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Chapter 1

Set Theory

1.1 Defining Sets

We begin by defining sets.

Definition 1.1. A set is a grouping of distinct objects considered as a whole;
these objects are called the elements of the set. �

To denote that an object x is an element of the set A, we write x ∈ A.
Conversely, to denote that it is not an element of A, we write x /∈ A.

Example 1.1 (Set membership)
1. Let X be the set of items you can order at a typical coffee shop.

• latte ∈ X
• muffin ∈ X
• pizza /∈ X

2. Let N be the set of natural numbers: 1, 2, 3, 4, 5, . . .

• 2 ∈ N.

• −13 /∈ N.

• 2.4 /∈ N.

8



CHAPTER 1. SET THEORY 9

3. Let R be the set of real numbers: every number that can be placed
on the “number line”.

• 2 ∈ R
•
√

2 ∈ R
• −
√

2 ∈ R
•
√
−2 /∈ R

• pizza /∈ R

There are two ways to write sets, either (1) by listing the elements of the
set between brackets, or (2) using set builder notation.

Example 1.2 (Set builder notation)
1. A is the set of all integers between 1 and 20.

• A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}
• A = {x | 1 ≤ x ≤ 20, x ∈ N}
• or more succinctly: A = {x ∈ N | 1 ≤ x ≤ 20}

2. B is the set of all even natural numbers:

• B = {2, 4, 6, 8, 10, . . .}
• B = {x |x = 2n, n ∈ N}
• or more succinctly: B = {2n |n ∈ N}

3. C is the set of all real numbers

• Not possible

• C = {x |x ∈ R}

4. D is the sequence of numbers described by n2+1, s.t., n is a natural
number: 2, 5, 10, 17, 26, . . .
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• Not possible

• D = {n2 + 1 |n ∈ N}

5. E = {a, e, i, o, u}

6. F = {3, 3.1, 3.14, 3.141, 3.1415, . . .}

1.2 Set Properties

Definition 1.2. The cardinality of a set S, written as |S|, is the number of
elements in S. �

For example, A = {a, b, c, . . . , x, y, z} has 26 elements. The set of primary
colors has three elements (red, yellow, blue).

Sets can have infinitely many elements, such as the set of integers Z or
the set of real numbers R. Sets can also have 0 cardinality. We call such
a set the empty, or null, set, denoted ∅. For example, the set of all 2-sided
triangles is an empty set.

We also need to talk about subsets.

Definition 1.3. A set S is a subset of T is every element of S is an element
of T . �

We write this as S ⊆ T and equivalently T ⊇ S. The symbol⊆ is an inclusion
or containment. So in the first case, we’ll say that S is included or contained
in T . In the second case, we say that T is a superset of S.

Equality of sets is a closely related concept. The sets S and T are equal if
they have the same members, in which case we write S = T . For the sets to
be equal, all elements of S must be elements of T , and vice versa. Therefore,
S = T if and only if S ⊆ T and T ⊆ S.

Example 1.3 (Subsets)
1. Suppose T = {1, 2, 3, 4, 5}
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• {1} is a subset of T .

• {1, 2, 3, 4, 5} is a subset of T .

• {1, 2, 3, 7} is not a subset of T .

2. Suppose T = {m
n
|m,n ∈ N}.

• { 3
n
|n ∈ N} ⊆ T .

You may have intuitively thought that S cannot be a subset of T if they
are equal. This is true when we’re talking about proper subsets.

Definition 1.4. A set S is a proper subset of a set T if S ⊆ T , and there is
t ∈ T such that t /∈ S. We write this as S ⊂ T or S ( T . �

The number of subsets of a set is 2|S|, where |S| is the cardinality of the
set. For example, what are the subsets of S = {1, 2, 3, 4}?

∅
{1}, {2}, {3}, {4},
{1, 2}, {1, 3}, {1, 4},
{2, 3}, {2, 4}, {3, 4},
{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4},
{1, 2, 3, 4}

How would you prove that subsets are transitive—i.e., that if A ⊆ B and
B ⊆ C, then A ⊆ C?

Proof. Take any element in A, call it t. Then by definition, since t ∈ A and
A ⊆ B, we know that t ∈ B. Since B ⊆ C, we have that t ∈ C. Thus, if an
element t ∈ A, it must be the case that t ∈ C. In other words, every element
of A must also be an element of C. So A ⊆ C. �

1.3 Set Operations

Definition 1.5. Let A and B be sets. The intersection of A and B, written
A ∩B, is the set of all elements that are in both A and B. �
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Definition 1.6. The sets A and B are said to be disjoint if they have no
elements in common: A ∩B = ∅. �

Properties of intersections:

1. A ∩B = B ∩ A.

2. A ∩B ⊆ A.
Proof: take any x ∈ A ∩ B. Then it must be the case, by definition,
that x ∈ A. Thus A ∩B ⊆ A.

3. A ∩ A = A
Proof: take any x ∈ A ∩ A. Then x ∈ A and x ∈ A. Thus, it must
be the case that A ∩ A ⊆ A. Now take any x ∈ A. Then x ∈ A and
x ∈ A. Thus x ∈ A ∩ A. So A ∩ A = A.

4. A ∩ ∅ = ∅. [You get to show this yourselves in the homework.]

Example 1.4 (Intersections)
Let A = {1, 2, 3}, B = {3, 4, 5}, C = {8, 9, 10}

1. A ∩B = {3}

2. A ∩ C = ∅

3. B ∩ C = ∅

Definition 1.7. Let A and B be two sets. Then the union of A and B,
denoted A∪B, is the set of all elements that are members of A, or members
of B, or members of both. �

Properties of unions:

1. A ∪B = B ∪ A.

2. A is a subset of A ∪B. A ⊆ A ∪B.

3. A ∪ A = A.
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4. A ∪ ∅ = A.

Example 1.5 (Unions)
Same sets as in Example 1.4.

1. A ∪B = {1, 2, 3, 4, 5}

2. A ∪ C = {1, 2, 3, 8, 9, 10}

3. B ∪ C = {3, 4, 5, 8, 9, 10}

4. {1, 2} ∪ {R,W} = {1, 2, R,W}

5. {1, 2} ∪ {1, 2} = {1, 2}

Definition 1.8. Let A and B be sets. The set difference of A and B, written
A\B, is the set of elements in A that are not in B: A\B = {a ∈ A | a /∈ B}.
This is also known as the relative complement of B in A. �

Example 1.6 (Set difference)
Same sets as in the last two examples.

1. A \B = {1, 2}.

2. A \ A = ∅

Definition 1.9. If we define a universal set U and a set A such that A ⊆ U ,
then the absolute complement of A, written Ā or AC , is U \ A. �

Properties of complements:

• A ∪ Ā = U

• A ∩ Ā = ∅
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• A = A

• A \ Ā = A

• A \B = A ∩ B̄
Proof: Take any x ∈ A \ B. Then, by definition, x ∈ A but x /∈ B.
Then this implies that x ∈ B̄. So x ∈ A ∩ B̄. Thus x ∈ A and x ∈ B̄.
So x ∈ A ∩ B̄, and A \ B ⊆ A ∩ B̄. Now, take any x ∈ A ∩ B̄. Then
x ∈ A and x ∈ B̄. So x ∈ A and x /∈ B. Then by definition x ∈ A \B.
Thus, A \B ⊇ A ∩ B̄. Thus A \B = A ∩ B̄

Example 1.7 (Complements)
1. Suppose that U = R, and A = {x | 0 ≤ x ≤ 1}. Then Ā = {x |x <

0 or x > 1}.

2. Suppose that U is the set of all integers. Let A = {2k | k ∈ Z} and
B = {2k + 1 | k ∈ Z}. Then Ā = B and B̄ = A.

1.4 Numbers

We’ve referred to the natural numbers, the integers, and the real numbers
without being very rigorous about them. Let’s look at them in a bit more
detail now.

• Natural Numbers: the positive integers 1, 2, 3, 4, . . .. We write the
set of natural numbers as N.

• Integers: these are the positive natural numbers (1, 2, 3, 4, ...), their
negatives (additive inverses) (−1,−2,−3,−4, ...) and 0. We write the
set of integers as Z.

• Rational Numbers: the set of rational numbers is the set of numbers
that can be expressed as a fraction of two integers: an integer numerator
and a non-zero integer denominator. Examples: 3

4
, −7

22
, 21

5
, etc... We

write in set notation that

Q =
{m
n

∣∣∣ m,n ∈ Z;n 6= 0
}
.
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• Irrational Numbers: the set of all numbers with non-terminating,
non-repeating decimals. Note: these cannot be written as ratios of the
integers.

Let’s show that
√

2 is irrational.

Proof. Suppose not. Then
√

2 is rational, and we can write it as
√

2 =
m
n

, where m
n

is some irreducible ratio—i.e., m and n have no factors

in common—with m,n ∈ Z, n 6= 0. This implies that m2

n2 = 2 and
thus m2 = 2n2. Since n2 is an integer, it follows that m2 is even.
Furthermore, as even squares have even roots, this implies that m is
even, and hence there exists k ∈ Z such that m = 2k. This gives

n2 =
1

2
m2 =

1

2
(2k)2 = 2k2.

Since k2 is an integer, this implies that n is even. However, because
m and n are both even, this means 2 is a common factor of m and
n. This means m

n
is not irreducible, a contradiction. Therefore,

√
2 is

irrational. �

Some other examples of irrational numbers (not going to prove them)
are π and e.

• Real Numbers: The set of all rational and irrational numbers. We
write this set as R.

Informally, we can think of the real numbers as labels for points along
a horizontal line of infinite length: exact measures of the distance from
a fixed point called zero and labeled the origin.

Note that if we go by our set descriptions earlier, there exists a specific
relationship between N, Z, Q, R. It is N ⊂ Z ⊂ Q ⊂ R. In addition, the set
of irrational numbers is equivalent to R \Q.

Now we’ll move on to describing various properties of the real numbers
and some common operations.

Field properties (you may or may not study fields in 404)

1. Commutation: x+ y = y + x and xy = yx

2. Association: x+ (y + z) = (x+ y) + z and x(yz) = (xy)z
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3. Distribution: x(y + z) = xy + xz

4. Existence of identity elements: there are two distinct numbers 0
and 1 that function as identities for + and · respectively: x+0 = x
and x · 1 = x.

5. Existence of inverse elements: the additive inverse of x is −x and
the multiplicative inverse of x is 1

x
.

So for all x, we have that x+ (−x) = 0 (the additive inverse) and,
for x 6= 0, x · 1

x
= 1 (the multiplicative inverse).

Order properties (you will definitely study orders in 407)

1. Trichotomy: if x and y are numbers, exactly one of the following
holds: x = y, x > y, or x < y

2. Transitivity: x < y and y < z implies x < z. x = y and y = z
implies x = z

3. Addition: x < y implies x+ z < y + z

4. Multiplication: For z > 0, x < y implies zx < zy; for z < 0, x < y
implies zx > zy

Properties of absolute values

1. |ab| = |a| · |b|

2.
∣∣a
b

∣∣ = |a|
|b|

3. |a+ b| ≤ |a|+ |b| (the oft-used triangle inequality)

4. |a− b| ≥ ||a| − |b||

Properties of exponents First of all, what is an exponent? Consider an
iterated multiplication: m×m×m× ...×m (n times). Then we write
mn, where n is the exponent.

For all that follows, a, b ∈ R:

1. a1 = a

2. a−1 = 1
a

3. a−m = 1
am

4. am+n = (am)(an)
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5. am−n = am

an

6. a0 = 1 (Proof: a0 = a2−2 = a2

a2
= 1)

7. (am)n = amn

8. a
m
n = (a

1
n )m = (am)

1
n

9. (ab)m = ambm

10. (a
b
)m = am

bm

Properties of Logarithms We define logarithms in the following way: if
x = bn, then logb(x) = n. That is, the log of a given base for a number
is the exponent to which you would have to raise the base so that it
equaled the number.

1. logb(xy) = logb(x) + logb(y)

2. logb(
x
y
) = logb(x)− logb(y)

3. logb(x
y) = y logb(x)

4. logb(
√
x) = 1

2
logb(x)

5. blogb(x) = x

Examples:
9 = 32 log3(9) = 2

x
√
2 = π logx(π) =

√
2

log√2(π) = x π =
√

2
x

ln(x) = e x = ee

ln( 1
x
)− 2 ln(x) ln( 1

x
· 1
x2

) = ln( 1
x3

)

Example: Solve y as a function of x > 0 and C > 0:

ln(y − 5) = ln(3x2) + ln(C)

eln(y−5) = eln(3x
2)+ln(C)

y − 5 = eln(3x
2) · eln(C)

y − 5 = 3x2 · C
y = 3Cx2 + 5
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1

2
ln y = ln(4x3) + C

ln y = 2 ln(4x3) + 2C

eln y = e2 ln(4x
3)+2C

y = eln(4x
3)2 · e2C

y = (4x3)2e2C

y = 16x6e2C

1.5 Real Analysis

Now let’s consider some more abstract structure; this will hopefully be useful
to have seen just a bit of when you hit it in 407.

Consider a set A of real numbers.

Definition 1.10. A set A ⊆ R is bounded above if there is a number x ∈ R
such that a ≤ x for all a ∈ A. We call an element x for which this holds an
upper bound of A. �

Definition 1.11. A set A ⊆ R is bounded below if there is a number y ∈ R
such that a ≥ y for all a ∈ A. We call an element y for which this holds a
lower bound of A. �

Example 1.8 (Upper and lower bounds)
1. Let A = {a | 2 ≤ a ≤ 5}.

• A is bounded above. 6 is an upper bound of A, as is 5.5, as is
5.25, and so on.

• A is bounded below. 1 is a lower bound of A, as is 1.5, as is
1.75, and so on.

2. Let B be the set of even natural numbers: 2, 4, 6, 8, . . .

• B is not bounded above. No number can be an upper bound
for B.

• B is bounded below. 0 is a lower bound of B, as is 1, as is 1.5,
and so on.
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Note there are often many possible upper and lower bounds. But we can
narrow it down a bit by talking about the least upper bound and the greatest
lower bound.

Definition 1.12. The least upper bound of a non-empty setA that is bounded
above is called the supremum of A, denoted supA. �

Definition 1.13. The greatest lower bound of a non-empty set A that is
bounded below is called the infimum of A, denoted inf A. �

In the example above, supA = 5 and inf A = 2.
We say that a set A has a a maximum when supA ∈ A, and we say it

has a minimum when inf A ∈ A.

Example 1.9 (Supremum, infimum, maximum, minimum)
1. A = {1, 2, 3, 4, 5}. supA = 5 and inf A = 1. Similarly, the maxi-

mum and minimum of A are 5 and 1 respectively.

2. A = {x | 2 ≤ x < 3}. supA = 3 and inf A = 2. The set has no
maximum, but its minimum is 2.

3. A = {x |x < 0}. supA = 0. A is not bounded below, so it does not
have an infimum. The set has neither a maximum nor a minimum.

Assertion 1.1 (Completeness Axiom) Every non-empty set of real num-
bers which is bounded above has a smallest upper bound. Every non-empty
set of real numbers which is bounded below has a largest lower bound.

All this talk of sets of real numbers leads us naturally to begin talking
about intervals. We can talk about intervals formally in the following way.

Definition 1.14. A non-empty subset X of R is an interval if and only if
for all a, b ∈ X and c ∈ R, a ≤ c ≤ b implies that c ∈ X. �

So intuitively, an interval is a connected portion of the real line. If every
number between any two members of the set also belongs to the set, then
the set is an interval.

Bounded intervals come in the following flavors:
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• (a, b) ≡ {x | a < x < b}. We call this interval open. inf A = a and
supA = b, but it has no max or min.

• [a, b] ≡ {x | a ≤ x ≤ b}. We call this interval closed. inf A = a = minA
and supA = b = maxA.

• (a, b] ≡ {x | a < x ≤ b}. This is half open. The set has no min, but
inf A = a and supA = b = maxA.

• [a, b) ≡ {x | a ≤ x < b}. This is also half open. The set has no max,
but inf A = a = minA and supA = b.

We also have the following unbounded intervals:

• [a,∞) = {x |x ≥ a}. inf A = a = minA, no max or sup.

• (a,∞) = {x |x > a}. inf A = a, no sup, min, or max.

• (−∞, b] = {x |x ≤ b}. No inf or min, supA = b = maxA.

• (−∞, b) = {x |x < b}. No inf or min, supA = b, no max.

Finally, before we move to bigger and better things, we can formalize our
notions of open and closed sets (note: moving beyond intervals) by consid-
ering just a little bit of real analysis.

Definition 1.15. Given a set A ⊆ R, we say that x ∈ R is a boundary point
of A if, for all ε > 0,

1. (x− ε, x+ ε) ∩ A 6= ∅,

2. (x− ε, x+ ε) ∩ Ā 6= ∅.

