
U N I V E R S I T Y   O F

ROCHESTER

DEPARTMENT OF CHEMISTRY

CHM 252              W. Udo Schröder

 

III-42 

III.5. Molecular Chaos: The Boltzmann Distribution 

 

As discussed in the preceding section, multiple collisions be-

tween the particles in a gas have a randomizing effect on the direc-

tions of motion of the particles. A collision can deflect a particle 

either to the left or to the right, more forward or more backward, 

depending on the initial conditions for that collision. The transfer 

of momentum from projectile to the target particle, even in an elastic 

collision, depends crucially on the impact parameter (and the mass 

ratio of the colliding particles, if they are non-identical). For exam-

ple, in a head-on collision of two identical particles, the target re-

ceives the full momentum of the projectile, which remains at rest 

after the collision. Different momentum transfers lead to different 

velocities 

u  of the particles. Therefore, 

the particles in a gas at thermal equilib-

rium are characterized not by a single ve-

locity 

u , but by a probability distribu-

tion f u( )


for the velocity. It can experi-

mentally be determined with a "velocity 

chopper", two co-axial gear wheels that 

are put into the path of the particles to be 

measured. The device lets only particles 

of a particular velocity u pass through the 

gaps in the wheels. The velocity can be 

tuned by changing the speed of revolu-

tion of the wheels.  

 

The probability function f u( )


has a characteristic form. It repre-

sents the probability (density) dP to find within the gas a particle in 

the volume element d u3   at the velocity (vector) 

u , 

 

s = ut 

Velocity Chopper 

Figure III-22 
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   d P(u f u du du du f u d ux y z

3 3   
) ( ) ( )= =      (III.104) 

 

For gas particles in completely chaotic motion, no direction is pre-

ferred, and the probability d3P(

u ) has to be an uncorrelated product 

of the individual probabilities to find any of the velocity compo-

nents ux, uy, or uz, 

           

d P(u dP(u dP(u dP(u

f u du f u du f u du

x y z

x x y y z z

3 
) ) ) )

( ) ( ) ( )

=  

=
 

 

For the same reason, the functions in the brackets must be identical 

functions for the three components. Furthermore, a given magnitude 

of a velocity component, e.g., ux= +500 m/s, must be as likely as the 

same velocity in the opposite direction, i.e., ux= -500 m/s. This im-

plies that the function f in Equ. III.105 is not linear in the velocity 

component ux and the other components. Similarly, the function f in 

Equ. III.104 cannot be linear in the velocity vector 

u . The corre-

sponding functions have to have an even dependence on the corre-

sponding arguments, for example, quadratic dependencies, and 

one would have to write f u f u f u f ux y z( ), ( ), ( ), ( )2 2 2 2
, respectively. 

(Rigorously, one should use a different name for this type of func-

tion, e.g., g(u2)= f(

u ) instead of simply renaming fnew(u2)= fold(


u )). 

In any case, because of Equs. III.104 and 105, one has to require that 

the new function f behaves like 

 

                 f u u u u f u f u f ux y z x y z( ) ( ) ( ) ( )2 2 2 2 2 2 2= + + =          (III.106) 

 

The relation III.106 indicates a peculiar dependence of the prob-

ability density f on its variables. In fact, apart from the trivial and 

unrealistic function f u consti

2c h = ., there is only one non-trivial 

(III.105) 
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mathematical function that shows this behavior: f u
2c h  and all 

f ui

2c h  (i = x,y,z) have to be exponentials in the u2 variables, for 

example,  

                     f u C e au( )2 2

=  −
       (III.107) 

 

where a and C are constants yet to be determined. The constant a 

has to be a positive number, a negative number would make the 

probability become indefinitely large for large velocities, which 

makes physically no sense. If f u
2c h is supposed to be a probability 

(more accurately: probability density), it must be normalizable, the 

sum (integral) of all probabilities has to equal unity: 

 

 1 2 2

= = 
−

+

−

+

−z zdu f u C due au( )       (III.108) 

 

 This condition determines the normalization constant to C = (a/). 

