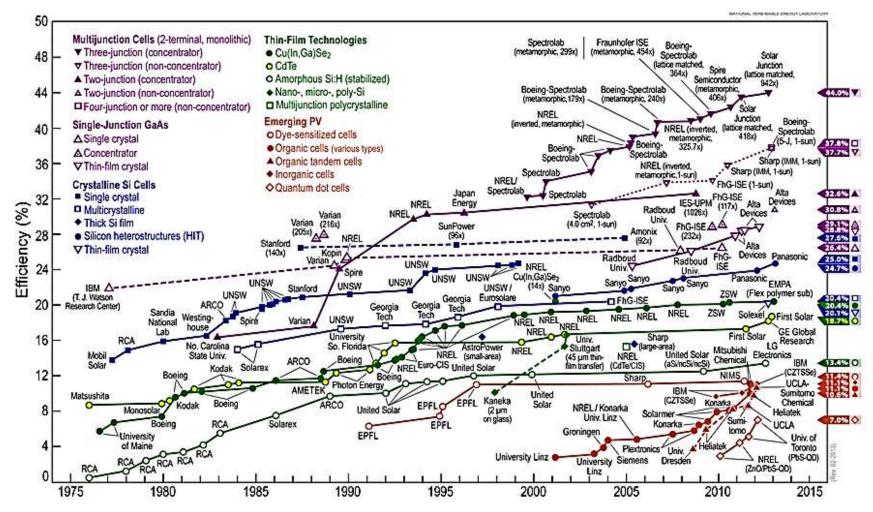
New: Thin-film cells (1 μ thick), technique saves material. Heterojunction cells: CdTe,.. Multi-layer cells Organic semiconductors.

Thin-Film PV Solar Cells: CIGS

Nano-particles embedded in plastic.

The ZSW institute's building in Stuttgart-Vaihingen has a façade with CIGS panels.

2019: CIGS (Copper, Indium, Gallium and Selenium) cell efficiencies have surpassed all other thin film PV technologies, achieving 23.4% on the cell and 17.5% on the module level.

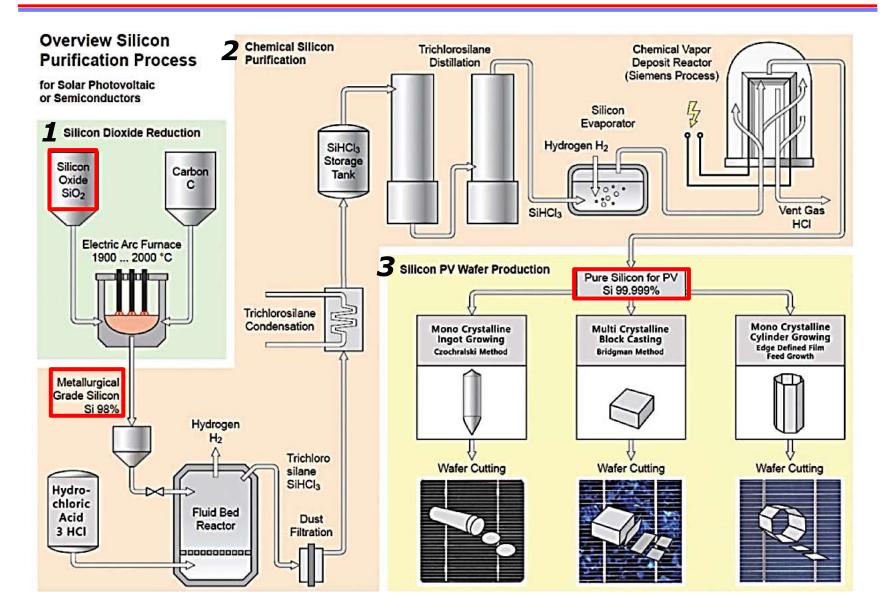

CIGS has also been deployed in ultra-high efficiency tandem cells, potential to achieve 30% efficiency.