The set of all boundary points of A is written as bdA. �

So what does this mean in words? x is a boundary point of set A if every
ε > 0 creates an interval around x that includes both points inside A, and
outside A. Think about an open interval on the real line.

Example 1.10 (Boundary points)
1. bd ∅ = ∅
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2. bdR = ∅

3. bd[a, b] = bd(a, b) = bd[a, b) = bd(a, b] = {a, b}

4. bd{1, 2, 3, 4} = {1, 2, 3, 4}

5. bdN = N

6. bd ({1, 5} ∪ [2, 3]) = {1, 5, 2, 3}

Using the concept of boundary points, we can define open and closed sets
(not just for intervals) more generally.

Definition 1.16. A set A is open if it does not contain any of its boundary
points; i.e., A ∩ bdA = ∅. �

Definition 1.17. A set A is closed if it contains all of its boundary points;
i.e., bdA ⊆ A. �

Important note: A set may be neither open nor closed! (In fact, “most”
sets are neither.) So if you find that a set is not closed — e.g., it fails to
contain one of its boundary points — that does not necessarily mean it is
open.

Example 1.11 (Open and closed sets)
• {a, b, c, d} is closed.

• [a, b] ∪ [c, d] is closed.

• (a, b) ∪ (c, d) is open.

• [5, 6) and (0, 1) ∪ {2} are neither open nor closed.

There are even two special cases of sets that are both open and closed:
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• The empty set is both open and closed.

Proof. The empty set is open because ∅ ∩ bd ∅ = ∅. The empty set is
closed because bd ∅ = ∅ ⊆ ∅. �

• R is both open and closed.

Proof. If R is the universal domain, then R̄ = ∅. It is never possible
to pick a ε > 0 so that (x − ε, x + ε) ∩ R̄ 6= ∅, meaning that R has no
boundary points: bdR = ∅. Therefore, R ∩ bdR = R ∩ ∅ = ∅, so R is
open. At the same time, since bdR = ∅ and ∅ is a subset of every set,
bdR ⊆ R, so R is closed. �

To finish off, we’re going to talk about two more types of points related
to sets: interior points and closure points.

Definition 1.18. Given a set A, we say that x is an interior point of A if
there exists ε > 0 such that (x− ε, x+ ε) ⊆ A. The set of all interior points
of A is written as intA. �

Example 1.12 (Interior points)
1. int ∅ = ∅

2. intR = R

3. int(a, b) = int[a, b] = int(a, b] = int[a, b) = (a, b)

4. int{x1, x2, x3, x4, ..., xn} = ∅

5. int {x1, x2, x3, x4, ..., xn} = {x1, x2, x3, x4, ..., xn}

Definition 1.19. Given a set A, we say that x is a closure point of A if, for
all ε > 0, (x− ε, x+ ε) ∩A 6= ∅. The set of all closure points of A is written
as closA. �
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Example 1.13 (Closure points)
1. clos ∅ = ∅

2. closR = R

3. clos[a, b] = clos(a, b) = clos(a, b] = clos[a, b) = [a, b]

Now let’s see an example of how we would go about using all of this stuff.
We will prove that closA = A ∪ bdA.

Proof. Take any x ∈ closA. Then, by definition, for all ε > 0, (x − ε, x +
ε) ∩ A 6= ∅. Either x ∈ A or x /∈ A. If x ∈ A then x ∈ A ∪ bdA, as needed.
If x /∈ A then x ∈ Ā. In addition, for all ε > 0, x ∈ (x − ε, x + ε), therefore
x ∈ (x− ε, x+ ε)∩ Ā, and thefore (x− ε, x+ ε)∩ Ā 6= ∅. Since also, as noted,
for all ε > 0, (x − ε, x + ε) ∩ A 6= ∅, x ∈ bdA, and x ∈ A ∪ bdA. Implying
closA ⊆ A ∪ bdA.

Now take x ∈ A ∪ bdA. Then x ∈ A or x ∈ bdA or both. If x ∈ A,
then for all ε > 0, (x − ε, x + ε) ∩ A 6= ∅, since x ∈ (x − ε, x + ε). Thus
x ∈ closA. Now, suppose x ∈ bdA. Then, by definition, for all ε > 0,
(x − ε, x + ε) ∩ A 6= ∅. So x ∈ closA. Thus A ∪ bdA ⊆ closA. Since
closA ⊆ A ∪ bdA and A ∪ bdA ⊆ closA, we have closA = A ∪ bdA. �
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Sequences and Series

2.1 Sequences and Convergence

Informally, we can think of a sequence as simply an ordered set of real num-
bers.

Definition 2.1. A sequence is a rule which assigns to each natural number
n a unique real number xn ∈ R. This is written as {xn}. �

If you already know the definition of a function, you may see that this
means that a sequence is a type of function. In particular, it is a function
that maps from the natural numbers N into the real line R.

Example 2.1 (Sequences)
1. {xn} = {n} = {1, 2, 3, 4, . . .}

2. {xn} = { 1
2n
} = {1

2
, 1
4
, 1
8
, 1
16
, . . .}

3. {xn} = {(−1)n+1} = {1,−1, 1,−1, . . .}

4. {xn} = {3.1, 3.14, 3.141, 3.1415, . . .}

5. {xn} = {n2+1
n
} = {2, 5

2
, 10

3
, 17

4
, . . .}

6. {xn} = {2n(−1)n} = {1
2
, 4, 1

8
, 16, . . .}

7. {xn} = {n+1
n
} = {2

1
, 3
2
, 4
3
, 5
4
, . . .}

24
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8. The Fibonacci sequence, defined as follows:

F1 = 0

F2 = 1

{Fn} = {Fn−2 + Fn−1} = {0, 1, 1, 2, 3, 5, 8, 13, 21, . . .}

Definition 2.2. A sequence {xn} is weakly increasing if, for all n ∈ N,
xn+1 ≥ xn. The sequence is strictly increasing if, for all n ∈ N, xn+1 > xn.�

That is, the next term in the series is always at least as large as the term
immediately preceding it. Or larger than the previous term in the series. In
our examples on the previous page, which are strictly increasing, and weakly
increasing? [Sequences 1 and 5 are strictly increasing; sequences 4 and 8 are
weakly increasing.]

Definition 2.3. A sequence {xn} is weakly decreasing if, for all n ∈ N,
xn+1 ≤ xn. The sequence is strictly decreasing if for all n ∈ N, xn+1 < xn. �

From the examples above, sequences 2 and 7 are strictly decreasing. The
remainder of these sequences (3 and 6) are neither increasing nor decreasing.
Now, for some added structure, we can apply some terminology from earlier
to these sequences.

Definition 2.4. A sequence {xn} is bounded above if the set {xn |n ∈ N} is
bounded above. That is, if there exists k ∈ R such that xn ≤ k for all n,
then {xn} is bounded above. Similarly, we say that a sequence is bounded
below if the set {xn |n ∈ N} is bounded below. �

Definition 2.5. Let {xn} be a sequence and x be a real number. We say that
{xn} converges to x if, for each ε > 0, there exists N such that |xn − x| ≤ ε
for all n ≥ N . In this case, we write xn → x or limn→∞ xn = x, and we call
x the limit of the sequence. �

Definition 2.6. A sequence {xn} diverges to infinity if, for all c ∈ R, there
exists N such that xn ≥ c for all n ≥ N . �
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Although it is often easy to tell intuitively what the limit of a sequence
is, proving it formally may be a different matter.

Example 2.2 (Limit of a sequence)
Show that n2−1

n2+1
→ 1.

Pick any ε > 0. We want to find an N such that∣∣∣∣n2 − 1

n2 + 1
− 1

∣∣∣∣ ≤ ε

for all n ≥ N .
By our rules of absolute value, we have

−ε ≤ n2 − 1

n2 + 1
− 1 ≤ ε

1− ε ≤ n2 − 1

n2 + 1
≤ 1 + ε

We want to find that n is greater than or equal to something, so we will
focus on the left side of the inequality.

1− ε ≤ n2 − 1

n2 + 1

(1− ε)(n2 + 1) ≤ n2 − 1

n2 + 1− ε(n2 + 1) ≤ n2 − 1

−ε(n2 + 1) ≤ −2

ε(n2 + 1) ≥ 2

n2 + 1 ≥ 2

ε

n ≥
√

2

ε
− 1

By choosing any N ≥
√

2
ε
− 1, we have that |n2−1

n2+1
− 1| ≤ ε for all n ≥ N .

Therefore, n2−1
n2+1

→ 1.
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There are three types of sequences that we might see:

1. Sequences that converge to something (such as in examples 2, 4, and
7)

2. Sequences that increase or decrease without bound, hence diverging to
∞ (examples 1, 5, and 8)

3. Sequences that neither increase/decrease without bound nor converge
(examples 3 and 6)

Properties of convergent sequences:
Let {xn} and {yn} be convergent sequences so that xn → x and yn → y.

1. αxn + βyn → αx+ βy.

2. xnyn → xy.

3. If y 6= 0, xn
yn
→ x

y
.

4. If there is some M such that xn ≥ yn for all n ≥M , then x ≥ y.

5. If {xn} is convergent, then it is bounded above and below.

6. If {xn} is increasing and bounded above, then xn → sup{xn |n ∈ N}.

7. A sequence has at most one limit to which it converges.

Now we have a number of results that can help us out with determining
if sequences converge.

Theorem 2.1 (Squeeze Theorem) Suppose that {an} and {cn} both con-
verge to some value L and that an ≤ bn ≤ cn for all n ≥ K, a fixed integer.
Then {bn} also converges to L.

Example 2.3 (Squeeze Theorem)
Show that {xn} =

{
sin(n)
n

}
converges to 0.

[Plot sin(n).] Note that sin(n) oscillates between−1 and 1. Therefore,
for n ≥ 1, we know that

−1

n
≤ sin(n)

n
≤ 1

n
.
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Since both 1
n

and −1
n

converge to 0, so does sin(n)
n

.

Theorem 2.2 If |an| → 0, then an → 0.

Proof. Since −|an| ≤ an ≤ |an|, this result follows from the Squeeze Theo-
rem. �

Theorem 2.3 If U is an upper bound for a weakly increasing sequence {an}
then the sequence converges to a limit A ≤ U . Similarly, if L is a lower bound
for a weakly decreasing sequence {bn}, then the sequence {bn} converges to a
limit B ≥ L.

Example 2.4 (Convergence of a decreasing sequence)
Show that the sequence {bn} = n2

2n
converges.

Let’s write out the first few terms of the sequence:

1

2
, 1,

9

8
, 1,

25

32
,

36

64
,

49

128
,

64

256
,

81

512
, . . .

So it appears as though the sequence is decreasing (after the first few
terms), but we want to check to be sure. We want to see that

n2

2n
>

(n+ 1)2

2n+1

n2

1
>

(n+ 1)2

2
2n2 > n2 + 2n+ 1

n2 − 2n > 1

n(n− 2) > 1

This holds for all n ≥ 3. Since n ≥ 1, the numerator is positive, and
the denominator is positive, and so every term in the sequence is non-
negative. The sequence thus is bounded below by 0. Thus, the conditions
of Theorem 2.3 hold, and we know that the sequence converges.
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2.2 Series

Series are closely related to sequences.

Definition 2.7. Given an infinite sequence of real numbers {xn}, a series is
the sum of the terms in the sequence:

∞∑
k=1

xk = x1 + x2 + x3 + . . . .

The partial sum Sn is the sum of the first n terms:

Sn =
n∑
k=1

xk = x1 + x2 + x3 + . . .+ xn.
�

We are able to talk about the convergence of a series in much the same
way as we talk about the convergence of sequences. It is a similar idea: we
want to know if Sn approaches some fixed value as n→∞. By characterizing
the partial sum as a sequence we are able to do this. In particular, we call
the sum of an infinite series the limit of the sequence of partial sums, {Sn}.
If this limit exists, then we say that the sequence converges.

Definition 2.8. Let {xn} be an infinite sequence and let {Sn} be the asso-
ciated sequence of partial sums. The infinite series

∑∞
k=1 xk converges and

has sum S if Sn → S. If {Sn} does not converge, then the series diverges
and has no sum. �

Example 2.5 (Convergence of a series)
Consider the series

∑∞
n=1(

1
2
)n, whose partial sum can be written

Sn =
n∑
k=1

(
1

2

)k
=

1

2
+

1

22
+

1

23
+ . . .+

1

2n
.

Multiplying each side by 1
2
, we have

1

2
Sn =

1

22
+

1

23
+ . . .+

1

2n+1
.
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Now subtract the two series to yield

1

2
Sn = Sn −

1

2
Sn =

(
1

2
+

1

22
+ . . .+

1

2n

)
−
(

1

22
+

1

23
+ . . .+

1

2n+1

)
=

1

2
+

(
1

22
− 1

22

)
+ . . .+

(
1

2n
− 1

2n

)
− 1

2n+1

=
1

2
− 1

2n+1
.

This implies

Sn = 2

(
1

2
− 1

2n+1

)
= 1− 1

2n
.

What happens as n→∞? We have 1
2n
→ 0, so we end up with

∞∑
n=1

(
1

2

)n
= lim

n→∞
Sn = 1.

Example 2.6 (Geometric series)
Consider the geometric series

∞∑
n=0

xn = 1 + x+ x2 + x3 + . . . .

We want to show that this series converges if |x| < 1 but diverges if
|x| ≥ 1. We can use the same tricks as in the last example. Start with
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the partial sum:

Sn =
n∑
k=0

xk = 1 + x+ x2 + x3 + . . .+ xn.

xSn = x
n∑
k=0

xk = x+ x2 + x3 + . . .+ xn + xn+1.

Sn − xSn = 1 + (x− x) + (x2 − x2) + . . .+ (xn − xn)− xn+1.

(1− x)Sn = 1− xn+1

Sn =
1− xn+1

1− x
.

If |x| < 1, then xn+1 → 0 as n→∞, which means Sn → 1
1−x as n→∞.

Therefore, the geometric series converges to 1
1−x when |x| < 1. However,

if |x| ≥ 1, then the sequence {xn+1} diverges, as does {Sn}, so the series
diverges.1

The geometric series is just one of a few common types of series:

1. Geometric series:
∑∞

n=0 ax
n = a

1−x for |x| < 1.

2. Harmonic series:
∑∞

n=1
1
n

= 1 + 1
2

+ 1
3

+ 1
4

+ . . .

Do you think this series converges or diverges? Despite looking like
one that might converge, this series actually diverges, which we’ll show
now. Consider the partial sum:

Sn = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ . . .

= 1 +

(
1

2

)
+

(
1

3
+

1

4

)
+

(
1

5
+

1

6
+

1

7
+

1

8

)
+ . . .

≥ 1 +

(
1

2

)
+

(
1

4
+

1

4

)
+

(
1

8
+

1

8
+

1

8
+

1

8

)
+ . . .

= 1 +
1

2
+

1

2
+

1

2
+ . . .
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So by choosing large enough n, we can introduce enough groups of value
at least 1

2
to make Sn as large as we please. Therefore, the sequence of

partial sums {Sn} diverges, as does the series.

3. Telescoping series:
∑∞

n=0(bn − bn+1), so that the partial sums can be
reduced to a fixed number of terms.

4. Alternating series:
∑∞

n=0(−1)nan, where an ≥ 0 for all n, so that the
signs of the terms alternate. A famous example is the alternating har-
monic series,

∑∞
n=1

1
n
(−1)n−1, which does converge.

So how can we tell if these things converge? Just as with sequences, there
are a number of theorems that can help us out.

Theorem 2.4 (n’th term test) If the series
∑∞

n=1 an converges, then limn→∞ an =
0. Equivalently, if limn→∞ an 6= 0 or if limn→∞ an does not exist, then the
series diverges.

Note that limn→∞ an = 0 is necessary, but not sufficient, for the series to
converge. Recall the harmonic series.

Theorem 2.5 If the series
∑∞

k=1 ak and
∑∞

k=1 bk both converge, and c is
some constant, then:

1.
∑∞

k=1 cak and
∑∞

k=1(ak + bk) also converge

2.
∑∞

k=1 cak = c
∑∞

k=1 ak

3.
∑∞

k=1(ak + bk) =
∑∞

k=1 ak +
∑∞

k=1 bk

Theorem 2.6 If
∑∞

k=1 ak diverges and c 6= 0, then
∑∞

k=1 cak also diverges.

To derive a couple of additional results, we need to refine our concept of
convergence a bit.

Definition 2.9. A series
∑∞

n=1 an converges absolutely if the series
∑∞

n=1 |an|
converges. A series that converges but is not absolutely convergent is condi-
tionally convergent. �

For example, the alternating harmonic series
∑∞

n=1(−1)n−1 1
n

is condi-
tionally convergent, because

∑∞
n=1 |(−1)n−1 1

n
| =

∑∞
n=1

1
n

is the ordinary har-
monic series, which diverges.
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Theorem 2.7 If the series
∑∞

n=1 an converges absolutely, then it converges.