The constant a can also be determined, since the average squared 

velocity is already known from Equ. III.79: 

 

       





x x x x x

x x

au

m
u

m
du f u u

m a
du u e x

= = 

=   

−

+

−

+

−

z
z

2 2

2

2 2 2

2 2

c h
              (III.109) 

 

The integrand in III.109 is an even function of ux and, hence, the 

value of the integral is twice that taken only along the positive ux-

axis: 

 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIII-3.doc%23epsx_aver
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            du u e du u e
a a

x x

au

x x

aux x2 2

0

2 2

2
1

2

−

−

+

−

+

=  =z z 
   (III.110) 

Combining Equs. III.109 and 110, one obtains 

 

      



x Bk T

m a

a a

m

a
= =  =

1

2 2

1

2 4      (III.111) 

 

This determines the unknown parameter a = m/(2kBT), yielding an 

overall velocity distribution of the gas particles of 

 

                  f u C e
m

k T

mu

k T
x

au

B

x

B

x( ) exp=  =  −
RST

UVW
− 2

2 2

2


     (III.112) 

 

for one (the x-) velocity component. Then, using Equ. III.106, the 

probability distribution for the total velocity is obtained from Equ. 

III.112 by multiplying three equal terms of the same form, such that 

  

  This is the famous Maxwell-Boltzmann velocity distribution, 

also termed "statistical" spectrum. Note that the probability to find 

a given velocity (vector) depends on the Boltzmann fac-

tor, the exponential of the negative ratio of the energy 

associated with the observable in question and the characteristic 

thermal energy package kBT. This is an example of a general prin-

ciple discussed in more detail in the context of partition functions. 

 

More precisely, Equ. III.113 is a probability density:  

 

(III.113)
 

f u g u
m

k T

mu

k T

u

k TB B B

( ) ( ) exp exp

/

 


= =
F
HG
I
KJ  −

RS|T|
UV|W|

 −
RST
UVW

2

3 2 2

2 2

b g
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     f u
dP(u

du
x

x

x

( )
)

=              (III.114a) 

and similar for the other components, such that for the velocity vec-

tor, 

       f u
d P(u

d u
( )

)


=

3

3              (III.114b) 

 

In order to obtain a dimensionless, normalized probability P, one 

has to multiply f(ux) by a velocity difference ux or f u( )


 by the 

3D-volume element d u3 
. 

 

As an example of the use of the velocity distribution, one may 

calculate the average x-velocity component ux of the particles (mass 

m) in a gas at temperature T. From Equ. III.112, one obtains 

 

  u
m

k T
du u

mu

k T
x

B

x x
x

B

=    −
RST
UVW=−

+z2 2
0

2


exp      (III.115a) 

 

This follows, because the integrand is an odd function of ux’, hence, 

the negative contributions are canceled by the positive ones. Physi-

cally, this result means that neither the positive nor the negative x 

direction is preferred, as should be the case for truly random motion. 

On the other hand, the average speed in x-direction is obviously 

non-zero, |ux|  0, mathematically because 

 

                    

| | | | exp

exp

u
m

k T
du u

mu

k T

m

k T
du u

mu

k T

x

B

x x
x

B

B

x x
x

B

=    −
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UVW=
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−
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

     (III.115b) 
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With a variable transformation v = ux’(m/2kBT), one obtains an 

integral solved in any of the familiar integral tables: 

 

       | | expu
k T

m
dv v v

k T

m
x

B B=   − =

z2 2 22

0
m r     (III.115c)   

Similarly, one can calculate the average of u2, the mean-square 

velocity ©u2. Because of Equ. III.115a, this velocity is equal to 

the variance  ux

2
in the velocity distribution for the x direction 

 

  


u
B B

x x x
u u

k T

m
dv v v

k T

m

2 2
2

2 2

0

2 2
= − =   − =

z expm r  (III.116) 

 

which is related to Equs. III.76 and 77, the average kinetic energy 

for motion along the x-degree of freedom. Note that ©|u|2  ©u2. 

Hence, the velocity distribution of Equ. III.113 is a Gaussian with a 

variance equal to the quantity kBT/m = 2 ©x, i.e., fluctuations in 

the velocity are determined by the average kinetic energy.  