Future efficiency development via band-gap tuning: Perovskite/CIGS tandem

 $^{\circ}$

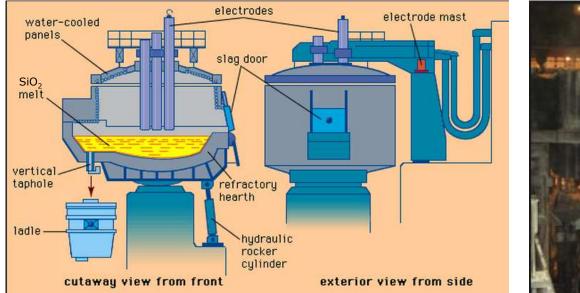
Ongoing R&D: Efficiencies of Solar Cells

Standard with conventional processes: flat-panel multi-crystalline cells (240-250)W, $e \le 20\%$.



http://theenergycollective.com/ericwesoff/208316/first-solar-crushes-solar-pv-efficiency-record, Acc. April 2013.

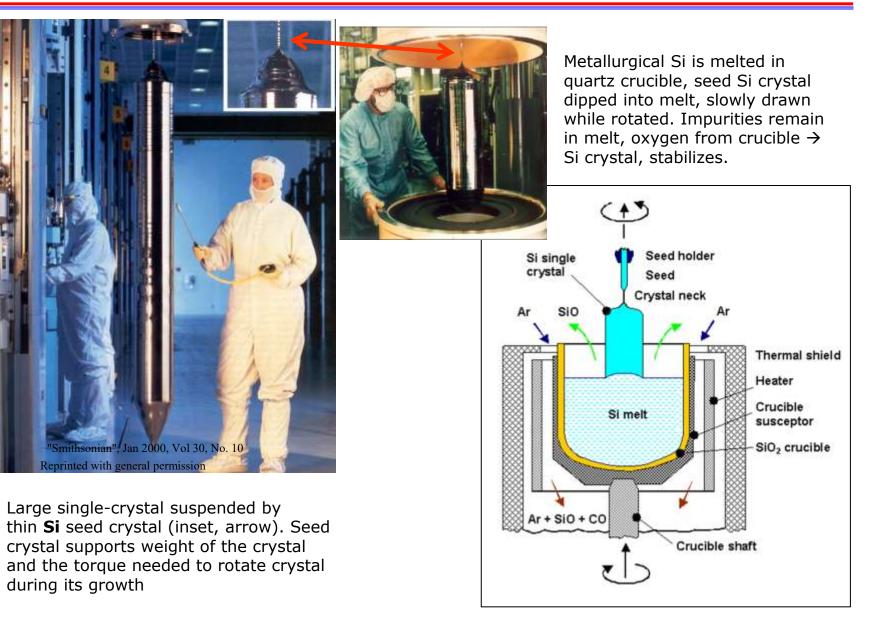
Mainstay Si cell production


LO


PV Cell Manufacture Chain

Ś

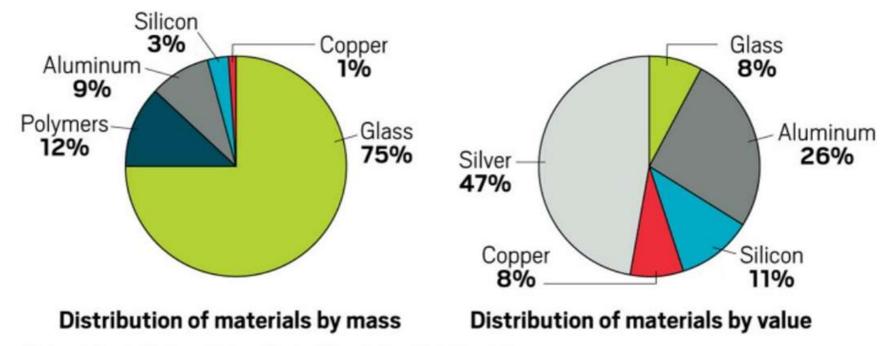
Semiconductor Grade Silicon Fabrication



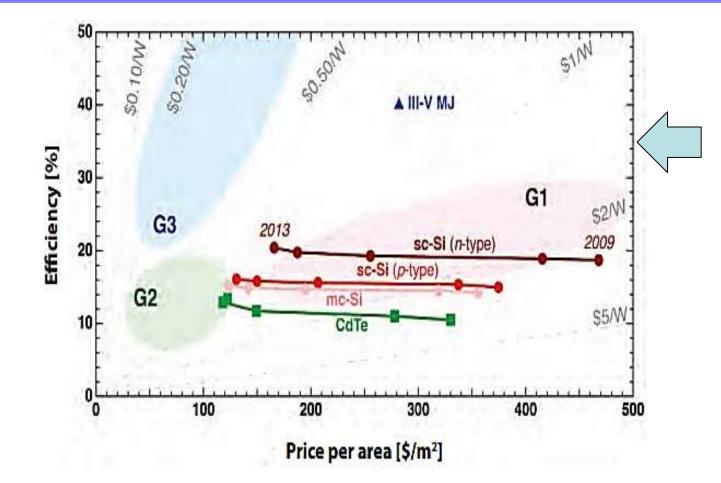
Steps to Obtaining Semiconductor Grade Silicon (SGS)

Step	Description of Process	Reaction