Theorem 2.8 If the series
∑∞

n=1 an = A and converges absolutely, then any
series formed from a rearrangement of its terms also converges to A.

Theorem 2.9 (Riemann Series Theorem) If the series
∑∞

n=1 an converges
conditionally, then for all A ∈ R there exists a series formed from a rear-
rangement of its terms that converges to A. Moreover, there also exists a
series formed from a rearrangement of its terms that diverges.

Example 2.7 (Riemann Series Theorem)
The standard alternating harmonic series is

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . = ln(2).

But by the Reimann Series Theorem, we can rearrange this conditionally
convergent series to converge to any given value. One such rearrangement
is (

1− 1

2

)
− 1

4
+

(
1

3
− 1

6

)
− 1

8
+

(
1

5
− 1

10

)
+ . . . ,

which is equivalent to

1

2

(
1− 1

2
+

1

3
− 1

4
+

1

5
. . .

)
,

half of the original sum. This is an illustration of a principle you will
run into often in 407: weird things can happen when you’re dealing with
infinite amounts of numbers.



Chapter 3

Functions

Heading toward calculus, we’re going to start talking about functions, their
basic properties, and what we can do with them.

3.1 Definitions

Definition 3.1. Let S and T be sets. A function or mapping f from S to
T , written f : S → T , is a rule that assigns to each element s ∈ S a unique
element t ∈ T . �

Consider the following examples of functions:

1. Let S be the set of all people in the world and T be the set of all
countries. Let f be the rule that assigns to every person his or her
country of citizenship.

Is this a function? No: some people have no citizenship, and some have
dual citizenship.

2. f : R→ R, where f(a) = a2, is a function.

3. f : R2 → R, where f(a, b) = a2 − b2, is a function.

The intuition for our purposes is simple—a function is something that
takes inputs from one set of elements and associates them with outputs in
another set of elements. But now let’s get a little more formal.

Definition 3.2. An ordered pair (x, y) is a set with two elements whose
order is important and cannot be changed. �

34
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With ordinary sets, {x, y} = {y, x}. However, with ordered pairs, (x, y) 6=
(y, x) in general.

Definition 3.3. The Cartesian product of two sets S and T , denoted S×T ,
is the set of all ordered pairs (x, y) where x ∈ S and y ∈ T . �

Definition 3.4. A relation B between two sets S and T is any subset of
their Cartesian product, B ⊆ S × T . If (x, y) ∈ B, we say that the relation
B holds between x and y and write xBy or x→ y. �

Definition 3.5. A function from S to T is a relation B such that:

1. For all x ∈ S, there exists y ∈ T such that xBy.

2. If xBy for some y ∈ T , then it is not the case that xBz for any
z ∈ T \ {y}. �

For functions on the real numbers, these restrictions give us the familiar
“vertical line rule”: that each vertical line at a point in S would intersect
with the graph of the function in one and only one place.

Example 3.1 (Relations and functions)
Let A = {1, 2, 3, 4}, B = {14, 7, 234}, and C = {a, b, c}. These have the
following Cartesian products:

A×B = {(1, 14), (1, 7), (1, 234), (2, 14), (2, 7), (2, 234),

(3, 14), (3, 7), (3, 234), (4, 14), (4, 7), (4, 234)}
A× C = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c),

(3, a), (3, b), (3, c), (4, a), (4, b), (4, c)}
B × C = {(14, a), (14, b), (14, c), (7, a), (7, b), (7, c), (234, a), (234, b), (234, c)}

Now consider the following relations. Which of them is a function?

1. Let e be the relation between A and B that associates 1 → 234,
2 → 7, 3 → 14, 4 → 234, and 2 → 234. This is a subset of the
Cartesian product of A and B, and therefore is a relation. But it
is not a function, because 2 is associated with both 7 and 234.
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2. Let f be the association between A and C that associates 1 → c,
2 → b, 3 → a, 4 → b. Again, a relation. But this time, it is also a
function.

3. Let g be the association between A and C that associates 1 → a,
2 → a, 3 → a. It is a relation. But it is not a function, as 4 has
nothing associated with it.

3.2 Properties

We need to establish some additional definitions before we can start talking
about graphing functions, roots of functions, and things of that nature.

In all of the following definitions, let A and B be sets and f : A→ B be
a function.

Definition 3.6. The setA is called the domain andB is called the codomain.�

Definition 3.7. Given a function f : A→ B which assigns to each a ∈ A a
unique b ∈ B, the element b is called the image of the element a and written
b = f(a). �

Definition 3.8. Given a subset of the domain S ⊆ A, the image of the
subset is

f(S) = {b ∈ B | f(a) = b for some a ∈ S} = {f(a) | a ∈ S}.

The image of A, written f(A), is also called the range of the function. Note
that f(A) need not equal the whole codomain B. �

Definition 3.9. Given a subset of the codomain T ⊆ B, the preimage or
inverse image of T is

f−1(T ) = {a ∈ A | f(a) = b for some b ∈ T}. �



CHAPTER 3. FUNCTIONS 37

Example 3.2 (Images and preimages)
1. Draw a picture where a→ 4, b→ 1, c→ 4, d→ 5, and e→ 2.

(a) What are the domain and range of f?

(b) What is the image of C = {c, d, e}?
(c) What is the preimage of D = {1, 4}?
(d) What is the image of A?

(e) What is the preimage of B?

2. Consider f(x) = x2. (Graph.)

(a) What are the domain (R) and range (R+)?

(b) What is the image of [0, 2]?

(c) What is the preimage of [1, 4]?

3. Consider f(x) = 1
x
. (Graph.) What are the domain and range?

(Both are R \ {0}.)

We sometimes want to take the inverses of functions, but we need to
establish some additional properties first to ensure that a function inverse is
well-defined.

Definition 3.10. A function f : A→ B is one-to-one, or injective, if for all
a1, a2 ∈ A, f(a1) = f(a2) implies that a1 = a2. �

Intuitively, this means that two input values cannot result in the same
output value.

Definition 3.11. A function f : A → B is onto, or surjective, if for all
b ∈ B, there exists a ∈ A such that f(a) = b. �

This means that every element in the codomain of f is associated by the
function with something in the domain.
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Definition 3.12. A function that is one-to-one and onto is called bijective.
If and only if f : A → B is bijective, then there exists the inverse function
f−1 : B → A, such that f−1(b) = a if and only if f(a) = b. �

Example 3.3 (One-to-one and onto functions)
1. f(x) = 2x+ 24. [Graph.]

This is one-to-one and onto. Note that, in fact, all linear functions
are one-to-one and onto, and thus an inverse will always exist for a
linear function.

2. f(x) = cos(x). [Graph.]

This is periodic, so it is not one-to-one.

3. f : N→ N, f(n) = 4n+ 3.

This is not onto. There will exist natural numbers in N that cannot
be written as 4n + 3. (For example, 1 or 2 or 3.) It is one-to-one,
since f(n1) = f(n2) implies 4n1−3 = 4n2−3, which means n1 = n2.

Operations on functions:

1. Addition: if S ⊆ R and f and g are two functions from S to R, then we
define the function f + g to be the function from S to R that satisfies
(f + g)(x) = f(x) + g(x), x ∈ S.

2. Multiplication by a constant: if λ ∈ R and f : S → R, then (λf)(x) =
λf(x), x ∈ S.

3. Multiplication by a function: (fg)(x) = f(x)g(x).

4. Division: (f/g)(x) = f(x)/g(x) where g(x) 6= 0 for all x ∈ S.

5. Composition: Let S and T be subsets of R so that g : S → T and
f : T → R. Then the composite function (f ◦g) : S → R is (f ◦g)(x) =
f(g(x)), x ∈ S.
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Example 3.4 (Operations on functions)
Take f : R → R, such that f(x) = 3

1+x2
and g : R → R such that

g(x) = x3.

• (f + g)(x) = 3
1+x2

+ x3

• (2f)(x) = 2 3
1+x2

= 6
1+x2

• (fg)(x) = 3x3

1+x2

• (f ◦ g)(x) = f(g(x)) = 3
1+(g(x))2

= 3
1+(x3)2

= 3
1+x6

• (g ◦ f)(x) = g(f(x)) = (f(x))3 =
(

3
1+x2

)3
= 27

(1+x2)3

Now let’s go through a couple of proofs that use these properties.

Assertion 3.1 Let f : A → B and g : B → C. Consider g ◦ f . Prove that
if f and g are one-to-one then g ◦ f is one-to-one.

Proof. Recall that for a one-to-one function h, h(x1) = h(x2) implies that
x1 = x2. Take any x1, x2 ∈ A such that (g ◦ f)(x1) = (g ◦ f)(x2). Then, by
definition, we have g(f(x1)) = g(f(x2)). Since g is one-to-one, it must be
the case that f(x1) = f(x2). Since f is one-to-one, x1 = x2. So (g ◦ f)(x1) =
(g ◦ f)(x2) implies that x1 = x2, and therefore g ◦ f is one-to-one. �

Assertion 3.2 Let f : A → B and g : B → C. If g ◦ f is onto, then g is
onto.

Proof. Suppose that g ◦ f is onto. Then we know that for g ◦ f : A→ C, for
every c ∈ C, there exists a ∈ A such that (g ◦ f)(a) = c. Thus, for all c ∈ C,
there exists a ∈ A such that g(f(a)) = c. So for every c ∈ C, there exists
b = f(a) such that g(b) = c. Thus, g is onto. �

Types of functions:

1. Linear: f(x) = mx + b, where m is the slope and b is the intercept.
(Graph example.)



CHAPTER 3. FUNCTIONS 40

2. Monomial: f(x) = cxk, c is the coefficient and k is the exponent.
(Graph c, cx, cx2.)

3. Polynomial: A sum of monomials of different degrees and with possibly
different coefficients,

f(x) =
n∑
k=0

ckx
k = c0 + c1x+ c2x

2 + . . .+ cnx
n.

The value of the largest exponent is referred to as the degree of the
polynomial, provided the associated coefficient is not zero.

4. Rational functions: A ratio of two polynomials. For example,

f(x) =
x2 + 1

x2 − 2x+ 1

f(x) =
3

x2 + 1

5. Exponential functions: f(x) = akx, where a is the coefficient, k is the
base, and x is the exponent. Often, the term exponential function will
refer to a function of the form f(x) = ex.

6. Trigonometric functions: These are functions of an angle. Thus, they
tend to be used mostly in the natural sciences.

3.3 Limits

Calculus is in many ways the study of limits. The two major branches of
calculus, differential calculus and integral calculus, both deal with this. So
first we want an intuitive understanding of exactly what a limit is. We already
had some acquaintance with the notion of limits when we were talking about
infinite sequences and series. In those cases, we were concerned with the
behavior of the sequence as the number of terms grew infinitely. Now we’re
going to see limits as the behavior of a function infinitesimally close to a
particular point.

Definition 3.13 (intuitive). To say that limx→c f(x) = Lmeans that when
x is near but not equal to c, then f(x) is near L. �
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We don’t necessarily care what happens at c. The notion of a limit is
concerned only with what happens near c.

What about when our function looks like this?
To deal with this type of case, we need some additional concepts.

Definition 3.14 (Right- and left-hand limits, intuitive). To say that
limx→c+ f(x) = L means that when x is near but greater than c, then f(x) is
near L. Similarly, to say that limx→c− f(x) = L means that when x is near
but less than c, then f(x) is near L. �

Now that we’ve explained limits intuitively, it’s time to be more formal.

Definition 3.15. To say that the limit of f at c is L, written limx→c f(x) =
L, means that for each ε > 0, there exists a corresponding δ > 0 such that
|f(x)− L| < ε for all x with 0 < |x− c| < δ. �

So what this means is: pick any ε. Then we can find a range of width
δ around x so that the difference between f(x) and L is always less than ε
within this range. [Use the picture of the function with the point disconti-
nuity.]

Example 3.5 (Formal proofs of limits)
1. Consider limx→3 2x + 1. Take ε = 0.01. We guess that the limit

equals 7. Can we find a δ corresponding to ε = 0.01? That is, can
we find a δ such that |(2x+1)−7| < 0.01 whenever 0 < |x−3| < δ?

|(2x+ 1)− 7| < 0.01⇔ |2x− 6| < 0.01

⇔ 2|x− 3| < 0.01

⇔ |x− 3| < 0.005.

So δ = 0.005 will work. That is, we can make 2x+ 1 within 0.01 of
7 given that x is within 0.01

2
of 3.

2. Prove that limx→2
2x2−3x−2

x−2 = 5.



CHAPTER 3. FUNCTIONS 42

We are looking for δ such that

0 < |x− 2| < δ ⇒
∣∣∣∣2x2 − 3x− 2

x− 2
− 5

∣∣∣∣ < ε∣∣∣∣2x2 − 3x− 2

x− 2
− 5

∣∣∣∣ < ε⇔
∣∣∣∣(2x+ 1)(x− 2)

x− 2
− 5

∣∣∣∣ < ε

|(2x+ 1)− 5| < ε⇔ |2x− 4| < ε

2|x− 2| < ε⇔ |x− 2| < ε

2

So it seems that δ = ε
2

works. To write this formally, we would say:

Proof. Take any ε > 0 and choose δ = ε
2
. Then 0 < |x − 2| < δ

implies∣∣∣2x2−3x−2x−2 − 5
∣∣∣ =

∣∣∣ (2x+1)(x−2)
x−2 − 5

∣∣∣ = |2x+ 1− 5| = 2|x− 2| < 2δ = ε.

�

3. Prove that limx→c(mx+ b) = mc+ b.

We are looking for δ such that 0 < |x− c| < δ ⇒ |(mx+ b)− (mc+
b)| < ε.

First play around with what is inside the absolute values: |mx +
b−mc− b| = |mx−mc| = |m(x− c)| = |m| · |x− c| < ε. Therefore,
we can use |x− c| < ε

|m| . So δ = ε
|m| works as long as m 6= 0.

Proof. Let ε > 0 be given, and let δ = ε
|m| . Then 0 < |x − c| < δ

implies that |(mx + b) − (mc + b)| = |mx −mc| = |m| · |x − c| <
|m|δ = ε. �

Using this formal conception of a limit, we can restate our intuitive defi-
nition of right- and left-hand limits as follows.

Definition 3.16. To say limx→c+ f(x) = L means that for each ε > 0, there
exists a corresponding δ > 0 such that |f(x) − L| < ε for all x with 0 <
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x− c < δ. To say limx→c− f(x) = L means that for each ε > 0, there exists a
corresponding δ > 0 such that |f(x)−L| < ε for all x with 0 < −(x−c) < δ.�

The following theorem formalizes this intuition:

Theorem 3.1 limx→c f(x) = L if and only if limx→c− f(x) = L and
limx→c+ f(x) = L.

Properties of limits: Let n be a positive integer, k be a constant, and f
and g be functions that have limits at c.

1. lim
x→c

k = k

2. lim
x→c

x = c

3. lim
x→c

kf(x) = k lim
x→c

f(x)

4. lim
x→c

(f(x) + g(x)) = lim
x→c

f(x) + lim
x→c

g(x)

5. lim
x→c

(f(x)− g(x)) = lim
x→c

f(x)− lim
x→c

g(x)

6. lim
x→c

(f(x) · g(x)) = lim
x→c

f(x) · lim
x→c

g(x)

7. lim
x→c

(
f(x)

g(x)

)
=

lim
x→c

f(x)

lim
x→c

g(x)
, provided that lim

x→c
g(x) 6= 0.

8. lim
x→c

(f(x)n) = (lim
x→c

f(x))n

9. lim
x→c

n
√
f(x) = n

√
lim
x→c

f(x), provided that the limit is positive when n is

even.

We can use these to make our lives easier when dealing with limits. In
many simple cases, these properties let us make statements about limits
without going through lengthy proofs of the type we saw earlier.
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Example 3.6 (Properties of limits)
1. Find limx→3 2x4. By statement 3,

lim
x→3

2x4 = 2 lim
x→3

x4

By statement 8,
2 lim
x→3

x4 = 2(lim
x→3

x)4

By statement 2,
2(lim
x→3

x)4 = 2(3)4 = 162

2. Find limx→4(3x
2 − 2x). By statement 5,

lim
x→4

(3x2 − 2x) = lim
x→4

3x2 − lim
x→4

2x

By statements 2 and 3,

lim
x→4

3x2 − lim
x→4

2x = 3 lim
x→4

x2 − 8

By statement 8,

3 lim
x→4

x2 − 8 = 3(lim
x→4

x)2 − 8

By statement 2,

3(lim
x→4

x)2 − 8 = 3 · 16− 8 = 40

We can do some of this even more directly by application of the next
theorem.