 

As an illustration, Fig. III-23 depicts the normalized Maxwell-

Boltzmann velocity distributions (velocity variable v) for O2 at tem-

peratures of T = 1000K (solid, red) and T= 2000K (dots, blue), as 

calculated with the simple MATHCAD program 

MATHCAD_252\Maxw_Boltzm_VE.mcd. Actually plotted is the 

differential probability  

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Moments.doc%23variance
file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIII-3.doc%23epsx_aver
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dP(v

dv
v f v

)
= 4 2

b g ,  
whose significance will be 

explained further below. The 

differential probabilities have 

magnitudes of the order of 

10-3/(m/sec). Since typical 

velocities range up to several 

103m/sec, such probabilities 

are reasonable. 

 

As exemplified by Fig. 

III.23, thermal velocity spectra have an asymmetric bell shape with 

a maximum at relatively low velocities. This maximum indicates the 

most probable velocity for the gas particles. Towards high veloci-

ties, the spectra decay rapidly, with a Gaussian character (not a log 

straight line, but a curve). Although there is a non-zero probability 

to find velocities several times as high as the most probable velocity, 

the probability for such high velocities is exceedingly small. As the 

temperature is increased, the spectra become broader, and the most 

probable velocity shifts to higher values. 

 

The Maxwell-Boltzmann velocity (better: speed) distribution of 

Equ. III.113 contains information only on the probability to find a 

given speed but has lost information on the angular dependence of 

the probability. In the case of random motion in space, of course, 

this dependence is trivial, since there is no preferred direction. The 

probability to find particles of a given speed in a given angular range 

with respect to some coordinate system is independent on the angles. 

One says: The angular velocity distribution is isotropic. 

 

Figure III-23 
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Angular dependencies are best expressed in terms of spherical 

coordinates, {u,  }. In such a coordinate system, the volume ele-

ment is expressed as 

 

                d u du du du u dud u dud dx y z

3 2 2
= = =   sin      (III.117) 

 

Because of its isotropy, the probability to find a particle at speed 

(u>0 !) in the range [u, u+du] traveling in the direction defined by 

polar and azimuth angular intervals { ,  +d}={+d  , 

+d}, 

 

 does not depend on these angles, which do not appear on the r.h.s. 

of Equ. III.118. Consequently, the probability to find a speed u = |u| 

is simply obtained from Equ. III.118 by integration over all angles: 

 

This is the form of the probability to be used when angle-integrated 

quantities associated with speed or velocity are to be computed. For 

example, the average speed |u| should be calculated using the prob-

ability of Equ. III.118a, while the average speed |ux| for one compo-

nent, e.g., the one in x direction, should be calculated from 

Equ.III.112, which does not contain a u2-factor. This latter proce-

dure has been carried out in Equ. III.115c. 

 

(III.118) 

dP u

u dud
f u

m

k T

mu

k TB B

, ,
( ) exp

/

 



b g
2

3 2 2

2 2
= =

F
HG
I
KJ  −

RS|T|
UV|W|



dP u

du

m

k T
u

mu

k TB B

b g
=
F
HG
I
KJ   −

RS|T|
UV|W|

4
2 2

3 2

2

2




/

exp

(III.118a) 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/Spherical_Coordinates.doc
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It is then possible to calculate the characteristic speeds and veloc-

ities of interest to the random molecular scattering process occurring 

in a gas. For example, the average speed of a particle in a gas is 

given by 

 

   

u du u
dP u

du

m

k T
duu

mu

k T

m

k T

k T

m

k T

m

B B

B

B B
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/

exp

 

 

The mean-square velocity is calculated analogously.  

 

It is slightly more involved to calculate the average relative 

speed, because it involves two particles, 1 and 2, simultaneously. 

These particles have masses m1 and m2 and velocities 

u1 and 


u2 . As 

discussed previously, the relative velocity is equal to the difference 
  
u u u12 1 2= − . The other relevant velocity vector is the velocity 

ucm of the center of mass in the laboratory system. That is, one con-

siders the transformation of variables 

 

 





  

  
u

u

u u u

u
m m

m u m ucm

1

2

12 1 2

1 2

1 1 2 2

1
UVW

= −

=
+

+

R
S|
T| b g      (III.120) 

 

Both left and right set of velocities in Equ. III.120 represent the same 

number of independent degrees of freedom describing the velocity 

vectors of the two particles completely and equivalently. One can 

picture the motion of the two original particles also in terms of the 

two hypothetical particles: one with the reduced mass 

(III.119) 
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 =  +m m m m1 2 1 2b gmoving with the relative velocity 

u12 and a 

heavy particle, representing the center of mass of the two-particle 

system, with a mass M m m= +1 2 and moving with the velocity 

ucm . The arguments made earlier for the functional form of the ve-

locity distributions for different degrees of freedom can be general-

ized to these two hypothetical particles. Therefore, both hypothetical 

particles have velocity distributions of the type of Equs. III.118, 

118a, except for the different masses.  Consequently, the average 

relative speed of two particles of arbitrary masses in a gas at equi-

librium temperature T is given by the generalized formula of Equ. 