1	Produce metallurgical grade silicon (MGS) by heating silica with carbon	$C(s) + SiO_2(s) \rightarrow Si(l) + SiO(g) + CO(g)$
2	Purify MG silicon through a chemical reaction to produce a silicon-bearing gas of trichlorosilane (SiHCl ₃)	Si (s) + 3HCl (g) \rightarrow SiHCl ₃ (g) + H ₂ (g) + heat
3	SiHCl ₃ and hydrogen react in a process called Siemens to obtain pure semiconductor- grade silicon (SGS)	2 SiHCl ₃ (g) + 2H ₂ (g) \rightarrow 2Si (s) + 6HCl (g)

Arc furnace for processing materials with high melt temperatures, e.g., $T_{fus} = SiO_2$: 1,600°C.


Czochralski Process

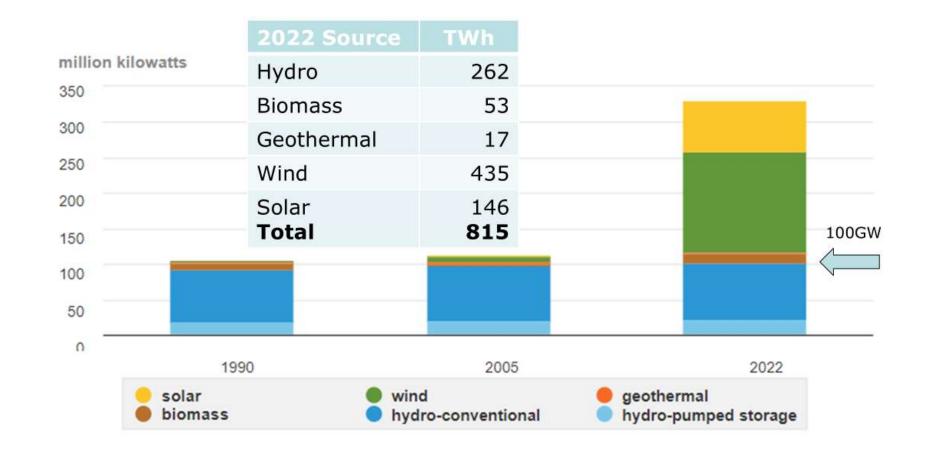
σ


W. Udo Schröder, 202

Si-PV Cell Materials

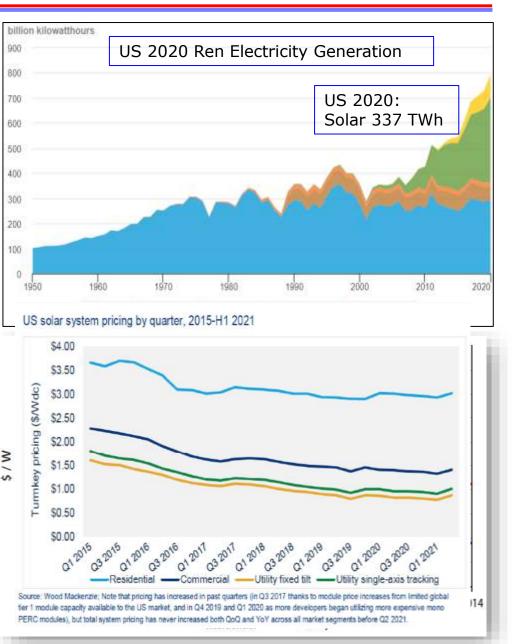
Source: Martin Bellman/Icarus. Note: Silver is less than 1% of the mass.