Theorem 3.2 If f is a polynomial function or rational function, then
limx→c f(x) = f(c), provided that f(c) is defined, and, in the case of a ratio-
nal function, the denominator does not equal zero at c.
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Example 3.7 (Limits of polynomial and rational functions)
1. We have

lim
x→2

7x5 − 10x4 − 13x+ 6

3x2 − 6x− 8
=

7(2)5 − 10(2)4 − 13(2) + 6

3(2)2 − 6(2)− 8
=
−11

2
.

2. What is limx→1
x3+3x+7
x2−2x+1

?

The denominator is 0, so we cannot apply the theorem here. We’ll
have to use more advanced methods, which we’ll see later on in the
prefresher.

3. Find limt→2
t2+3t−10
t2+t−6 .

Again, if we just substitute in, we see that the denominator is zero
— but so is the numerator. When that happens, it is wise to try
some algebraic simplification (factoring, long division) and then try
to apply the theorem again.

lim
t→2

t2 + 3t− 10

t2 + t− 6
= lim

t→2

(t+ 5)(t− 2)

(t+ 3)(t− 2)
= lim

t→2

t+ 5

t+ 3
=

7

5

From our discussion of limits of sequences, you may recall the result we
called the “Squeeze Theorem.” As it happens, a very similar result also holds
for limits of functions.

Theorem 3.3 (Squeeze Theorem) Let f , g, and h be functions and let c
be a constant. Suppose there exists ν > 0 such that f(x) ≤ g(x) ≤ h(x) for
all x such that 0 < |x− c| < ν. [In other words, f(x) ≤ g(x) ≤ h(x) for all
x near c.] If limx→c f(x) = limx→c h(x) = L, then limx→c g(x) = L.

Proof. Take any ε > 0. By definition of limit, there exists δ1 such that
L − ε < f(x) < L + ε for all x with 0 < |x − c| < δ1. Similarly, there exists
δ2 such that L − ε < h(x) < L + ε for all x with 0 < |x − c| < δ2. Now let
δ = min{δ1, δ2, ν}. We have that for all x such that 0 < |x− c| < δ,

L− ε < f(x) ≤ g(x) ≤ h(x) < L+ ε.
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We then conclude from the definition of a limit that limx→c g(x) = L. �

We can also talk about the limiting behavior of a function when its ar-
gument approaches infinity.

Definition 3.17. Consider a function f defined on [c,∞) for some number c.
We say that limx→∞ f(x) = L if for each ε > 0, there exists a corresponding
m such that |f(x)− L| < ε for all x > m. �

Definition 3.18. Consider a function f defined on (−∞, c] for some number
c. We say that limx→−∞ f(x) = L if for all ε > 0, there exists a corresponding
m such that |f(x)− L| < ε for all x < m. �

Example 3.8 (Limits as x→∞)
1. Show that if k is a positive integer, then limx→∞

1
xk

= 0.

As before, we require some preliminary work. We want to find an
m > 0 such that x > m implies | 1

xk
− 0| < ε. Let m = k

√
1/ε and

suppose x > m. We have

1

xk
<

1

mk
= ε,

as required.

2. Prove that limx→∞
x

1+x2
= 0.

Instead of bothering with ε and δ, this time let’s just use some of
our helpful tricks from earlier. Here, we end up with ∞

∞ if we just
substitute in for x, and thus this is ambiguous. So let’s use another
trick, and divide everything by the highest term:

lim
x→∞

(
x

1 + x2
· 1/x2

1/x2

)
= lim

x→∞

1/x

1/x2 + 1
=

0

0 + 1
= 0.

We’ll wrap up with some definitions and examples for infinite-valued lim-
its.
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Definition 3.19. We say that limx→c f(x) =∞ if for each number M , there
exists δ > 0 such that f(x) > M for all x with 0 < |x−c| < δ. The definitions
for infinite-valued left- and right-hand limits, as well as limits valued −∞,
are analogous. �

This will allow us to do a bit better than simply saying the limit does not
exist in situations where we cannot do away with a denominator of 0.

Example 3.9 (Infinite-valued limits)
1. Find limx→1

1
(x−1)2 .

Intuitively, it should be clear that the limit is infinity. To prove
this, take any real number m > 0. We want to show that there
exists δ such that 1

(x−1)2 > m for all x such that 0 < |x− 1| < δ. In

particular, choose any δ ≤
√

1
m

. Then |x− 1| < δ implies

(x− 1)2 < δ2 ≤ 1

m
,

and thus 1
(x−1)2 > m, as required.

3.4 Continuity

Our last building block before moving on to calculus is continuity of functions.
You may recall the intuitive definition of continuity from earlier algebra or
calculus classes: a real-valued function is continuous if you can trace the
graph of the function without lifting your pen from your paper. This notion
is related to limits, which we use in the formal definition of continuity.

Definition 3.20. Let f be defined on an open interval containing c. We say
that the function f is continuous at the point c if limx→c f(x) = f(c). �

Thus, this definition really requires three things:

1. limx→c f(x) exists
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2. f(c) exists (c is in the domain of f)

3. limx→c f(x) = f(c)

Note that if any of these properties are violated, then it cannot be the case
that f is continuous at c.

Example 3.10 (Continuity of a function)
Let f(x) = x2−4

x−2 for all x 6= 2. How might we define f(x) at x = 2 to
make this a continuous function?

lim
x→2

x2 − 4

x− 2
= lim

x→2

(x− 2)(x+ 2)

x− 2
= lim

x→2
x+ 2 = 4

So if we define f(x) = 4 when x = 2, f(x) will be continuous at 2.

Now let’s go through some results that will be useful in applications.

Theorem 3.4 A polynomial function is continuous at every real number. A
rational function is continuous at every real number for which it is defined;
that is, a rational function is continuous at every real number where the
denominator is not zero.

Theorem 3.5 The absolute value function is continuous at every real num-
ber. If n is odd, then the nth root function is continuous at every real number.
If n is even, then the nth root function is continuous for all positive real num-
bers.

How would we prove that the absolute value function f(x) = |x| is con-
tinuous at 0? Note that for x < 0, f(x) = −x, and for x > 0, f(x) = x.
These are both polynomials, so by the previous theorem, we know that

lim
x→0−

f(x) = lim
x→0−

−x = 0 = lim
x→0+

x = lim
x→0+

f(x),

which implies limx→0 f(x) = 0. Since f(0) = |0| = 0, this proves continuity
of f at 0. In fact, since f is a polynomial everywhere else, this proves that f
is continuous everywhere.
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Theorem 3.6 Let f and g be functions defined on the real numbers, c and
k be real numbers, and n be a positive integer. If f and g are continuous at
c, then so are kf , f + g, f − g, fg, f

g
(provided that g(c) 6= 0), fn and n

√
f

(provided that f(c) > 0 if n is even).

Theorem 3.7 (Composite Limit Theorem) If limx→c g(x) = L and f is
continuous at L, then limx→c f(g(x)) = f(limx→c g(x)) = f(L). Therefore, if
g is continuous at a point c and f is continuous at the point g(c), then the
composition f ◦ g is continuous at c.

Example 3.11 (Composite Limit Theorem)
1. Show that h(x) = |x2− 3x+ 6| is continuous at all c ∈ R. Consider

this as a composite: f(x) = |x|, g(x) = x2−3x+6. Note that g(x) is
a polynomial, and so, by the results above, continuous everywhere.
Note that f(x) = |x| is continuous everywhere, as we just saw.
Then, also by the previous result, (f◦g)(x) = f(g(x)) = |x2−3x+6|
is continuous.

We also have the notion of continuity on an interval: this we can divide
into speaking about continuity on an open interval and continuity on a closed
interval. In the case of an open interval, this means what we would intuitively
expect it to mean: at each point in the interval, the function is continuous.

What about the case of a closed interval? There is a problem here . . .
It could be the case that f is not defined at all to the left or right of the
endpoints of an interval. For example, f(x) =

√
x is not defined (on the real

line, at least) for anything less than 0. This violates one of our properties,
since limx→0 f(x) will not exist in this case.

Definition 3.21. The function f(x) is right-continuous at a if
limx→a+ f(x) = f(a) and left-continuous at b if limx→b− f(x) = f(b).
We say that f is continuous on the open interval (a, b) if it is continuous at
each point of that interval. It is continuous on the closed interval [a, b] if it
is continuous on (a, b), right-continuous at a and left-continuous at b. �
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Example 3.12 (Continuity on a closed interval)
What is the largest interval on which the function h(x) =

√
4− x2 is

continuous? The domain on which the function is well-defined is [−2, 2].
Let f(x) =

√
x and g(x) = 4 − x2, so that h = f ◦ g. As a polynomial,

g is continuous everywhere; f is continuous at all x such that f(x) > 0.
We thus have that h is continuous on (−2, 2), and now we just need to
consider whether it is continuous at the endpoints. Using the Composite
Limit Theorem, we have

lim
x→2−

√
4− x2 =

√
4− lim

x→2−
x2 =

√
4− 4 = 0 = h(2)

lim
x→−2+

√
4− x2 =

√
4− lim

x→−2+
x2 =

√
4− 4 = 0 = h(−2)

So h(x) is right-continuous at −2 and left-continuous at 2. Thus, h(x) is
continuous on its entire domain [−2, 2].



Chapter 4

Univariate Calculus

4.1 Differential Calculus

4.1.1 Definitions

This is one of the two primary areas within calculus. This has applications
everywhere, and is ubiquitous in the social sciences.

Definition 4.1. The derivative of a function f is another function f ′, whose
value at any number c is

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
,

provided that this limit exists and is not ∞ or −∞. �

In the intuitive sense, as was alluded to above, the derivative of a function f
at c is simply the rate of change of the function at c. How much f(x) changes
with a change in x at c. For a (straight) line, the derivative of the line at a
particular point x is simply the slope of the line. For a curve, the derivative
is simply the slope of the line tangent to the curve at x.

A note on notation: the derivative f ′(x) can also be written df
dx

(sometimes
dy
dx

when the function is written as y = f(x)) and as Dxf(x).

51
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Example 4.1 (Derivative, first definition)
1. Let f(x) = 13x− 6. Find f ′(4).

f ′(4) = lim
h→0

f(4 + h)− f(4)

h
= lim

h→0

13(4 + h)− 6− (13(4)− 6)

h

= lim
h→0

52 + 13h− 6− 52 + 6

h
= lim

h→0

13h

h
= 13.

2. Let f(x) = x3 + 7x, and let c be given. Find f ′(c).

f ′(c) = lim
h→0

f(c+ h)− f(h)

h

= lim
h→0

(c+ h)3 + 7(c+ h)− c3 − 7c

h

= lim
h→0

(c+ h)(c+ h)(c+ h) + 7(c+ h)− c3 − 7c

h

= lim
h→0

c3 + 3c2h+ 3ch2 + h3 + 7h− c3

h

= lim
h→0

3c2h+ 3ch2 + h3 + 7h

h
= lim

h→0
3c2 + 3ch+ h2 + 7

= 3c2 + 7.
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3. Let f(x) = 1
x
, and let c 6= 0 be given. Find f ′(x).

f ′(c) = lim
h→0

f(x+ h)− f(x)

h

= lim
h→0

1
x+h
− 1

x

h

= lim
h→0

(
1

x+ h
− 1

x

)
1

h

= lim
h→0

(
x

x(x+ h)
− x+ h

x(x+ h)

)
1

h

= lim
h→0

−h
x(x+ h)

1

h

= lim
h→0

−1

x(x+ h)

=
−1

x2

Note: we derive the form of the derivative from the following. This implies
that we can write down an equivalent definition of the derivative,

f ′(c) = lim
x→c

f(x)− f(c)

x− c

The two definitions are, of course, identical in their results: you can use
whichever of the two forms you prefer.
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Example 4.2 (Derivative, second definition)
Find g′(c) where g(x) = 2

x+3
.

g′(c) = lim
x→c

g(x)− g(c)

x− c

= lim
x→c

2
x+3
− 2

c+3

x− c

= lim
x→c

1

x− c

(
2(c+ 3)

(c+ 3)(x+ 3)
− 2(x+ 3)

(c+ 3)(x+ 3)

)
= lim

x→c

1

x− c

(
2(c+ 3)− 2(x+ 3)

(c+ 3)(x+ 3)

)
= lim

x→c

1

x− c

(
−2(x− c)

(c+ 3)(x+ 3)

)
= lim

x→c

−2

(c+ 3)(x+ 3)
=

−2

(c+ 3)2

So now we have established what the derivative is and what it means
to be differentiable at a point. The derivative is also closely related to the
continuity of functions.

Theorem 4.1 If f ′(c) exists, then f is continuous at c.

Proof. We need to show that limx→c f(x) = f(c). We can write the following:

f(x) = f(c) + f(x)− f(c) = f(c) +
f(x)− f(c)

x− c
(x− c),

where x 6= c. Thus, taking the limit of this expression, we see that

lim
x→c

f(x) = lim
x→c

(
f(c) +

f(x)− f(c)

x− c
(x− c)

)
By the rules of limits previously described, we can write this as:

lim
x→c

f(x) = lim
x→c

f(c) + lim
x→c

f(x)− f(c)

x− c
· lim
x→c

(x− c)

= f(c) + f ′(c) · 0
= f(c)

So limx→c f(x) = f(c). Therefore, f(x) is continuous at c. �
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Note that the converse of this statement is not generally true; if a function
is continuous at a point, the derivative does not have to exist there. To see
this, consider the function f(x) = |x| at the point c = 0. Let’s ask if the
derivative exists at the point 0. For any h, we have

f(0 + h)− f(0)

h
=
|0 + h|+ |0|

h
=
|h|
h
.

This implies

lim
h→0+

|h|
h

= 1 6= lim
h→0−

|h|
h

= −1.

Since the left- limit and right-hand limits are not the same, the limit and
hence the derivative do not exist at x = 0. In general, the function is not
going to be differentiable at missing points, corners or kinks, and vertical
asymptotes.

4.1.2 Rules of Differentiation

So this process works for us to set up derivatives and evaluate functions
for the value of a derivative at a particular point . . . but it is tedious and
annoying. Let’s come up with some helpful tricks.

Theorem 4.2 (Constant Function Rule) If f(x) = k, where k is a con-
stant, then for all x, f ′(x) = 0.

Proof. Note that f ′(x) = limh→0
f(x+h)−f(x)

h
= limh→0

k−k
h

= limh→0
0
h

= 0. �

Theorem 4.3 If f(x) = x, then f ′(x) = 1.

Proof. Note that f ′(x) = limh→0
f(x+h)−f(x)

h
= limh→0

x+h−x
h

= limh→0
h
h

=
1. �

Theorem 4.4 (Power Rule) If f(x) = xn, where n is a positive integer,
then f ′(x) = nxn−1.
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Proof. We have

f ′(x) = lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

(x+ h)n − xn

h

= lim
h→0

xn + nxn−1h+ n(n− 1)1
2
xn−2h2 + . . .+ nxhn−1 − xn

h

= lim
h→0

h

h

(
nxn−1 +

n(n− 1)

2
xn−2h+ . . .+ nxhn−2 + hn−1

)
= nxn−1,

as claimed. �

The Power Rule actually works for any real number n when x is positive; the
proof is just more involved in that case.

Theorem 4.5 (Constant Multiple Rule) If k is a constant and f is a
differentiable function, then (kf)′(x) = k · f ′(x).

Proof. Let g(x) = k · f(x). Then g′(x) = limh→0
g(x+h)−g(x)

h
=

limh→0
kf(x+h)−kf(x)

h
= k · limh→0

f(x+h)−f(x)
h

= k · f ′(x). �

Theorem 4.6 (Sum Rule) If f and g are differentiable functions, then
(f + g)′(x) = f ′(x) + g′(x).

Proof. Let F (x) = f(x) + g(x). We then have

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

f(x+ h) + g(x+ h)− (f(x) + g(x))

h

= lim
h→0

f(x+ h)− f(x) + g(x+ h)− g(x)

h

= lim
h→0

f(x+ h)− f(x)

h
+ lim

h→0

g(x+ h)− g(x)

h
= f ′(x) + g′(x),

as claimed. �

Theorem 4.7 (Difference Rule) If f and g are differentiable functions,
then (f − g)′(x) = f ′(x)− g′(x).
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Proof. Let F (x) = f(x)− g(x) = f(x) + (−1)g(x). Then the result is imme-
diate from the Constant Multiple Rule and the Sum Rule. �

Theorem 4.8 (Product Rule) If f and g are differentiable functions, then
(fg)′(x) = f(x)g′(x) + g(x)f ′(x).