III.119: 

  

  

u u

k TB
12 12

8
= =

       (III.121) 

 

Comparison with Equ. III.119 for equal particles shows that 

  

         

 
u u12 12=       (III.122) 

 

a relation invoked already previously (cf. Equ. III.93b). This is the 

speed that should be used in calculations of collision frequencies 

among equal or different particles of a gas. 

 

It is also straight-forward to derive the associated Maxwell-

Boltzmann energy distribution, by transforming Equ. III.118 to par-

ticle kinetic energy  = (m/2)u2. One notices that the probability 

dP u
b g to find particles with velocities between u and u+du in the 

solid-angle element d is the same as that, dP(), for particles of the 

corresponding energies between  = (m/2)u2 and  + d in the same 

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIII-4.doc%23av_rel_speed
file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIII-4.doc%23collrate_equ
file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/ChIII-4.doc%23collrate_unequ
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element d . Since d = mu du and u2du=(u/m) d, and using the 

chain rule of differentiation, one has 

 

      

 

 

From this equation and Equs. III.111-118, one obtains the differen-

tial 

Maxwell-Boltzmann kinetic-energy spectrum 

 

           

dP

d d

u

m

dP u

d u k T
e

B

k TB


 


b g b g


= =
F
HG
I
KJ  

−


3

3 2

2
1

2  (III.124) 

 

Note that this spectrum does not depend on the particle species at 

all! It is the same for particles of any mass. Because there is no 

angle dependence of the energy spectrum, the angle-integrated spec-

trum is equal to that of Equ. III.124, just scaled up by a factor of 4  

since d = 4 is the total solid angle (see tutorial), 

 

                   
dP

d

u

m

dP u

d u k T
e

B

k TB










b g b g
b g= = 

−

4
2

3 3 2



 /      (III.125) 

 

The figure below illustrates, on a logarithmic scale, the shape of 

Maxwell-Boltzmann energy distributions for generic particles in a 

gas at the two very different temperatures of T = 300K and   T = 

1000K (MATHCAD_252\Maxw_Boltzm_VE.mcd).  

 

(III.123)  

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Maxw_Boltzm_VE.mcd
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Plotted are the probabilities for finding in the gas a molecule with an 

energy of . Typical energies are of the order of 10-19J. The approx-

imately exponential character of the velocity distribution is clearly 

visible on the logarithmic scale. Except for the square-root () de-

pendence at low energies, the distributions have an exponential 

character reflecting 

the temperature, 

 
       

lim
)

 



→
 −

d

d
n

dP(

d k TB


1

      (III.126) 

 

This suggests a simple and elegant method to measure the tem-

perature of a gas. Clearly, the T = 1000 K spectrum is much harder 

("shallower") than that for the lower temperature, demonstrating the 

important fact that the logarithmic slope of the energy spectrum is 

a direct measure of the temperature of the gas. However, caution 

should be exercised in practical cases, where the limit of  → 

cannot be taken, because the spectra contain no significant intensity 

at high energies. 

 

The single-particle kinetic energies are typically only of the order 

of 10-19 J. When plotted in units of J-1, the probabilities have ex-

tremely small magnitudes. Hence, one often quotes kinetic energies 

Figure III-24.   
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and related variables for moles of particles (N = 61023 particles). 

For an N-particle system, one has to multiply the expressions (e.g., 

Equs. III.124 and 125) with N, in order to find the number of parti-

cles at a given energy.  