Trends in Commercial PV Price/Performance


PV module efficiency and price per area (period 2009-2013).Conventional generations: G1 in red, G2 in green, and G3 in blue.

Current G1 and G2 modules cluster near the region originally defined as G2.

US Average PV System Cost



U.S. Renewable Generation Capacity & Production

U.S. PV Installations

Net Electric	Power (2020)
Coal:	19%
Nat Gas:	40%
Nuclear:	20%
Hydro:	7.3%
Wind:	8.4%
Solar:	2.3%
Total:	4,000 TWh

Levelized costs for residential PV are (170%) higher than utility-scale PV because of much higher residential Balance Of System costs (in US). Result of high per-kWh subsidies. Grid-connected solar electricity relies on subsidies at various levels.

Cash incentives range: \$(0.90-1.2)/W for systems (installed in 2011). (MIT Report)

Agenda

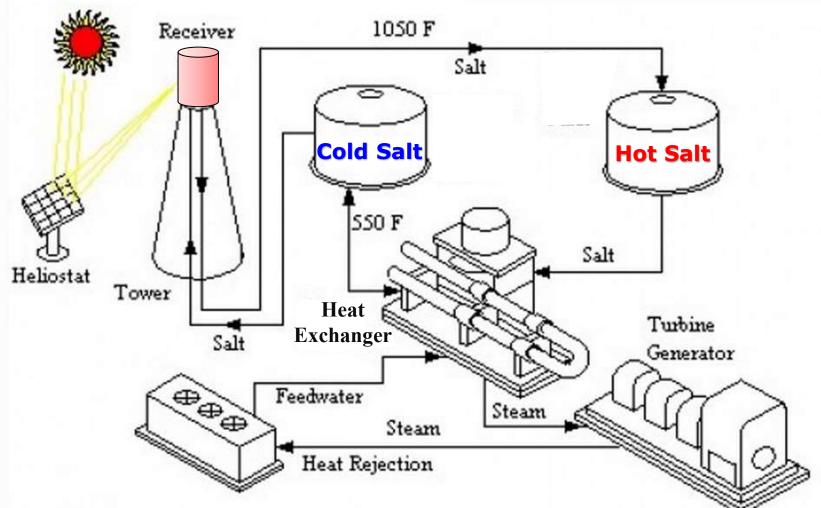
- Intro
- Solar insolation, power density, solar emission spectrum
- Utility size PV arrays (solar farms)
- Silicon solar PV technology
 - Charge carriers in n-type and p-type semiconductors
 - Semiconductor band structure, gap, junctions
 - Photocell operation, efficiency
 - Silicon wafer, cell manufacture
 - Materials and emissions
 - US installations and performance, system cost and incentives
- Concentrated (thermal) solar power technologies
- Solar th/PV power strategic issues

Next: Geothermal, Wind Power

Concentrated Solar Power (Thermal)