Proof. Let F (x) = f(x)g(x). We have

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x)g(x)

h

= lim
h→0

f(x+ h)g(x+ h)− f(x+ h)g(x) + f(x+ h)g(x)− f(x)g(x)

h

= lim
h→0

f(x+ h)[g(x+ h)− g(x)] + g(x)[f(x+ h)− f(x)]

h

= lim
h→0

f(x+ h) lim
h→0

g(x+ h)− g(x)

h
+ g(x) lim

h→0

f(x+ h)− f(x)

h
= f(x)g′(x) + g(x)f ′(x),

as claimed. �

Theorem 4.9 Let f and g be differentiable functions with g(x) 6= 0. Then(
f(x)

g(x)

)′
=
f ′(x)g(x)− g′(x)f(x)

(g(x))2
.
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Proof. Proof: Let F (x) = f(x)
g(x)

. We have

F ′(x) = lim
h→0

F (x+ h)− F (x)

h

= lim
h→0

f(x+h)
g(x+h)

− f(x)
g(x)

h

= lim
h→0

f(x+ h)g(x)− g(x+ h)f(x)

g(x)g(x+ h)

1

h

= lim
h→0

f(x+ h)g(x)− f(x)g(x) + f(x)g(x)− g(x+ h)f(x)

g(x)g(x+ h)

1

h

= lim
h→0

[f(x+ h)− f(x)]g(x)− f(x)[g(x+ h)− g(x)]

h

1

g(x)g(x+ h)

= lim
h→0

[
g(x)

f(x+ h)− f(x)

h
− f(x)

g(x+ h)− g(x)

h

]
1

g(x)g(x+ h)

=
f ′(x)g(x)− g′(x)f(x)

(g(x))2
,

as claimed. �

There is a mnemonic for the quotient rule that goes “ho de-hi minus hi de-ho
all over ho ho.” If this is useful to you, great. If not, just Google quotient
rule when you need to use it.

Example 4.3 (Rules of differentiation)
1. Find the derivatives of:

(a) y = 2
x4+1

+ 3
x

(b) y = 3x2 + 2x
1
3

(c) y = x3(2x4)

(d) f(x) = x2+1
x2−1

2. Find all points of y = x3 − x2 where the line tangent to the curve
is horizontal.
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We could of course do this graphically, but that isn’t possible in
general, which is why we can use derivatives. We have

dy

dx
= 3x2 − 2x

When the tangent line to the curve is horizontal, what is the slope?
It’s 0. Why? Recall that the slope of a line between (x1, y1) and
(x2, y2) is y2−y1

x2−x1 (rise over run). If the line is horizontal, then y1 = y2
and therefore the slope is zero. So we must solve the following:

x(3x− 2) = 0

Which holds when x = 0 and when x = 2
3
.

There is another rule that we haven’t talked about yet: how do we deal
with composite functions? Consider trying to take the derivative of some-
thing like y = (x2 + 3x+ 6)100. We could either generalize the multiplication
rule, which would be unpleasant, or we could multiply out the entire poly-
nomial, which would be painful. So instead we use the Chain Rule. In fact,
the Chain Rule lets us do these things in a single step (or perhaps two). It is
so important in calculus, that we rarely deal with things without using the
Chain Rule.

Theorem 4.10 (Chain Rule) Let f and g be differentiable functions, and
consider their composition (f ◦ g)(x) = f(g(x)). The derivative of the com-
position is (f ◦ g)′(x) = f ′(g(x)) · g′(x).

In other words, the derivative of a composite function is the derivative of
the outer function evaluated at the inner function times the derivative of the
inner function.

This can give rise to some confusion when we have to apply multiple rules
all at the same time. Consider

y = (x2 − 3x)2(x− 1)2.

The derivative is gotten to via:
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1. Apply the multiplication rule

2. Apply the chain rule to each term

So we have:

dy

dx
=
d(x2 − 3x)2

dx
· (x− 1)2 + (x2 − 3x)2 · d(x− 1)2

dx
= 2(x2 − 3x)(2x− 3)(x− 1)2 + (x2 − 3x)2 · 2(x− 1) · 1

The basic lesson is that order matters. We have an informal rule in how
to apply the rules of calculus:

The Last First Rule: the last step in calculation corresponds to the first step
in differentiation.

So in our previous example, the last step in computing would be the multi-
plication of our two terms, hence this is the first step we will take in differ-
entiating.

Example 4.4 (Chain Rule)
1. y = (x2 + 3x+ 6)100.

Consider the above in terms of F (x) = f(g(x)), where f(x) = x100

and g(x) = x2 + 3x+ 6.

F ′(x) = f ′(g(x)) · g′(x)

= 100(x2 + 3x+ 6)99 · (2x+ 3).

2. y = 1
(2x5−7)3 .

We can do this two ways:

(a) Use the Quotient Rule and the Chain Rule

(b) Think of the function using the rules of exponents. Namely,
F (x) = f(g(x)) = (2x5 − 7)−3, where f(x) = x−3 and g(x) =
2x5 − 7.

F ′(x) = f ′(g(x)) · g′(x)

= −3(2x5 − 7)−4 · 10x4

=
−30x4

(2x5 − 7)4
.
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3. y =
(
t3−2t+1
t4+3

)13
.

Let F (t) = f(g(t)), where f(t) = t13 and g(t) = t3−2t+1
t4+3

.

F ′(x) = f ′(g(x)) · g′(x)

= 13

(
t3 − 2t+ 1

t4 + 3

)12

· (3t2 − 2)(t4 + 3)− (4t3)(t3 − 2t+ 1)

(t4 + 3)2
.

Note that we can also apply the Chain Rule more than once; in principle
the process can be iterated as many times as is necessary to get the job done.
For example, consider y = 10((x2 − 3)4 − x)3. We have

dy

dx
= 30((x2 − 3)4 − x)2 · (4(x2 − 3)3(2x)− 1)

By now we’ve effectively covered the Chain Rule, though we’ll revisit it
when we talk about multivariate calculus. Now we have a few more foun-
dational things to cover before we talk about some of the applications of
differential calculus.

4.1.3 Higher-Order Derivatives

The operation of differentiation takes a function f and produces a new func-
tion f ′ which, evaluated at a point, is the slope of the original function at
a line tangent to that point. There is no reason why we can’t simply do
this again, to produce f ′′, which is the change in the slope of the function
at a particular point. The nth-order derivative can be written in any of the
following ways:

• f ′···′(x) or f (n)(x)

• dnf
dxn

or dny
dxn

• Dx···xf(x)
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Example 4.5 (Higher-order derivatives)
1. y = x2.

Here, dy
dx

= 2x and d2y
dx2

= 2. (Graph the function.) So in our little
graph, as required, we have the original function, the derivative,
a measure of the change in the original function at any particular
point x and the 2nd derivative, a measure of the change in the
change of the function at any particular point.

2. y = 2x3 − 4x2 + 7x− 8.

dy

dx
= 6x2 − 8x+ 7

d2y

dx2
= 12x− 8

d3y

dx3
= 12

d4y

dx4
= 0

We’ll also return to higher-order differentiation when we talk about cal-
culus in multiple dimensions. Until then, there’s one more topic to cover
before we look at applications of derivates.

4.1.4 Implicit Differentiation

What do we do when we cannot separate out the variables in a function?
Consider, for example, y3 + 7y = x3. We call this an implicit function: there
is no convenient way to give y as a function of x. So what do we do when
we want dy

dx
? We differentiate both sides of the equation with respect to x.
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Example 4.6 (Implicit differentiation)
1. y3 + 7y = x3.

d(y3)

dx
+
d(7y)

dx
=
d(x3)

dx

3y2
dy

dx
+ 7

dy

dx
= 3x2

dy

dx
(3y2 + 7) = 3x2

dy

dx
=

3x2

3y2 + 7

2. x2 + 5y3 = x+ 9.

d(x2)

dx
+
d(5y3)

dx
=
d(x)

dx
+
d(9)

dx

2x+ 15y2
dy

dx
= 1

dy

dx
=

1− 2x

15y2

3. x4 + 2y2 = 8.

d(x4)

dx
+
d(2y2)

dx
=
d(8)

dx

4x3 + 4y
dy

dx
= 0

dy

dx
= −4x3

4y
= −x

3

y

This is great for when we have a point in the cartesian plane (x, y) and
we want to know what the derivative is at that point. It maybe isn’t so
great when we want to find a functional form for the derivative explicitly
as a function of one variable. Still, it’s useful to see, and you may end up
manipulating things in this way, especially when deriving equations.
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4.1.5 Applications of Differentiation

Often, we are interested, in political science, in the best way to do something
— for example, what might a strategic politician want to maximize? Votes,
as a function of, say, direct mailings and TV commercials. Such problems
can be formulated as maximizing or minimizing a function over a specified
set. When we want to do this, we can use the tools that we’ve just discussed
for differential calculus to solve the problem. Of course, the first thing to do
is decide whether f even has a maximum or minimum value on the specified
set.

Definition 4.2. Let S be the domain of a function f , and suppose that it
contains some point c.

• We say that f(c) is the maximum value of f on S if f(c) ≥ f(x) for all
x ∈ S.

• We say that f(x) is the minimum value of f on S if f(c) ≤ f(x) for all
x ∈ S.

• f(c) is an extreme value of f on S if it is either the maximum value or
the minimum value.

• We call the function we want to maximize or minimize the objective
function. �

Now that we have a definition of these types of extreme points, we want
to ask ourselves when they exist. For example, on the set S = (0,∞), the
function f(x) = 1

x
has no extreme value.

We have a partial answer at our disposal.

Theorem 4.11 If f is continuous and its domain is a closed interval [a, b],
then f attains both a maximum value and a minimum value.

So where do these extreme points occur? They will occur at one of these
places:

1. Stationary points: these are points where the derivative of the objective
function is 0. That is, stationary points are where the slope of the line
tangent to the curve is 0, or the line is horizontal.

These typically occur where the function takes on a maximum or min-
imum value. (Draw picture of y = x2.) However, stationary points are
not always extreme points: consider y = x3 at x = 0. (Draw picture.)
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2. Singular points: these are points in intS where the derivative of the
objective function does not exist. These are places where the graph of
f will have a sharp corner, vertical asymptote, or discontinuity. This
kind of point is usually quite rare in practical problems. (But consider
y = |x|.)

3. The end points of the interval. (Draw picture of a linear function.)

We call one of these types of points a critical point. The following theorem
summarizes the relationship between critical points and extreme points.

Theorem 4.12 (Critical Point Theorem) Let a function f be defined on
an interval I containing the point c. If f(c) is an extreme value, then c must
be a critical point:

1. an endpoint of I

2. a stationary point of f on I

3. a singular point of f on I

Keep in mind that the relationship does not go in reverse: a critical point
is not necessarily an extreme point.

This suggests a really simple process for finding the maximum and mini-
mum values of a function on a closed interval I.

1. Find all the critical points of the function f on I.

2. Evaluate the function at those critical points; the largest of these will
be the maximum value, the smallest the minimum value.

Example 4.7 (Optimization)
1. Let’s find the maximum and minimum values of f(x) = −2x3 +3x2

on [−1
2
, 2]. First, we must identify the critical points:

(a) The endpoints, −1
2

and 2
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(b) Stationary points

f ′(x) = −6x2 + 6x = 0⇔ 6x = 6x2

⇔ x = x2

⇔ x ∈ {0, 1}

(c) There are no singular points, since this is a polynomial.

So we have critical points at −1
2
, 0, 1, 2.

Now we simply evaluate the function at each point.

• f(−1
2
) = −2(−1

2
)3 + 3(−1

2
)2 = 2

8
+ 3

4
= 1

• f(0) = −2(0)3 + 3(0)2 = 0

• f(1) = −2(1)3 + 3(1)2 = 1

• f(2) = −2(2)3 + 3(2)2 = −4

Therefore, we have a maximum value at (−1
2
, 1) and at (1, 1) and

a minimum value at (2,−4).

2. Find the maximum values of x
2
3 = y on [−1, 2].

First we find the critical values:

(a) the endpoints −1 and 2

(b) dy
dx

= 2
3
x
−1
3 . Note that this will never equal zero and this yields

no critical points.

(c) Note also that the derivative does not exist at x = 0: we have
a singular point at x = 0.

So we have critical points at x = −1, 0, 2. Now, we simply evaluate
the function at each of these points.

• (−1)
2
3 = 1

• (0)
2
3 = 0

• (2)
2
3 = 3
√

4 ' 1.59

So we have a maximum at x = 2 and a minimum at x = 0.
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3. Suppose we are making a cardboard box by cutting out identical
squares from each corner and turning up the edges. What is the
maximum volume that can be attained if the cardboard piece is
24× 9?

Let x be the length of one side of the square to be cut out, and
recall that V = l · w · h. The formula for the volume of the box is

V = x(24− 2x)(9− 2x)

= (24x− 2x2)(9− 2x)

= 216x− 48x2 − 18x2 + 4x3

= 216x− 66x2 + 4x3

Note also that 0 ≤ x ≤ 4.5. So we are trying to maximize V =
216x− 66x2 + 4x3 on [0, 4.5].

Find the critical points:

(a) The end points 0 and 4.5

(b) The stationary points, obtained from

dV

dx
= 216− 132x+ 12x2 = 12(18− 11x+ x2) = 0

This is an opportune time to remind ourselves of the quadratic
formula: the roots of a degree 2 polynomial of the form f(x) =
ax2 + bx+ c are given by

f(x) = 0 ⇔ x =
−b±

√
b2 − 4ac

2a
Here we have a = 1, b = −11, and c = 18, so we get

x =
−(−11)±

√
121− 4 · 1 · 18

2
=

11±
√

49

2
=

11± 7

2
,

and x = 2 or x = 9.

Note that 9 is outside the interval of interest, so we have a
critical point at 2.

(c) There are no singular points, since V is a polynomial.

Now we just evaluate the function at 0, 2, 4.5. At 0 and 4.5 the
volume of the box is 0. Thus, we have a maximum at 2.
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So we have some nice results that help us find and sort out global maxima
and minima on the interval of interest. But we can introduce more nuance
into the whole thing: local maxima and minima. To do this, we are going to
have to introduce some new concepts.

Definition 4.3. Let the function f be defined as an interval I (open, closed,
neither). We say that:

• f is strictly increasing on I if, for every pair of numbers x1 and x2 in
I, x1 < x2 implies that f(x1) < f(x2)

• f is strictly decreasing on I if, for every pair of numbers x1 and x2 in
I, x1 < x2 implies that f(x1) > f(x2)

• f is strictly monotonic on I if it is either increasing on I or decreasing
on I. �

Now, if we remember that the derivative simply is a measure of the slope of
the function, the next thing should be relatively straightforward:

Theorem 4.13 (Monotonicity Theorem) Let f be continuous on an in-
terval I and differentiable at every interior point of I.

1. If f ′(x) > 0 for all x ∈ int I, then f is increasing on I.

2. If f ′(x) < 0 for all x ∈ int I, then f is decreasing on I.

Example 4.8 (Derivatives and monotonicity)
Let f(x) = 2x3− 3x2− 12x+ 7 and find where f is increasing and where
f is decreasing. We have

f ′(x) = 6x2 − 6x− 12 = 0,

which is equivalent to

x2 − x− 2 = (x+ 1)(x− 2) = 0.

So we want to know where x2 − x − 2 > 0 and where x2 − x − 2 < 0.
Note that f ′(x) = 0 at x = −1 and x = 2. These two points split the
interval into three intervals: (−∞,−1), (−1, 2), and (2,∞). Now we
simply evaluate the function within each interval. Let’s use these points:
−2, 0, 3.
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• f ′(−2) = (−2)2 − (−2)− 2 = 6

• f ′(0) = (0)2 − (0)− 2 = −2

• f ′(3) = (3)2 − 3− 2 = 4

So the function is increasing on (−∞,−1) and (2,∞) and decreasing on
(−1, 2).

Now we’ll move from increasing and decreasing to talk about something
particularly important when defining preferences.

Definition 4.4. Let f be differentiable on an open interval I. We say that
f is concave up, or convex, on I if f ′ is increasing on I. We say that f is
concave down, or simply concave, on I if f ′ is decreasing on I. �

It should be clear how we can define concavity in terms of derivatives.

Theorem 4.14 (Concavity Theorem) Let a function f be twice differen-
tiable on the open interval I.

• If f ′′(x) > 0 for all x in I, then f is concave up on I.

• If f ′′(x) < 0 for all x in I, then f is concave down on I.

Points where a function switches from concave up to concave down, or
vice versa, are called inflection points.

Definition 4.5. Let f be a function that is continuous at c. The point
(c, f(c)) is an inflection point if f is concave up on one side of c and down
on the other side of c. �

Just as there is a relationship between extreme points and the first deriva-
tive, there is one between inflection points and the second derivative. In spe-
cific, the candidates for inflection points are those where f ′′(x) = 0 or where
f ′′(x) does not exist. Therefore, the process for finding inflection points is:

1. Find all the critical points of the first derivative (not counting the
endpoints).
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2. Check concavity on either side of each critical point.

Example 4.9 (Concavity and inflection points)
1. Find all the inflection points of y = x

1
3 + 2.