 

The analytical Maxwell-Boltzmann formulas (Equs. III.108- 

111) derived above suggest a smooth behavior of the associated 

probabilities. However, a  finite number of particles can obviously 

not have a smooth behavior, as far as their actual velocity and en-

ergy distributions are concerned, which show statistical fluctua-

tions about the general shapes predicted by theory. A way of illus-

trating such statistical distribution is by sampling these formulas by 

Monte Carlo methods.  

 

  The results of such a simulation are shown in the Fig. III-25 rep-

resenting "snapshots" of the kinetic-energy distributions for ideal 

gases of 1000 particles at T=300K (left) and at T=500K (right) 

(MATHCAD_252\Boltzmann_MonteCarlo.mcd), illustrating mi-

crostates of the system. Here the kinetic energies of the particles are 

given in multiples of the Boltzmann constant kB, i.e., as /kB. These 

ratios have units of K(Kelvin) represent temperatures. The number n 

simply numbers the gas particles.  

file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MonteCarlo.doc
file:///H:/My%20Webs/Chm%20252_455%20Statistical/A-ILSN/MATHCAD_252/Boltzmann_MonteCarlo.mcd
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From Fig. III.25 above, one observes that the particles are more 

concentrated at lower energies, near the bottom of the "scatter plot". 

Towards higher energies, the density of particles decreases expo-

nentially, on average it is given by Equ. III.125. Nevertheless, there 

are a few particles present in the spectrum with very high energies. 

For the higher temperature (T=500K) shown in Fig. III.25 on the 

right, the distribution of particle energies is broader and somewhat 

less dense, and the density changes less rapidly with energy, than at 

T=300K.  

 

Because of the continuous scattering and re-scattering of the par-

ticle, the distributions of all variables change dynamically in time, 

they fluctuate about the thermodynamic average. This effect is illus-

trated in an animation (click on to view) showing the time-dependent 

fluctuations in this energy distribution for T = 300K. For this tem-

perature, the figure below (Fig. III-26) illustrates how the two first 

moments of the distribution in energies, average energy (© = 

aver) and the variance ( 

2
 = var) of the particle kinetic energies 

change with time, proceeding here with snapshot number i. Note that 

Figure III-25: Maxwell-Boltzmann energy distributions 
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the ordinate scale is double-valued, the units are K for the average 

energy and K2 for the variance.  

 

In analogy to the earlier discussion of the average and variance 

(1st and 2nd moment) of the velocity distribution, the average kinetic 

energy and its spread are defined in terms of the distribution func-

tion of Equ. III.125. For example, the average kinetic energy is given 

by 

 

          
  








 =   = −

 zz d
dP(

d k T
d e

B

k TB
)

/

/2
3 2

3 2

00 b g  

and 

(III.127) 

Figure III-26:Average and variance of 

a Maxwell-Boltzmann distribution 
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in agreement with earlier conclusions (Equ. III.76) based on a com-

parison of the phenomenological EOS and a microscopic evaluation 

of the pressure of an ideal gas. In the evaluation of the integral in 

Equ. III.127a, use is made of a variable transformation x:= . 

 

In the case illustrated in the figures above, the average is of the 

order of 450 K, in agreement with the expectations based on Equs. 

III.127. The variance is of the order of 1.3105 K2. The square-root 

of the variance, the standard deviation , is therefore of the same 

order as the average, which is the sign of an intrinsically broad dis-

tribution. One observes that, as time proceeds (i increases), the fluc-

tuations ( 

2
) grow and subside again. This implies that, from time 

to time, some particles can accumulate a substantial amount of en-

ergy, while the rest has relatively little energy per particle. It is an 

interesting project to study the dependence of these fluctuations on 

the number N of particles in the gas. It is plausible to expect large 

thermal fluctuations for small systems, as compared to a system 

with more particles with the same total energy. 

 

Such thermal fluctuations are very important for an understand-

ing of spontaneous, sudden, and sometimes dramatic changes in oth-

erwise smooth evolution processes occurring in nature. Reactions 

between particles and systems, spontaneous mutation and decay 

processes are examples where fluctuations are important. For in-

stance, the above energy fluctuations allow particles to escape a 

(III.127a) 
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confining field, even though the average kinetic energy per particle 

would not be sufficient for such an escape  

 

Consider a gas placed in an external field U(h), for example in 

the gravitational field of the Earth, in the electric field of a semicon-

ductor (for charged particles such as electrons), or in a chemical po-

tential. The particles can move along the "altitude" coordinate h, 

against the repulsive action of an increasing potential energy, in ac-

cordance with what their kinetic energy allows. It is clear that only 

those particles are found at positions h  h0, whose kinetic energies 

were originally larger than the potential at h0, i.e.,   U(h0).  