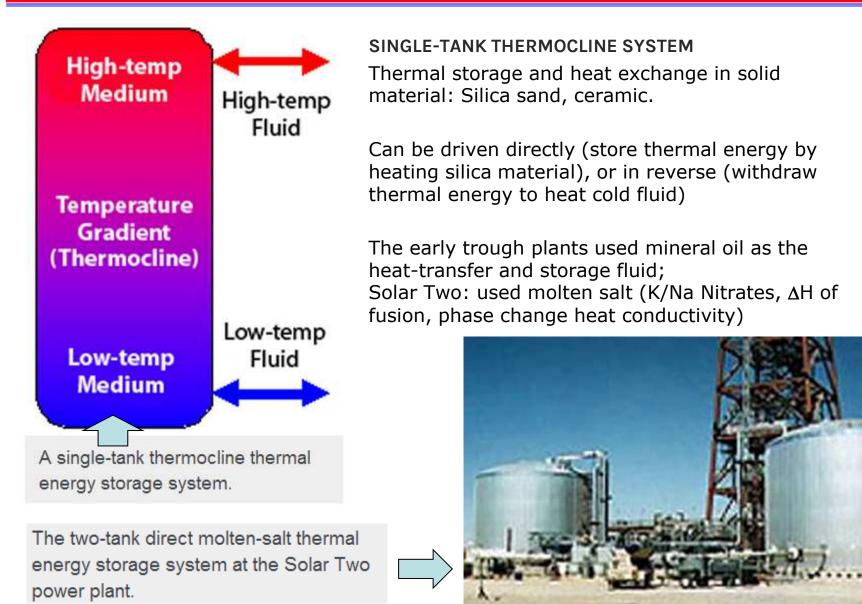
an en si kur

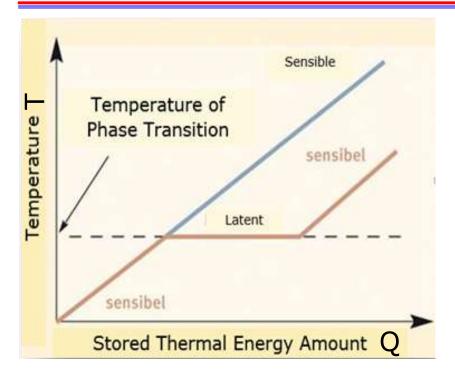
US: Ivanpah (CA) Solar Installation


The biggest (2014) solar thermal energy plant in the world is located near Ivanpah in California. Working fluid water. 1896 man-years construction (4 years). Construction costs came down Crescent Dunes (> \$9/W) on public land. In 2010, the project was scaled back from its original 440 MW design to avoid disturbing the habitat of the <u>desert tortoise</u>.

Heliostat Tracking Mirrors

The Solar One "proof of principle" project produced 10 MW of electricity. Used 1,818 heliostat tracking mirrors, each covered area of 40 m² (430 ft²). Total area = 72,650 m² (782,000 ft²).


Concentrated Solar Plant: Working Medium Flow


Molten salt is able to reach very high temperatures (over 1000 degrees Fahrenheit) and can hold more heat than the synthetic oil used in other CSP plants, the plant is able to continue to produce electricity even after the sun has gone down. Startup needs external heating, e.g., with nat gas boiler.

W. Udo Schröder, 2023

Heat Transfer/Storage

Thermal Work Media/Energy Storage Materials

Thermal properties

(i) Suitable phase-transition temperature.

(ii) High latent heat of transition.

(iii) Good heat transfer.

Recent review of PCM storage materials: A. Sharma et al., Renewable and Sustainable Energy Reviews 13 (2009) 318– 345

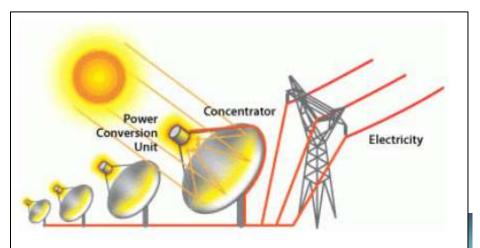
Physical properties

- (i) Favorable phase equilibrium.
- (ii) High density.
- (iii) Small volume change.
- (iv) Low vapor pressure.

Kinetic properties

- (i) No supercooling.
- (ii) Sufficient crystallization rate.

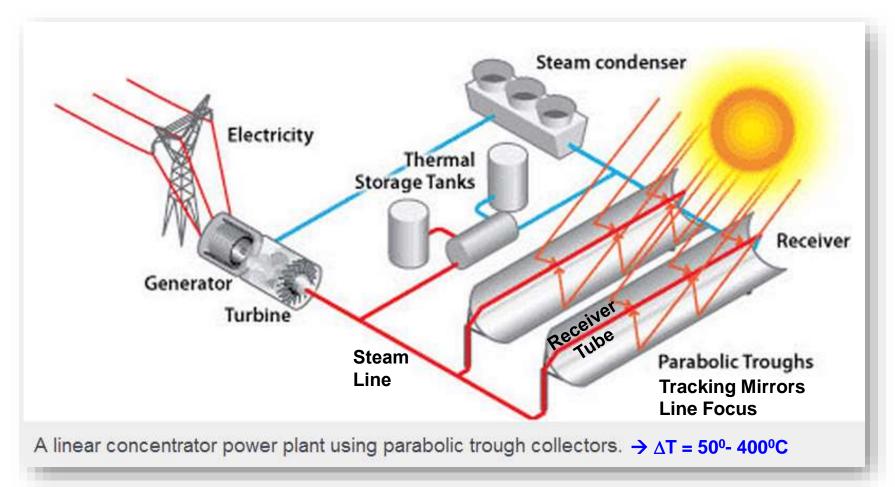
Chemical properties


- (i) Long-term chemical stability.
- (ii) Compatibility construction materials
- (iii) No toxicity.
- (iv) No fire hazard.

