Due: 9 Oct 2024

Energy: Science, Technology, and Society

Homework Set 3

1. Venusian Climate

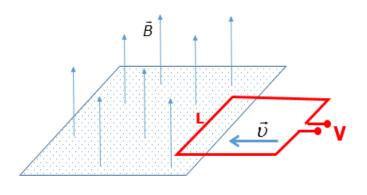
The planet Venus is in many respects Earth like, with mass ($M_V = 4.87 \cdot 10^{24}$ kg) and

radius ($R_V = 6,052$ km) similar to those of Earth, but it orbits the Sun with a mean orbital radius of only $R_{SV}= 1.082 \cdot 10^8$ km. Like Earth, Venus has a near-circular orbit but a shorter year (225 Earth days).

Venus' climate is significantly influenced by its large albedo ($a_v = 0.76$) and the (extremely corrosive) atmosphere consisting largely of sulfuric acid vapors (and dust) leading to substantial greenhouse effects.

- a) Use the model for evaluating the radiative balance of Earth introduced in class and calculate the solar constant S_V for Venus and its equilibrium surface temperature T_0 without an atmospheric greenhouse effect.
- b) Given the measured surface temperature of $T_{SV} = 730$ K for Venus, what temperature T_{Vat} would the Venusian troposphere have to have, assuming it to be a layer with a large temperature laps rate $\Delta T/m Altitude$?

2. Consequential Climate Trends


The Greenland glacier (latitude 69° 38' 7.50" N) covers an area of $A = 1.7 \cdot 10^6$ km² and has a total volume of approximately V = $2.85 \cdot 10^6$ km³. According to current observations, the glacier is melting at a slightly faster rate than its accumulation gain from the annual precipitation.

a) Estimate the total weight of the glacier in metric tons.

- b) Calculate by how much the global sea level would rise if the glacier would melt completely. (Neglect a possible rise of the land.)
- c) Calculate the total energy that the melting process in b) would require.
- d) Given the mean solar insolation, roughly estimate the number of arctic summer seasons (June-August in every year) the process would require. (Neglect winter accumulation through precipitation.)

{Useful information: The latent heat of melting ice is $\Delta H = 334 \text{ kJ/kg.}$ }

3. Mechanical Energy-to-Electricity Conversion

Consider a spatial domain filled with a uniform magnetic field $\vec{B}(\vec{r}) = B_0 \cdot \vec{k}$ aligned with the *z* direction, defined by the unit vector \vec{k} . As illustrated in the sketch, an open quadratic wire loop with side length L is moved with a constant veloc-

ity $\vec{v} = -v \cdot \hat{i}$, from the outside into that domain, in negative x-direction and perpendicular to the field.

a) Use Faraday's Law to derive a relation between the *emf* (= voltage V) induced at the ends of the loop, the field strength B_0 , length and the speed v of the wire loop.

b) Consider a quadratic wire coil of inside area $A=L^2=0.1m^2$ rotating at f= 60Hz in a magnetic field of strength B=0.5 T. How many turns must the coil have to generate an electric current of 1000A for an Ohm resistance of $R = 1 \Omega$ of the coil?