 

Therefore, Figs. III.26 

may also be taken to il-

lustrate the density distri-

bution of gas particles in 

the atmosphere or of 

electrons in the electric 

field of a semiconductor. 

For similar reasons, the 

kinetic-energy distribu-

tions determine the rates 

of chemical reactions. If 

there is a retaining po-

tential barrier of height 

B, only particles with   

B can escape from the 

potential and take part in a reaction. As an example, Fig. III.27, 

drawn to scale, illustrates the distribution in kinetic energies of Ar 

particles in a gas at a relatively low temperature of T = 50K, relative 

to the interaction potential already discussed. Particles with total en-

ergies, kinetic plus potential energies,  

 

Figure III- 27: Particles in a LJ 
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               + V  0         (III.128) 

 

can escape the range of the attractive van der Waals (here, Lennard-

Jones) force (see also the animation). Particles with  + V < 0 remain 

bound by the potential. In the above case, as gathered from the fig-

ure, most of the particles remain tightly bound, probably in a dense 

liquid or even in an ordered crystal lattice. Only relatively few par-

ticles, those belonging to the exponential, high-energy tail in the ki-

netic-energy distributions, have positive total energies and may 

move around relatively freely within the volume (are boiled off the 

condensed-phase substance). Almost all particles are expected to 

feel the effect of the interaction, and the situation is far removed 

from that of an ideal gas. 

 

In general, because of the exponential character of the kinetic-

energy distributions, reaction rates increase exponentially with the 

temperature of the particles. 

 

So far, only the velocity, energy, and angular distributions of the 

particles in a gas of structureless, non-interacting particles in ran-

dom motion have been discussed. The spatial coordinates 

r x y zi i i i= , ,l q  of the particles have not been invoked at all. How-

ever, the spatial dependence of the total distribution function is triv-

ially uniform, dP(r d r
 

)  3
. This is naively expected, because there 

is no space-fixed retaining field, except for the container walls of 

the system limiting its overall size. However, the additional tacit as-

sumption is made that there are no self-organizing effects of the 

system, either, that could lead to the appearance of non-uniform spa-

tial structure. To the extent that there are no significant interactions 

in the ideal gas, this assumption must be valid. 
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 Requiring normalization of the probability, one then has a ran-

dom differential probability distribution of the form 

 

         
dP r

d d r V

dP

d









,



b g b g

3

1
=         (III.129) 

per particle, where V 

is the volume of the 

gas container. Inte-

gration over the entire 

volume just cancels 

the term 1/V in this 

formula, the distribu-

tion is properly nor-

malized. It is illus-

trated in the two-di-

mensional figure, 

representing the posi-

tions of N = 400 par-

ticles in a box of 

100100 in units of 

the characteristic Lennard-Jones range parameter  This can be 

considered a snapshot of the particle positions at a given time. It 

represents, hence, a microstate of the system. The random evolution 

in time of these positions is illustrated in an animation, illustrating 

the complex trajectory of this still relatively small system, as it 

passes from microstate to microstate. 

 

Equ. III.125 gives an indication of the probability to find any of 

the particles of an ideal gas at a particular location 

r . It contains no 

information about the relative positions or energies of two or more 

particles. For an ideal gas of non-interacting particles, it is natural to 

postulate that there are no spatial correlations between the particles 

50

50

y
n i

5050 x
n i

Random Positions of Particles

MATHCAD_252\Random_Posit

ions.mcd 

Figure III-28 
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("molecular chaos"). For real gases, however, where particles in-

teract with each other, correlations and self-organization effects are 

expected. The particles are expected to cluster together, an interest-

ing phenomenon of microscopic particles under active study, not 

only in physical chemistry, but in a number of different fields of 

science and for a large variety of different substances. In the limit of 

high densities and low temperatures, these effects lead to the for-

mation of crystal lattices of high symmetries even for spherical par-

ticles, an effect that is not immediately obvious from the simple ra-

dial dependence of interaction forces. 