Economics

- (i) Abundant.
- (ii) Available.
- (iii) Cost effective.

Competing storage technologies: Batteries, electrolyzer-H₂, pumped pV & gravitational, thermal, mechanical,...


Dish Engine Systems

The dish/engine system is a concentrating solar power (CSP) technology that produces smaller amounts of electricity than other CSP technologies—typically in the range of 3 to 25 kilowatts—but is beneficial for modular use. The two major parts of the system are the solar concentrator and the power conversion unit.

Line-Focus CSP Collectors

Typically, collector fluid=oil, produces superheated steam in a heat exchanger Currently largest trough systems \rightarrow generate 80 MW_e. Overnight heat storage in molten salt (K/Na nitrate) storage tanks (remains liquid in large T range, large heat capacity)

Line-Focus CSP Collector

Siemens

Udo Schröder, 2023

Association of Water, but history of the water and the bit province in advanced with a bit and and not wind open effect. No an water water water and the bit of the second secon

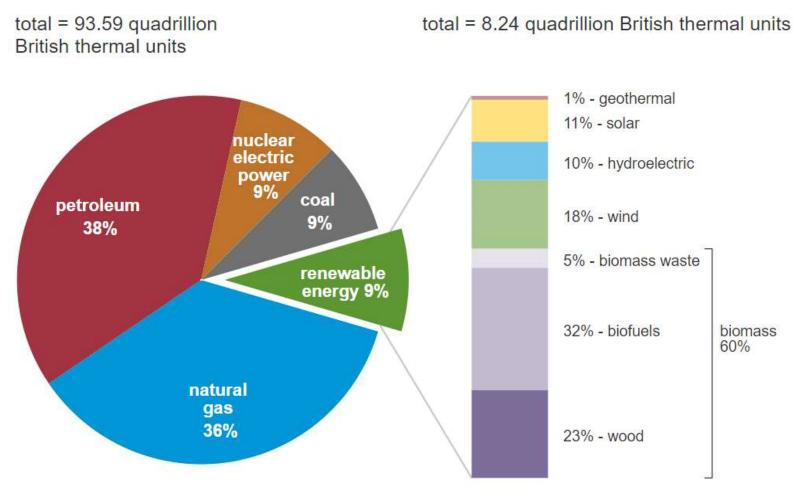
75-MW Martin Solar Plant near Indiantown, Florida

Solar Performance in SW U.S.

Electricity generation Mesquite Solar 1-3 in 2017-2019. Location: Arlington, Maricopa County, Arizona \rightarrow optimum capacity factors.

						'		•	· ·	•			
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2017	18,968	23,127	39,542	43,048	45,896	51,628	31,943	39,425	40,513	37,184	22,096	20,363	413,734
2018	23,598	25,234	32,580	38,786	48,925	47,774	42,202	42,713	41,106	29,406	25,482	17,198	415,004
2019	21,519	21,215	33,843	40,244	42,179	47,752	42,113	45,612	36,747	37,825	21,338	16,959	407,345

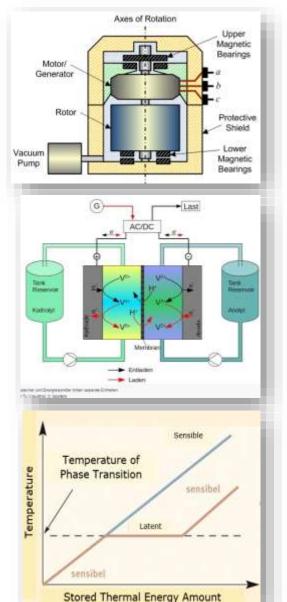
Generation (MW·h) of Mesquite Solar 1 (150MW)


Generation (MW·h) of Mesquite Solar 2 (100MW with tracking)