The first two derivatives are:

dy

dx
=

1

3
x
−2
3 =

1

3x
2
3

d2y

dx2
=
−2

9
x
−5
3 =

−2

9x
5
3

Note that the second derivative is never zero, but it does fail to exist
at x = 0. So now, we simply make use of our Concavity Theorem,
and examine the intervals (−∞, 0) and (0,∞). Since x = 0 is the
only critical point, if the function turns out to be concave up on
one side and concave down on the other, we can say that x = 0 is
an inflection point of f .

So we want to know where d2y
dx2

> 0 and where d2y
dx2

< 0. For all

x < 0, the denominator will be negative and so d2y
dx2

> 0. For all

x > 0, the denominator will be positive and so d2y
dx2

< 0. Hence y
is concave up on (−∞, 0) and concave down (0,∞), so x = 0 is an
inflection point.

2. Where is f(x) = 1
3
x3 − x2 − 3x+ 4 increasing, decreasing, concave

up, and concave down? We have

f ′(x) = x2 − 2x− 3 = (x− 3)(x+ 1)

f ′′(x) = 2x− 2

Let’s start by finding where it is increasing and decreasing. We need
to determine where f ′(x) > 0 and where f ′(x) < 0, then we apply
the Monotonicity Theorem. The intervals of interest are (−∞,−1),
(−1, 3), and (3,∞). Taking as test points −2, 0, 4:

• f ′(−2) = (−2)2 − 2(−2)− 3 = 4 + 4− 3 = 5 > 0

• f ′(0) = 02 − 2(0)− 3 = −3 < 0
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• f ′(4) = 42 − 2(4)− 3 = 5 > 0

So f(x) is increasing on (−∞,−1) and (3,∞) and decreasing on
(−1, 3). Now let’s look for inflection points. Since f ′′(x) is a poly-
nomial, it exists everywhere, and it is clear to see that f ′′(x) < 0
if x < 1 and f ′′(x) > 0 if x > 1. Therefore, f is concave down
on (−∞, 1) and concave up on (1,∞), which means x = 1 is an
inflection point.

With all this in place, we can finally talk about local maxima and minima.
We’ll begin by defining these terms precisely.

Definition 4.6. Let S be the domain of the function f and pick a point
c ∈ S. We say:

1. f(c) is a local maximum value of f if there exists ε > 0 such that for
all x ∈ (c− ε, c+ ε) ∩ S, f(c) ≥ f(x).

2. f(c) is a local minimum value of f if there exists ε > 0 such that for
all x ∈ (c− ε, c+ ε) ∩ S, f(c) ≤ f(x).

3. f(c) is a local extreme value if it is either a local maximum or a local
minimum. �

So you can think of a local maximum as a point that is a global maximum
with respect to a sufficiently small interval around it. This means that the
criteria from the Critical Point Theorem also apply to local maxima and
minima—and that not every critical point is necessarily a local extreme point.

Theorem 4.15 (First Derivative Test) Let f be continuous on an open
interval (a, b), and let c ∈ (a, b) be a critical point of f .

• If f ′(x) > 0 for all x in (a, c) and f ′(x) < 0 for all x in (c, b), then
f(c) is a local maximum of f .

• If f ′(x) < 0 for all x in (a, c) and f ′(x) > 0 for all x in (c, b), then
f(c) is a local minimum of f .
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• If f ′(x) has the same sign on both sides of c then f(c) is not a local
extreme value of f .

Example 4.10 (First Derivative Test)
We want to find the local extreme values of f(x) = 1

3
x3 − x2 − 3x+ 4 on

(−∞,∞). Recall that

f ′(x) = x2 − 2x− 3 = (x− 3)(x+ 1),

and there are no endpoints or singular points, so we are only concerned
with critical points. f ′(x) = x2 − 2x− 3 = (x− 3)(x+ 1) = 0. This will
be zero at x = 3 and x = −1. So we have three intervals: we need to
evaluate f(x) on (−∞,−1), (−1, 3) and (3,∞). As before, let’s simply
pick some test points: x = −2, x = 0, and x = 4.

• f ′(−2) = (−2)2 − 2(−2)− 3 = 4 + 4− 3 = 5 > 0

• f ′(0) = 02 − 2(0)− 3 = −3 < 0

• f ′(4) = 42 − 2(4)− 3 = 5 > 0

So we have a local maximum at x = −1 and a local minimum at x = 3.

It’s usually even easier than this to determine whether a stationary point
is a local extreme point, because there is another test that relies on the
concept of concavity.

Theorem 4.16 (Second Derivative Test) Let f ′ and f ′′ exist at every
point in an open interval (a, b) containing c and suppose that f ′(c) = 0.

1. If f ′′(c) < 0, f(c) is a local maximum value of f .

2. If f ′′(c) > 0, f(c) is a local minimum value of f .
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Example 4.11 (Second Derivative Test)
1. First we’ll go back to the example we used to illustrate the First

Derivative Test:

f(x) =
1

3
x3 − x2 − 3x+ 4

f ′(x) = x2 − 2x− 3 = (x− 3)(x+ 1)

f ′′(x) = 2x− 2

As before, the stationary points are x = 3 and x = −1. We have
f ′′(3) = 4 > 0, so x = 3 is a local minimum; and f ′′(−1) = −3, so
x = −1 is a local maximum.

2. Find the local extreme values of the function y = x2 − 6x + 5
on (−∞,∞). So we need to find the critical points. There are
obviously no endpoints. Moreover, y is a polynomial, so there are
no singular points. The stationary points are given by

dy

dx
= 2x− 6 = 0,

which is true only for x = 3. We have

d2y

dx2
= 2,

meaning the function is always concave up, so x = 3 must be a
local minimum.

4.1.6 L’Hopital’s Rule

Using derivatives, we are ready to go back and deal with a problem encoun-
tered back in the discussion of limits: how can we deal with indeterminate
forms, where the numerator and denominator are both zero, or both infinite?
For example, what is

lim
x→3

x2 − 9

x2 − x− 6
?
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In a situation like this, you’ll find that the easiest way to proceed is by the
rule given in the next two theorems. We first consider forms of the type 0

0
.

Theorem 4.17 (L’Hopital’s Rule for 0
0
) Suppose that limx→u f(x) =

limx→u g(x) = 0, where u may be finite or infinite. If limx→u
f ′(x)
g′(x)

exists,
then:

lim
x→u

f(x)

g(x)
= lim

x→u

f ′(x)

g′(x)
.

Theorem 4.18 (L’Hopital’s Rule for ±∞
∞) Suppose that limx→u |f(x)| =

limx→u |g(x)| = ∞, where u may be finite or infinite. If limx→u
f ′(x)
g′(x)

exists,
then:

lim
x→u

f(x)

g(x)
= lim

x→u

f ′(x)

g′(x)
.

Example 4.12 (L’Hopital’s Rule)
1. Find limx→3

x2−9
x2−x−6 .

Here we have a 0
0

form. Applying L’Hopital’s Rule, we get

lim
x→3

x2 − 9

x2 − x− 6
= lim

x→3

2x

2x− 1
=

6

5
.

2. Find limx→∞
x

x2+1
.

This is a case where the limit has the form ∞
∞ . Applying L’Hopital’s

Rule, we get

lim
x→∞

x

x2 + 1
= lim

x→∞

1

2x
= 0.

4.2 Integral Calculus

4.2.1 Indefinite Integrals

So far our focus in calculus has been on the derivative. Now we’re going to
consider its inverse, known as integration or antidifferentiation.
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Definition 4.7. We say that the function F is an antiderivative of the func-
tion f on the interval I if F ′(x) = f(x) for all x ∈ I. If F is an antiderivative
for f on its entire domain, we write∫

f(x) dx = F (x) + c,

which is also known as an indefinite integral, where the function f(x) is the
integrand. �

The c in the definition is taken to be an arbitrary constant, which we will
explain in a second.

Example 4.13 (Antiderivatives)
1. Find an antiderivative of 4x3 on (−∞,∞).

We must find y so that dy
dx

= 4x3. One such function that will
satisfy this would be y = x4.

However, this is not the only antiderivative of 4x3. Another would
be y = x4 + 1, and yet another would be y = x4 + 42. In fact, a
function with one antiderivative has infinitely many, which is why
we write

∫
f(x) dx = F (x) + c. The c stands for the fact that you

can add any constant to an antiderivative and it will still be an
antiderivative of the original function.

2. Find an antiderivative of 1
3
x3 − x2 − 3x+ 4.

As before, we want y such that dy
dx

= 1
3
x3 − x2 − 3x + 4. We can

satisfy this with

y =
1

3

(
1

4
x4
)
− 1

3
x3 − 3

(
1

2
x2
)

+ 4x

=
x4

12
− x3

3
− 3x2

2
+ 4x.

You may notice a pattern that we used to obtain these antiderivatives,
which is generalized in the following theorem.
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Theorem 4.19 (Power Rule) If r is any rational number other than −1,
then ∫

xrdx =
xr+1

r + 1
+ c.

Proof. Pick any rational number r 6= −1 and let F (x) = xr+1

r+1
+ c for some

c ∈ R. By the Power Rule for differentiation, we have

F ′(x) =

(
1

r + 1

)
(r + 1)xr = xr,

as claimed. �

One thing to note about the theorem we’ve just presented: the conclusion
can only be valid on an interval where xr is defined. So, for example, for any
f in which r < 0, the interval cannot include 0, since f would not be defined
at 0.

Theorem 4.20 Let f and g be functions that have antiderivatives and let k
be a constant. We have:

1.
∫
kf(x) dx = k

∫
f(x) dx

2.
∫

(f(x) + g(x)) dx =
∫
f(x) dx+

∫
g(x) dx

3.
∫

(f(x)− g(x)) dx =
∫
f(x) dx−

∫
g(x) dx

That is, indefinite integration is a linear operator.

Proof. For part 1, we have

d(k
∫
f(x) dx)

dx
=
k(d(

∫
f(x) dx)

dx
= kf(x).

For part 2, we have

d

dx

(∫
f(x) dx+

∫
g(x) dx

)
=

d

dx

∫
f(x) dx+

d

dx

∫
g(x) dx

= f(x) + g(x)

Part 3 follows directly from parts 1 and 2. �
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Example 4.14 (Integration as a linear operator)
1.
∫

(3x2 + 4x) dx =
∫

3x2 dx+
∫

4x dx = x3 + 2x2 + c.

2. What is
∫

(u
3
2 − 3u+ 14) du?∫

(u
3
2 − 3u+ 14) du =

∫
u

3
2 du−

∫
3u du+

∫
14 du

=
u

3
2
+ 3

3

3
2

+ 3
3

− 3u1+1

1 + 1
+ 14u+ c

=
u

5
2

5
2

− 3

2
u2 + 14u+ c.

3. What is
∫

( 1
t2

+
√
t) dt?∫ (

1

t2
+
√
t

)
dt =

∫
1

t2
dt+

∫ √
t dt

=

∫
t−2 dt+

∫
t
1
2 dt

= −t−1 +
t
1
2
+ 2

2

1
2

+ 2
2

+ c

=
−1

t
+

2t
3
2

3
+ c.

We can actually generalize the Power Rule we’re using here even further.

Theorem 4.21 (Generalized Power Rule) Let g be a differentiable func-
tion and take any r 6= −1. Then∫

(g(x))rg′(x) dx =
g(x)r+1

r + 1
+ c.

This is the integral answer to the technique of differentiation we called
the Chain Rule. Basically, we are taking the integral of something we got
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from applying the Chain Rule. The most important thing to do here is to
recognize the different parts of the integrand. One part will correspond to
g(x)r and another to g′(x). This can be tough: we may see some tricks later
that help with problems like this.

Example 4.15 (Generalized Power Rule)
1. Evaluate

∫
(x4 + 3x)30(4x3 + 3) dx.

First, we ought to recognize this as the output of something with
the Chain Rule applied to it. What are the respective parts?

g(x)r = (x4 + 3x)30

g′(x) = 4x3 + 3

So the integral above can be evaluated by applying the theorem:∫
(x4 + 3x)30(4x3 + 3) dx =

(x4 + 3x)31

31
+ c.

2. Evaluate
∫

(x3 + 6x)5(6x2 + 12) dx.

We’ll use this as a simple example of the method of substitution:
we define a new variable u from x, rewrite the integral in terms of
u (hopefully in a form we find more friendly, such as one where we
can easily apply the Generalized Power Rule), and then substitute
x back in at the end.

Let u = x3+6x, so du = 3x2+6 dx and 6x2+12 dx = 2(3x2+6) dx =
2 du. So our problem becomes the following:∫

(x3 +6x)5(6x2 +12) dx =

∫
u5 ·2 du =

2

6
u6 +c =

1

3
(x3 +6x)6 +c.

3. Evaluate
∫

(x2 + 4)10x dx.

This time we’ll make the substitution u = x2 + 4, which means
du = 2x dx. So have have∫

(x2 + 4)10x dx =

∫
u10 · 1

2
du =

1

22
u11 + c =

1

22
(x2 + 4)11 + c.
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4.2.2 Definite Integrals

So what is our interpretation of the integral? Recall that a derivative gives
the rate of change of a function at each point in its domain. It was, in
essence, the slope of the line tangent to the curve at each point. There is a
similar interpretation for the integral: the output from integrating a function
over an interval is the (signed) area under the curve of the function on that
interval.

It is easy to compute the area of a rectangle: it’s the product of the width
and the length. But what about the area under a smooth curve? Archimedes
gave us an answer: we inscribe polygons within the curve. So consider y = x2.
Suppose we are interested in calculating the region under the curve along the
interval from 0 to 2. Then what we can do is partition that interval into n
subintervals, each of equal length 2

n
= ∆x by picking n + 1 points on the

interval. Each of these inscribed rectangles will have width ∆x = xi − xi−1
and height f(xi−1) = (xi−1)

2. Then we can approximate the area under the
curve by simply summing up the rectangles.

Area = f(x0)(x1 − x0) + f(x1)(x2 − x1) + . . .+ f(xn−1)(xn − xn−1)
= f(x0)∆x+ f(x1)∆x+ . . .+ f(xn−1)∆x

=
2

n
((x0)

2 + (x1)
2 + . . .+ (xn−1)

2)

Now note that x0 = 0, x1 = 2
n
, x2 = 2

n
· 2, . . . , xn−1 = 2

n
· (n − 1), which

implies xi = i 2
n
. Thus:

Area =
2

n

((
2

n
· 0
)2

+

(
2

n
· 1
)2

+ . . .+

(
2

n
· (n− 1)

)2
)

=
2

n
· 4

n2

n−1∑
i=0

i2

=
8

n3

n−1∑
i=0

i2

As it turns out, there is a special formula for this sum, which is

n−1∑
i=0

i2 =
(n− 1)(n)(2n− 1)

6
.
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So we have

Area =
8

n3

(n− 1)(n)(2n− 1)

6

=
8

6n3
(2n3 − n2 − 2n2 + n)

=
8

6n2
(2n2 − 3n+ 1)

=
8

3
− 4

n
+

4

3n2

We can make the approximation more accurate by adding more and more
points. So what happens as we take the limit of this as n→∞?

lim
n→∞

=
8

3
− 4

n
+

4

3n2
=

8

3

So what this is actually saying is that as we let the bases of the rectangles
get smaller and smaller, we end up converging on the true area under the
curve.

Having defined the relationship between the area of a curve and how we
can approximate it, we are now ready to begin to discuss the definite integral.
The modern definition of the definite integral we owe to the Reimann sum,
and so we’ll need to talk about that (quickly) first.

Definition 4.8. Consider a function f defined on a closed interval [a, b] and
suppose that we partition the interval into n subintervals (not necessarily
equal) by means of points a = x0 < x1 < x2 < . . . < xn−1 < xn = b, and let
∆xi = xi − xi−1. On each subinterval, pick an arbitrary point x̄i, which we
will call a sample point for the interval. Then we call the sum

Rp =
n∑
i=1

f(x̄i)∆xi

a Reimann sum for the function f corresponding to the partition p. �

Example 4.16 (Riemann sums)
Evaluate the Reimann sum Rp for f(x) = (x + 1)(x − 2)(x − 4) on the
interval [0, 5] using partition p with points 0 < 1.1 < 2 < 3.2 < 4 < 5
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and sample points x̄1 = 0.5, x̄2 = 1.5, x̄3 = 2.5, x̄4 = 3.6, and x̄5 = 4.5.
We have

Rp =
n∑
i=1

f(x̄i)∆xi

= f(x̄1)∆x1 + f(x̄2)∆x2 + f(x̄3)∆x3 + f(x̄4)∆x4 + f(x̄5)∆x5

= f(x̄1)(1.1− 0) + f(x̄2)(2− 1.1) + f(x̄3)(3.2− 2)

+ f(x̄4)(4− 3.2) + f(x̄5)(5− 4)

' 8.66 + 2.81− 3.15− 2.36 + 6.88

' 12.84.

We use the Reimann sum to define the definite integral as follows.

