
Due: Oct. 2, 2024

Energy: Science, Technology, and Society

Homework Set 2

1. Atmospheric Carbon Content

The global average of CO_2 in the atmosphere has currently (2023) a value of $[CO_2]=419.3$ ppmv (parts per million in volume). Calculate the total CO_2 and the carbon content (in metric tons) of the atmosphere, if CO_2 were the only carbon carrier in the atmosphere. Air is a mixture of many gases whose weighted mean molecular weight is $M_{air}=29g/mol$. In the calculation use the atmospheric pressure which equals the weight of $1.033 \cdot 10^4$ kg/m². The mean radius of Earth is $R_E=6371$ km.

2. GHG Emission Standards

Coal has a good heating value of 30 MJ/kg but comes with various contaminants that affect the emission of undesirable greenhouse gases such as SO₂ or NO₂. Emission standards adopted in the 1970s set limits of 516g for SO₂ per GJ of total energy produced in coal burners and 260 g/GJ for NO₂.

A certain coal has the effective molecular

composition $C_{100}H_{100}S_1N_{0.5}$. Calculate the emission rates for SO₂ and NO₂ in g/GJ for this coal. Is the burner in compliance with the standards?

Useful material data: <u>https://webbook.nist.gov/cgi/cbook.cgi?ID=C124389&Units=SI</u>

3. Proposal tp Mitigate CO₂ Emission by Geo-Engineering (Parasol)

Estimated radiative forcings (in W/m^2) at Earth's surface in 2030 due to future greenhouse gas emissions suggest that the effect of a doubling of the CO₂ concentra-

tion relative to the emissions up to 1990 (= 10^{12} t C) is equivalent to only a few percent additional radiative influx from the Sun. Therefore, a dimming of sunlight by a few percent, e.g., with an artificial "parasol" could offset, or significantly reduce, the effects of future GHG emissions. The parasol material would have to be placed into a low-Earth orbit, where it could remain for a period of 2 years. The current cost of launching 1 kg of payload into orbit is approximately \$10k.

- a) Estimate the annual total cost of a geo-engineering scheme, whereby a screen of totally reflective aerosol particles (1 μ diameter, mass density ρ = 1g/cm³) is constructed around Earth at an altitude of 200 km, corresponding to a low Earth orbit.
- b) Estimate the "carbon tax" in \$\$/tCO₂ that would have to be raised by the emitters to pay for a parasol, to compensate for the effect caused by the average emitter over two years.
- c) Consider reforestation of land as a geo-engineering CO_2 sequestration alternative. Using the information available in the published Keeling curve to make a rough estimate of how many new trees would have to mature every year to sequester the emitted CO_2 in that period?