				· · ·		•		•					
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2016												13,255	13,255
2017	15,016	16,794	26,698	29,176	31,992	32,486	29,490	28,681	26,392	23,857	15,275	15,040	290,897
2018	17,201	18,569	24,484	28,562	32,739	31,729	29,461	29,075	26,015	16,891	15,900	14,396	285,023
2019	16,090	14,280	19,916	21,340	22,983	30,941	29,656	29,898	23,634	23,723	13,615	9,971	256,047

Generation (MW·h) of Mesquite Solar 3 (150MW with tracking)

					····/					3/			
Year	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
2016												21,060	21,060
2017	22,673	25,705	40,558	43,985	48,952	49,978	44,174	43,447	39,846	35,670	23,425	22,187	440,600
2018	25,678	28,450	38,984	43,517	50,609	48,203	44,817	44,342	39,830	31,777	27,684	21,898	445,789
2019	25,460	26,613	38,070	43,410	47,869	48,938	45,483	45,652	39,165	39,109	25,772	20,096	445,637


U.S. Energy Consumption 2023

Data source: U.S. Energy Information Administration, *Monthly Energy Review*, Table 1.3 and 10.1, April 2024, preliminary data

eia Note: Sum of components may not equal 100% because of independent rounding.

Distributed Energy Storage Techniques

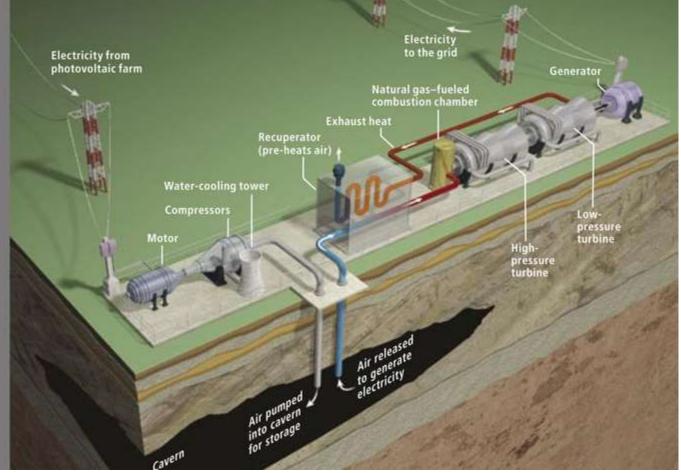
Mechanical energy storage

Gravitational, pumped hydropower, compressed-air, flywheels

Electrical/Electrochemical storage

Super capacitors, supercon magnets Batteries: Lead-acid, Ni-Cd, Li-ion, redoxflow/fuel cells

Chemical energy storage \rightarrow H electrolizer Water dissociation \rightarrow hydrogen


Thermal energy storage

Change in internal heat energy ("sensible heat"), High heat capacity materials (C, concrete,..) Phase change (transition) \rightarrow latent heat \rightarrow molten salt storage, thermo-chemical heat

Energy Storage

Underground Storage

Excess electricity produced during the day by photovoltaic farms would be sent over power lines to compressed-air energy storage sites close to cities. At night the sites would generate power for consumers. Such technology is already available; the PowerSouth Energy Cooperative's plant in Mc-Intosh, Ala. has operated since 1991 (the white pipe sends air underground). In these designs, incoming electricity runs motors and compressors that pressurize air and send it into vacant caverns, mines or aquifers (right). When the air is released, it is heated by burning small amounts of natural gas; the hot, expanding gases turn turbines that generate electricity.

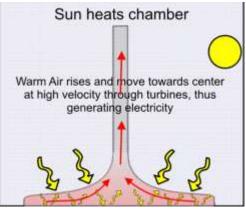
Solar Power Technologies: Strategic Issues

- 1. Intermittency, subject to local weather, diurnal and seasonal variations
- 2. Low power densities and efficiencies, in particular solar thermal, thin-film PV cells
- 3. Impact on local ecosystems, large land use
- 4. Controllability, voltage/power depend on insolation, temperature coefficients.
- 5. Converters DC \rightarrow AC, feed-in synchronization/connection with utility e-grid
- 6. Geographic limitations, distance from consumption centers, transmission losses
- 7. Emissions (CO_2 , H_2S , $SF_6...$) & toxic acids, chemicals
- 8. Needs efficient energy storage, "smart" grid for feed-in
- 9. Economics (\$\$/kWh, "energy pay-back" times), adoption requires incentives
- 10. Minor role in current US energy mix (ramp up time for scaling to \sim (10-20)%)