Definition 4.9. Let f be a function on the closed interval [a, b]. Denote a
partition of [a, b] by p, and let |p| denote the length of the longest subinterval
of the partition. If

lim
|p|→0

n∑
i=1

f(x̄i)∆xi

exists, we say f is integrable on [a, b]. Moreover
∫ b
a
f(x) dx, called the definite

integral from a to b, is given by∫ b

a

f(x) dx = lim
|p|→0

n∑
i=1

f(x̄i)∆xi.
�

So how does the definite integral relate to area? It is simply the general-
ized version of the inscribed polygons that we just discussed. In particular,∫ b
a
f(x) dx gives us the signed area under the curve. Take note of the term

signed area. The integral attaches a positive sign to areas under the curve
yet above the x axis and a negative sign to areas under the x axis and above
the curve. That is,∫ b

a

f(x) dx = area above x axis− area below x axis

Now let’s consider some simple and hopefully helpful properties of inte-
grals.
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Theorem 4.22 (Integrability Theorem) If a function f is bounded on
[a, b] and is continuous on [a, b] except for a finite number of points at most,
then f is integrable on [a, b]. In particular, if f is continuous on the whole
interval [a, b] it is integrable on [a, b].

Some implications of this theorem and the definition of integration:

1. A polynomial function is integrable on every closed interval [a, b]

2. A rational function is integrable on any closed interval [a, b] that con-
tains no points where the function’s denominator equals 0

3.
∫ a
a
f(x) dx = 0

4.
∫ b
a
f(x) dx = −

∫ a
b
f(x) dx

Theorem 4.23 If f is integrable on an interval containing the points a, b,
and c, then ∫ c

a

f(x) dx =

∫ b

a

f(x) dx+

∫ c

b

f(x) dx.

We could spend time on evaluating Reimann sums . . . but I’m not con-
vinced that this is a particularly useful topic (since you will never do it in
practice, nor is it instructive toward another topic). So let’s move on to some
fundamental (literally) results in calculus.

Theorem 4.24 (First Fundamental Theorem of Calculus) Let f be con-
tinuous on the closed interval [a, b], and let x be a variable point in (a, b).
Then:

d

dx

(∫ x

a

f(t)

)
= f(x)

In words, we might say that the rate of accumulation at t = x is equal
to the value of the function being accumulated at t = x. What this theorem
establishes is that integration is indeed the inverse of differentiation—taking
the derivative of an integral gives you the original function.
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Example 4.17 (First Fundamental Theorem of Calculus)
1. Find d

dx
(
∫ x
1
t3 dt).

By the First Fundamental Theorem of Calculus,

d

dx

(∫ x

1

t3 dt

)
= x3.

2. Find d
dx

(
∫ x2
1

(3t− 1) dt.

What do we do when x2 is one of the limits of integration? Consider
this as an application of the Chain Rule, where f(x) =

∫ x
1

(3t−1) dt,

g(x) = x2, and h(x) = f(g(x)) =
∫ x2
1

(3t− 1) dt. We then have, by
the Chain Rule and the First Fundamental Theorem,

h′(x) = f ′(g(x)) · g′(x)

= (3g(x)− 1) · (2x)

= 2x(3x2 − 1).

Theorem 4.25 (Second Fundamental Theorem of Calculus) Let f be
continuous (and thus integrable) on [a, b] and let F be any antiderivative of
f on [a, b]. Then ∫ b

a

f(x) dx = F (b)− F (a).

This is the result that you will make use of almost all the time when you are
evaluating functions and integrating in your classes. It is also why we really
never need to bother with actually computing the limit for the Reimann Sum.
As such, this is one of the most important theorems you will learn in this
course.

Finally, we can also establish various nice properties about definite inte-
grals that make them easier to compute in practice.

Theorem 4.26 If f and g are integrable on [a, b] and f(x) ≤ g(x) for all x
in [a, b], then ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.
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Theorem 4.27 If f is integrable on [a, b] and m ≤ f(x) ≤ M for all x ∈
[a, b], then m(b− a) ≤

∫ b
a
f(x) dx ≤M(b− a).

Theorem 4.28 Suppose that f and g are integrable on [a, b] and that k is a
constant. Then kf and f + g are integrable and

•
∫ b
a
kf(x) dx = k

∫ b
a
f(x) dx

•
∫ b
a
(f(x)± g(x)) dx =

∫ b
a
f(x) dx±

∫ b
a
g(x) dx

Example 4.18 (Second Fundamental Theorem of Calculus)
1. Show that if k is a constant,

∫ b
a
k dx = k(b− a).

F (x) = kx is an antiderivative of f(x) = k. So we now apply the
Second Fundamental Theorem of Calculus:∫ b

a

k dx = F (b)− F (a) = kb− ka = k(b− a).

2. Show that
∫ b
a
x dx = b2

2
− a2

2
.

As before, F (x) = x2

2
is an antiderivative of f(x) = x. Thus, by the

Second Fundamental Theorem of Calculus:∫ b

a

x dx = F (b)− F (a) =
b2

2
− a2

2
.

3. Evaluate
∫ 2

−1(4x− 6x2) dx.

Applying the various results from above, we have∫ 2

−1
(4x− 6x2) dx =

∫ 2

−1
4x dx−

∫ 2

−1
6x2 dx

= 2x2
∣∣2
x=−1 − 2x3

∣∣2
x=−1

= 2(2)2 − 2(−1)2 − (2(2)3 − 2(−1)3)

= 8− 2− 16− 2

= −12.
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4. Evaluate
∫ 4

0

√
x2 + x(2x+ 1) dx.

What do we do to find the antiderivative here? We use the same
substitution method as in our previous examples of the Generalized
Power Rule. Let u = x2 + x then du = 2x+ 1 dx. Now making the
relevant substitutions, we can readily evaluate the integral:∫ 4

0

√
x2 + x(2x+ 1) dx =

∫ 20

0

u
1
2 du

=
2

3
u

3
2

∣∣∣∣20
u=0

=
2

3
20

3
2 .

Notice that the limits of integration change in the first line when
we go from x to u. In particular, the upper limit changes to u =
42 + 4 = 20 and the lower limit changes to u = 02 + 0 = 0.

5. Evaluate
∫ 1

0
x2 + (x2 + 1)4x dx.

By linearity,∫ 1

0

x2 + (x2 + 1)4x dx =

∫ 1

0

x2 dx+

∫ 1

0

(x2 + 1)4x dx

We can easily do the first integral:∫ 1

0

x2 dx =
x3

3

∣∣∣∣1
x=0

=
13

3
− 03

3
=

1

3
.

For the second part, let u = x2+1. Then du = 2x dx, and du
2

= x dx.
Then, making the relevant substitutions, we have∫ 1

0

(x2 + 1)4x dx =

∫ 2

1

u4

2
du

=
u5

10

∣∣∣∣2
u=1

=
32

10
− 1

10
=

31

10
.
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(Note again how we changed the limits of integration.) So the
overall integral is 1

3
+ 31

10
.

The next couple of theorems formalize the technique of substitution that
we’ve been using.

Theorem 4.29 Let g be a differentiable function and suppose that F is an
antiderivative of f . Then, if we let u = g(x),∫

f(g(x))g′(x) dx =

∫
f(u) du = F (u) + c = F (g(x)) + c

This just tells us that our substitution method works and can be applied
broadly. The next theorem formalizes our way of dealing with the limits of
integration when evaluating definite integrals.

Theorem 4.30 Let g have a continuous derivative on [a, b] and let f be
continuous on the range of g. Then, letting u = g(x), we have∫ b

a

f(g(x))g′(x) dx =

∫ g(b)

g(a)

f(u) du.

The next theorem allows us to simplify our calculations when the inte-
grand (the function being integrated) takes a particular form. First we need
to define even and odd functions.

Definition 4.10. An even function is a function for which f(x) = f(−x)
for all x in the domain of f . An odd function is a function for which f(−x) =
−f(x) for all x in the domain of f . �

Now we can give the result.

Theorem 4.31 If f is an integrable even function, then∫ a

−a
f(x) dx = 2

∫ a

0

f(x) dx.

If f is an integrable odd function, then∫ a

−a
f(x) dx = 0.
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The two assertions in the above theorem correspond to cases where area
is the same on both sides of the origin, and where area on one side of the
origin cancels area on the other side of the origin.

Example 4.19 (Even and odd functions)
1. Evaluate

∫ 3

−3 |x| dx. This is an even function. Thus, we can do the
following: ∫ 3

−3
|x| dx = 2

∫ 3

0

x dx = 2 · x
2

2

∣∣∣∣3
x=0

= 9

2. Evaluate
∫ 5

−5
x5

x2+4
dx. Is this function even or odd? Substitute −x

in for x:

f(−x) =
(−x)5

(−x)2 + 4
=
−x5

x2 + 4
= −f(x).

This function is odd. Thus,∫ 5

−5

x5

x2 + 4
dx = 0.

4.2.3 Natural Logarithms

Notice that we haven’t really dealt with any kind of exponential functions
yet. And in fact, we have a gap in our knowledge of derivatives.

d(x
3

3
)

dx
= x2

d(x
2

2
)

dx
= x

d(x)
dx

= x0

d(???)
dx

= x−1

d(x−1)
dx

= x−2

Recall that the first fundamental theorem of calculus asserted that we can
find the anti-derivative of any continuous function. However, this does not
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mean that we can describe that anti-derivative in terms of what we already
know—so we’ll need some new machinery to describe the antiderivative of
x−1.

Definition 4.11. The natural logarithm function, denoted ln(x), is defined
by

ln(x) =

∫ x

1

1

t
dt

for all x > 0. �

The natural logarithm function measures the area under the curve y = 1
t

between 1 and x if x > 1, and the negative of the area for 0 < x < 1. Now we
note that the derivative of this new function is exactly what we were looking
for: by the First Fundamental Theorem of Calculus,

d

dx
ln(x) =

d

dx

∫ x

1

1

t
dt =

1

x
.

Let’s show that d ln |x|
dx

= 1
x

for all x 6= 0. We have two cases to consider:

either x > 0 or x < 0. If x > 0, |x| = x and d ln |x|
dx

= d(ln(x))
dx

= 1
x
. If x < 0,

|x| = −x and so: d ln |x|
dx

= d ln(−x)
dx

= 1
−x(−1) = 1

x
. Thus, what happens when

we integrate 1
x

is the following:∫
1

x
dx = ln |x|+ c.

Example 4.20 (Natural logarithm)
1. Evaluate

∫
5

2x+7
dx. Let u = 2x + 7. Then du = 2 dx. So we can

rewrite the problem as

5

2

∫
1

2x+ 7
· 2 dx =

5

2

∫
1

u
du =

5

2
ln|u|+ c =

5

2
ln |2x+ 7|+ c.

2. Evaluate
∫ 3

−1
x

10−x2 dx. Let u = 10 − x2. Then du = −2x dx and

thus x dx = −du
2

.
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Making the proper substitutions, we see that:∫ 3

−1

x

10− x2
dx =

−1

2

∫ 1

9

1

u
du

=
−1

2
ln |u|

∣∣∣∣1
u=9

=
−1

2
(ln 1− ln 9)

=
1

2
ln 9.

Since we’ve defined ln as the natural logarithm, by now you should be
able to guess what its inverse is: an exponent.

Definition 4.12. The inverse of ln is called the natural exponential function
and is denoted by exp. Thus x = ey if and only if y = lnx. Note that the
symbol exp(1) or e denotes the unique positive number such that ln e = 1.�

By defining e in this way, it follows immediately that the following two
things hold:

• eln(x) = x for all x > 0

• ln(ey) = y for all y

Note that the number e, which is itself irrational (e ' 2.718) is one of the
most important numbers in math; you’ll find yourselves making quite a bit
of use of e in PSC 404 with various probability distributions.

The natural exponent has the usual properties of an exponent, such as
ea · eb = ea+b and ea/eb = ea−b. But it also has a special property in the
context of differentiation: if y = ex, then

dy

dx
= ex = y.

That is, the natural exponent is its own derivative. This is important enough
that we’ll go ahead and prove it.
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Proof. Suppose y = ex. We then have

x = ln y.

d

dx
x =

d

dx
ln y.

1 =
1

y
· dy
dx
.

y =
dy

dx
.

Therefore, dy
dx

= ex, as claimed. �

Example 4.21 (Natural logarithm and exponent)
1. Find dy

dx
if y = ex

2 ln(x). Applying the Chain Rule and the Product
Rule, we get

dy

dx
= ex

2 lnx ·
(

2x · lnx+ x2 · 1

x

)
= ex

2 lnx(x+ 2x lnx).

2. Let f(x) = xe
x
2 . Find where f is increasing, where it is decreasing,

where it is concave up and concave down.

We’ll start by taking the first two derivatives of f and finding their
stationary points.

f ′(x) = e
x
2 +

x

2
e

x
2 = e

x
2

(
x+ 2

2

)
f ′′(x) =

e
x
2

2
+
e

x
2

2
+
x

4
e

x
2 = e

x
2

(
1

2
+

1

2
+
x

4

)
Since e

x
2 is always positive, f ′(x) must be negative when x < −2,

zero at x = −2, and positive when x > −2. Therefore, the function
is decreasing on (−∞,−2) and increasing on (−2,∞), with a local
minimum at x = −2.

Similarly, the sign of f ′′(x) only depends on that of 1 + x
4
. We have

f ′′(x) < 0 for x < −4 and f ′′(x) > 0 for x > −4, so the function is
concave down on (−∞,−4) and concave up on (−4,∞).
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3. Evaluate
∫
e−4x dx.

Recall that dex

dx
= ex. So we want a function such that df(x)

dx
= e−4x.

Let u = −4x. Then du = −4 dx and dx = −1
4
du. Making the

substitutions, we have∫
e−4x dx = −1

4

∫
eudu = −1

4
eu + c = −1

4
e−4x + c.

4. Evaluate
∫
x2e−x

3
dx. Let u = −x3. Then du = −3x2 dx and

x2 dx = −1
3
du. Making the relevant substitutions, we see that:∫

x2e−x
3

dx = −1

3

∫
eudu = −1

3
eu + c = −1

3
e−x

3

+ c.

We’ve talked about the natural log function and the exponential function
ex. But now what about ax and its derivatives?

Theorem 4.32 For a > 0 and any real number x, ax = ex ln a.

Note that as we’ve seen before with exponents, the usual laws apply when
there is a variable in the exponent. The rules are summarized in the next
theorem.

Theorem 4.33 For any a > 0,

1. d(ax)
dx

= ax ln(a)

2.
∫
ax dx = 1

ln(a)
ax + c for a 6= 1.

Proof. For statement 1, we use the definition above and apply the Chain
Rule:

d(ax)

dx
=
d(ex ln a)

dx

= ex ln a · d(x ln a)

dx
= ex ln a · ln a
= ax ln a.
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We then have
d

dx

(
1

ln a
ax + c

)
=

1

ln a
(ax ln a) = ax,

which proves statement 2. �

Example 4.22 (Derivatives of exponential functions)
1. Find d(3

√
x)

dx
.

By the Chain Rule,

d(3
√
x)

dx
= 3

√
x ln 3 · d(

√
x)

dx
= 3

√
x ln 3 · 1

2
x−

1
2 =

3
√
x ln 3

2
√
x

.

2. Find dy
dx

if y = (x4 + 2)5 + 5x
4+2.

dy

dx
= 5(x4 + 2)4 · 4x3 + 5x

4+2 ln(5) · (4x3).

3. Find
∫

2x
3
x2 dx.

We can do a simple substitution here: let u = x3. Then du = 3x2 dx
and so du

3
= x2 dx. Making the substitutions:∫

2x
3

x2 dx =

∫
2u

3
du =

1

3 ln 2
2u =

1

3 ln 2
2x

3

+ c

4.2.4 Techniques of Integration

Generally, differentiation of the sort of functions we run into is straightfor-
ward and usually quite simple. Anti-differentiation is not. There are three
main techniques that people use to do this stuff. The first is trigonometric
functions, which we’ll disregard because they are rarely useful in political
science applications. The second is substitutions—which we’ve already been
doing.
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Substitutions

Recall: let g be a differentiable function and let F be an antiderivative of f .
Then if u = g(x),

f(g(x))g′(x) dx =

∫
f(u)du = F (u) + c = F (g(x)) + c.

So basically, all you really want to do when you want to integrate a function
by substitutions is the following:

1. Identify the part of the function to assign to u. Generally, you’ll want
this to differentiate so that you can replace the remaining parts of the
function.

2. Differentiate u.

3. Substitute u in for x.

4. Integrate.

5. Substitute x back in for u.

6. Evaluate (if it is a definite integral).

Note that, as a check, you can always differentiate the result to see if you
get back to the original integral, and also to practice your skills! Also note
that for integrals that involve some sort of radical like n

√
ax+ b, for example,

making the substitution u = n
√
ax+ b will eliminate that radical and ease

your pain.