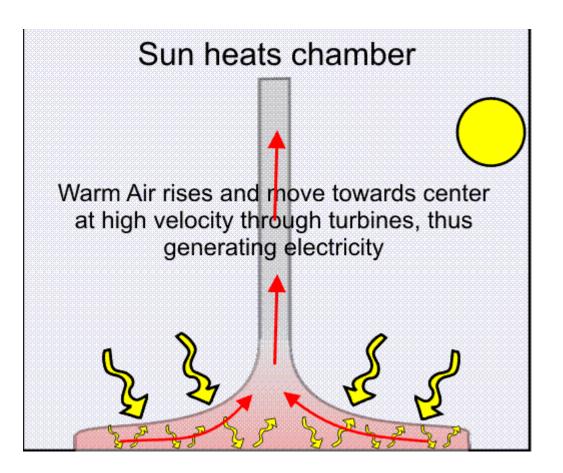
Sustainable Energy Strategy

Goals: Maximum possible energy security and independence

Criteria for a sustainable energy strategy (based on existing reality)


- provides safe energy supply;
- enhances energy independence;
- allows for flexible response to a variable mix of energy demands;
- accounts for existing infrastructure and its evolutionary inertia;
- does not rely on future technological breakthroughs, but is adaptable;
- does not waste useful resources;
- is acceptable to the public.
- \rightarrow Diversity of technologies desirable, ramp up most potent candidates now.

Dynamical update of strategy in time


Hot-Air Updraft Towers

Principle of operation: Sunlight collector dome produces hot air underneath, which escapes through chimney and produces draft driving a turbine.

An Australian plan: construct (world's first large-scale) solar thermal power station Buronga in New South Wales. 200-MW 'Solar Mission' should produce enough electricity to power 200,000 homes, reducing CO_2 emissions by 750,000 t Turbines are driven by heat rising with the hot air trapped under the transparent "collector" dome around the tower.

333.55 J/g (heat of fusion of ice) = 333.55 kJ/kg = 333.55 kJ for 1 kg of ice to melt PLUS

SP Solar Thermal

Sicily: CSP Plant (Molten Salt)

11.5

Since molten salt is able to reach very high temperatures (over 1000 degrees Fahrenheit) and can hold more heat than the synthetic oil used in other CSP plants, the plant is able to

continue to produce electricity even after the sun has gone

> Some CSP plants use molten salt storage in order to extend their operation, but collectors rely on oil as the heat collection medium. \rightarrow 2 heat transfer systems (oil-to-molten-salt +molten-salt-to-steam) increases the complexity, decreases efficiency of the system. The salts used in the system are also environmentally benign, unlike the synthetic oils used in other CSP systems.

Raw Materials Used in Energy Technologies

Materials (kg) needed for generating 1-GWh of electricity in various technologies, including basic resources. (1GWa = 8.7TWh)

Plant → Materials	Coal 45,5 %	Lignite 44 %	natGas 58 %	Nucl	Hydro 3 MW	Wind 1,5 MW, Off-sh	Solar therm al	Solar PV roof
Tuen	2.000	2.00	1.200	420	2,400	5.200	3.470	top 5.200
Iron		-22.8 - S. (S.	1.200	122000	2.400	000000000000	N 2820-000	
Bauxite	16	18	2	27	4	44	6	2.000
Copper	2	1	1	6	5	65	252	230
Limestone	7.000	20.000	6.400	800	6.000	2.490	2.100	10.000
Nickel	1,4	1,1	0,4	15,5	0,4	0,4	0,5	14
Coal	501.300	3.500	255	880	2.860	3.840	2.700	14.000
Lignite	5.180	1.017.000	300	500	2.750	5.100	745	32.900
natGas	1.160	800	185.705	1.070	730	1.560	440	5.690
Crude Oil	3.760	1.200	2.220	610	580	720	1.750	4.300
Uranium	0,34	0,2	0,003	26,5	0,007	0,02	0,03	0,92