Integration by Parts

When integration by substitution fails, it may be possible to use a kind of
double substitution called integration by parts.

Consider first the simple indefinite integral. Let u = u(x) and v = v(x).
Then

d(u(x)v(x))

dx
= u(x)v′(x) + u′(x)v(x),

which implies

u(x)v′(x) =
d(u(x)v(x))

dx
− u′(x)v(x).
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By integrating both sides of the equation we get∫
u(x)v′(x) dx = u(x)v(x)−

∫
u′(x)v(x) dx.

Since dv = v′(x) dx and u′(x) dx = du we can write this in the following
manner (this is how you might encounter it if you looked this up online or
in a text): ∫

u dv = uv −
∫
v du.

From this, it’s quite a short hop to definite integrals:∫ b

a

u(x)v′(x) dx = u(x)v(x)|bx=a −
∫ b

a

v(x)u′(x) dx.

Example 4.23 (Integration by parts)
1. Find

∫ 2

1
ln(x) dx. Let u = lnx and dv = dx. Then du = 1

x
dx and

v = x. ∫ 2

1

ln(x) dx = x ln(x)|2x=1 −
∫ 2

1

x · 1

x
dx = 2 ln(2)− 1

2. Find
∫
xex dx. Let u = x and dv = ex dx. Then du = dx and

v = ex.∫
xex dx = xex −

∫
ex dx = xex − ex + c = (x− 1)ex + c

How do we choose which function is to be u and which function is to be
dv? There is a simple rule of thumb that we can use: choose u to be whatever
in your expression comes first in this list:

• I: inverse trigonometric functions arctan(x), arcsin(x), etc

• L: logarithmic functions ln(x)

• A: algebraic functions x2, 3x50, etc
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• T: trigonometric functions sin(x), cos(x), etc

• E: Exponential functions ex

Note that, in general, the functions lower on the list have easier antideriva-
tives than do functions higher on the list. Also, note that we will pretty
much never see inverse trig functions and trig functions; they simply aren’t
that useful for what we do in political science.

Methods for Rational Functions

Recall that a rational function is simply the quotient of two polynomials.
Let’s begin by making an additional distinction.

Definition 4.13. A rational function is a proper rational function if the
degree of the numerator is less than the degree of the denominator. �

An example is the rational function

f(x) =
2x+ 2

x2 − 4x+ 8
.

Note that we can always write an improper rational function as a polynomial
plus a proper rational function by simply doing long division.

Long divison. As an example, suppose that f(x) = x2−3x−10
x+2

.

x − 5

x+ 2
)

x2 − 3x− 10
− x2 − 2x

− 5x− 10
5x + 10

0

Therefore another way to write f(x) = x2−3x−10
x+2

is f(x) = x− 5

As another example, suppose that f(x) = x5+2x3−x+1
x3+5x

.
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x2 − 3

x3 + 5x
)

x5 + 2x3 − x + 1
− x5 − 5x3

− 3x3 − x
3x3 + 15x

14x

Now we can’t take this any further, since the degree of the polynomial is
greater than our remainder, so we get

f(x) = x2 − 3 +
14x+ 1

x3 + 5x
.

This long division can often make integrals easier to work with.

Completing the square. This is a simple operation where we can replace
an expression of the form x2 + bx with (x + c)2 + d. This reduces any
problem involving a quadratic polynomial to one involving a square quadratic
polynomial and a constant.

For example, we have

x2 − 4x+ 8 = x2 − 4x+ 4 + 4 = (x− 2)2 + 4.

In general, we won’t use this too much, since it often results in having to
integrate and get trigonometric functions.

Partial fraction decomposition. Adding fractions is a standard part of
our arsenal. This is a process whereby we go the opposite way — we undo
fraction addition. There are obviously an infinite variety of possible partial
fraction decompositions; we’ll go through a few examples here.

1. Distinct linear factors: these will be things that we can break down
into polynomials of degree 1. Consider the following example:

f(x) =
3x− 1

x2 − x− 6
=

3x− 1

(x− 3)(x+ 2)
.
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So we require A and B so that the following relationship holds:

A

x− 3
+

B

x+ 2
=

3x− 1

x2 − x− 6

3x− 1 = A(x+ 2) +B(x− 3)

3x− 1 = Ax+ 2A+Bx− 3B

3x− 1 = (A+B)x+ 2A− 3B

So we see that it must be the case that A+B = 3 and then 2A−3B =
−1. We now need only solve this little system of equations. The first
implies A = 3−B, so we have

2(3−B)− 3B = −1 ⇔ 6− 5B = −1 ⇒ B =
7

5
,

which in turn implies A = 8
5
.

Thus our partial fraction decomposition yields

3x− 1

x2 − x− 6
=

8
5

x− 3
+

7
5

x+ 2
.

Now consider the problem of trying to integrate this function,∫
3x− 1

x2 − x− 6
dx.

We might try substitution with u = x2−x−6, but then du = (2x−1) dx.
This won’t work — we cannot make du equal to the numerator in our
expression. But, as we have just seen, we can rewrite the problem as∫ 8

5

x− 3
+

7
5

x+ 2
dx =

∫ 8
5

x− 3
dx+

∫ 7
5

x+ 2
dx

=
8

5
ln |x− 3|+ 7

5
ln |x+ 2|+ c.

The actual integration step is easy.

As another example, find
∫

5x+3
x3−2x2−3x dx. Obviously we’ll be using par-

tial fraction decomposition. The denominator factors into

x3 − 2x2 − 3x = x(x2 − 2x− 3) = x(x− 3)(x+ 1).
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Then we require A, B, and C so that

5x+ 3

x3 − 2x2 − 3x
=
A

x
+

B

x− 3
+

C

x+ 1
.

This gives us the condition

5x+ 3 = A(x− 3)(x+ 1) +B(x+ 1)x+ C(x− 3)x.

This time, instead of multiplying out and combining the coefficients,
let’s simply substitute in some values for x. In particular, we’ll pick
values so that two of the three terms drop out, and we can solve for
the last.

• Setting x = 0, we get 3 = −3A, so A = −1.

• Setting x = −1, we get −2 = 4C, so C = −1
2

.

• Setting x = 3, we get 18 = 12B, so B = 3
2
.

Going back to the integral, we have∫
5x+ 3

x3 − 2x2 − 3x
dx =

∫
−1

x
dx+

∫ −1
2

x− 3
dx+

∫ 3
2

x+ 1
dx

= − ln |x| − 1

2
ln |x− 3|+ 3

2
ln |x+ 1|+ c.

2. Repeated linear factors: Consider the problem of finding
∫

x
(x−3)2 dx.

Again, we’ll use a partial fraction decomposition to solve this problem.
This time, the decomposition shall take the form:

x

(x− 3)2
=

A

x− 3
+

B

(x− 3)2

Why the square in the second term? Its easier to deal with in the
following step:

x = A(x− 3) +B.

x = Ax− 3A+B.
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Substituting in x = 3, we see that B = 3. Then, substituting in x = 0,
we get 3A = B, meaning A = 1. Therefore, our integral becomes∫

x

(x− 3)2
dx =

∫
1

x− 3
dx+

∫
3

(x− 3)2
dx

= ln |x− 3| − 3

x− 3
+ c.

Note that the general rule for decomposing functions with repeated
linear factors in the denominator is that for each factor (ax+ b)k in the
denominator there are k terms in the partial fraction decomposition:

A1

ax+ b
+

A2

(ax+ b)2
+

A3

(ax+ b)3
+ . . .+

Ak
(ax+ b)k

.

Here’s an example to do yourselves: find
∫

3x2−8x+13
(x+3)(x−1)2 dx. The decom-

position is

3x2 − 8x+ 13

(x+ 3)(x− 1)2
=

A

x+ 3
+

B

x− 1
+

C

(x− 1)2

3x2 − 8x+ 13 = A(x− 1)2 +B(x+ 3)(x− 1) + C(x+ 3).

Solve for A, B, and C by substitutions:

• Setting x = 1, we get 4C = 8, so C = 2.

• Setting x = −3, we get 16A = 64, so A = 4.

• Setting x = 0, we get A−3B+3C = 4−3B+6 = 13, so B = −1.

Finally, the integral is∫
4

x+ 3
dx+

∫
2

(x− 1)2
dx−

∫
dx

x− 1
= 4 ln |x+3|−ln |x−1|+2

1

x− 1
+c.

3. Single quadratic factor: we use this when we find it impossible
to factorize the denominator into a linear factor without introducing
complex numbers. For example, consider∫

6x2 − 3x+ 1

(4x+ 1)(x2 + 1)
dx.
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In this case, the appropriate form of the decomposition is

6x2 − 3x+ 1

(4x+ 1)(x2 + 1)
=

A

4x+ 1
+
Bx+ C

x2 + 1

6x2 − 3x+ 1 = A(x2 + 1) + (Bx+ C)(4x+ 1)

= Ax2 + A+ 4Bx2 +Bx+ 4Cx+ C

= (A+ 4B)x2 + (B + 4C)x+ A+ C

We thus have the system

6 = A+ 4B

−3 = B + 4C

1 = A+ C

We can subtract the third from the first, and multiply the second by
−4, to get:

5 = 4B − C
12 = −4B − 16C

We thus have 17 = −17C, so C = −1. We then have A = 1 − C = 2
and B = −3− 4C = 1. The original integral becomes∫

2

4x+ 1
+

x− 1

x2 + 1
dx.

You can integrate this, though you’ll find one of the integrals results in
a trigonometric function.

4.2.5 Improper Integrals

This is our last topic before we begin with multivariate calculus. When we
defined definite integrals, ∫ b

a

f(x) dx,

we implicitly assumed that both a and b were finite. But how do we deal
with things like ∫ ∞

−∞
f(x) dx?

We’ll start by defining such an integral more formally.
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Definition 4.14. An improper integral takes one of the following forms:∫ b

−∞
f(x) dx = lim

a→−∞

∫ b

a

f(x) dx∫ ∞
a

f(x) dx = lim
b→∞

∫ b

a

f(x) dx

If the limit exists and has a finite value, we say that the corresponding
improper integral converges and has this value. Otherwise, the integral is
said to diverge. �

Example 4.24 (Infinite limits of integration)
Find if possible

∫ −1
−∞ xe

−x2 dx.∫ −1
−∞

xe−x
2

dx = −1

2

∫ −1
−∞
−2xe−x

2

dx

= lim
a→−∞

−1

2

∫ −1
a

−2xe−x
2

= lim
a→−∞

−1

2
e−x

2

∣∣∣∣−1
x=a

= lim
a→−∞

(
−1

2e
+

1

2ea2

)
=
−1

2e
.

Definition 4.15. If there is a finite c such that
∫ c
−∞ f(x) dx and

∫∞
c
f(x) dx

converge, then
∫∞
−∞ f(x) dx converges and has value∫ ∞
−∞

f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞
c

f(x) dx.
�

Finally, what will happen when we have an infinite integrand? We might
end up with things that look really simple, but in fact turn out not to be so.
Consider the following example:∫ 1

−2

1

x2
dx =

−1

x
|1−2 =

−1

1
− −1

−2
= −3

2
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This doesn’t seem right if you look at the graph of the function, which has
a vertical asymptote at x = 0. For a function to be integrable in the stan-
dard sense—that is, for us to treat it as we just did—the function must be
bounded.

There are two possibilities that we shall have to deal with.

Infinite at an endpoint.

Definition 4.16. Let f be continuous on the half-open interval [a, b) and
suppose that limx→b− |f(x)| =∞. Then∫ b

a

f(x) dx = lim
t→b−

∫ t

a

f(x) dx,

provided that this limit exists and is finite, in which case we say that the
integral converges. Otherwise, the integral diverges. (The definition when f
approaches infinity at a is analogous.) �

Example 4.25 (Integral when f is infinite at an endpoint)
1. Evaluate, if possible,

∫ 16

0
1
4√x dx.∫ 16

0

1
4
√
x
dx = lim

t→0+

∫ 16

t

x
−1
4 dx

= lim
t→0+

4

3
x

3
4

∣∣∣∣16
x=t

= lim
t→0+

4

3

(
(16)

3
4 − t

3
4

)
= lim

to→0+

(
32

3
− 4

3
t
3
4

)
=

32

3
.

2. Evaluate, if possible,
∫ 1

0
1
x
dx.∫ 1

0

1

x
dx = lim

t→0+

∫ 1

t

1

x
dx = lim

t→0+
ln |x||1t = lim

t→0+
ln 1−ln t = lim

t→0+
− ln t =∞.

The integral, in this case, diverges.
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Infinite at an interior point. This was the case we originally considered.

Definition 4.17. Let f be continuous on [a, b] except at a number c, where
a < c < b, and suppose that limx→c |f(x)| =∞. Then∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

provided that both integrals on the right hand side converge. Otherwise we
say that

∫ b
a
f(x) dx diverges. �

Example 4.26 (Integral when f is infinite an at interior point)
Evaluate if possible the improper interval

∫ 3

0
1

(x−1)
2
3
dx. The first thing

to observe is that this integral tends toward infinity at x = 1. Thus, we
break up the interval over which we are integrating into two parts, as
suggested by our definition:∫ 3

0

1

(x− 1)
2
3

dx =

∫ 1

0

1

(x− 1)
2
3

dx+

∫ 3

1

1

(x− 1)
2
3

dx

= lim
t→1−

∫ t

0

1

(x− 1)
2
3

dx+ lim
s→1+

∫ 3

s

1

(x− 1)
2
3

dx

= lim
t→1−

3(x− 1)
1
3

∣∣∣t
x=0

+ lim
s→1+

3(x− 1)
1
3

∣∣∣3
x=s

= 3 · lim
t→1−

[
(t− 1)

1
3 − (0− 1)

1
3

]
+ 3 · lim

s→1+

[
(2)

1
3 − (s− 1)

1
3

]
= 3 + 3 · 2

1
3 .



Chapter 5

Multivariate Calculus

Up to this point we’ve talked entirely about calculus as applied to functions
in the Cartesian plane, with just an x and y axis. This is just a special case
of a more general n-space, of which we’ve restricted our attention to only
two dimensions. Our task now is to generalize our notions of derivatives and
integrals to n-space. Before we can do that, we need to talk about vectors.

5.1 Vectors

There are some things we talk about that are simply scalars. Speed, length,
mass, etc., are easily represented as numbers (magnitude). But there are
other things—like velocity and force—that require both a magnitude and a
direction. We call these vectors.

Generally, we might represent these as arrows emanating from the ori-
gin: the length of the arrow corresponds to the magnitude of the vector, and
the direction of the arrow is its direction. The vector is set to originate at
the origin, its magnitude and direction are determined uniquely by choosing
the coordinates in the Cartesian plane associated with the end of the vec-
tor. We write this as ~u = (u1, u2). (For simplicity, we will be focusing on
two-dimensional vectors, but all of the concepts introduced here generalize
straightforwardly to n-dimensional vectors.)

Operations on vectors: Let ~u = (u1, u2) and ~v = (v1, v2) be vectors.

1. Vector equality: ~u = ~v if u1 = v1 and u2 = v2.

2. Vector addition: ~u+ ~v = (u1 + v1, u2 + v2)

104
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3. Scalar multiplication: for a scalar c, c~u = (cu1, cu2).

4. Magnitude of vectors: The length of ~u is given by ‖~u‖ =
√
u21 + u22.

5. Dot product: Given two vectors, ~u · ~v = u1v1 + u2v2.

There is a second formula for the dot product: ~u · ~v = ‖~u‖‖~v‖ cos(θ),
where θ is the angle between the two vectors. Note that this implies
that two vectors will be perpendicular to one another if and only if
~u · ~v = 0.

Theorem 5.1 For any vectors ~u, ~v, and ~w and any scalars a and b the
following hold:

1. ~u+ ~v = ~v + ~u

2. (~u+ ~v) + ~w = ~u+ (~v + ~w)

3. ~u+~0 = ~0 + ~u = ~u

4. ~u+ (−~u) = ~0

5. a(b(~u)) = (ab)~u = ~u(ab)

6. a(~u+ ~v) = a~u+ a~v

7. (a+ b)~u = a~u+ b~u

8. ~u · ~v = ~v · ~u

9. ~u · (~v + ~w) = ~u · ~v + ~u · ~w

10. ‖a~u‖ = |a|‖~u‖

11. a(~u · ~v) = (a~u) · ~v = ~u · (a~v)

12. ~0 · ~u = 0

13. ~u · ~u = ‖~u‖2

Example 5.1 (Vectors)
1. Suppose ~u = (4,−3). Compute ‖~u‖ and ‖−2~u‖.
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• ‖~u‖ =
√

42 + (−3)2 =
√

16 + 9 =
√

25 = 5

• ‖−2~u‖ = | − 2|‖~u‖ = 2
√

25 = 10

2. Find b so that (8, 6) and (3, b) are orthogonal.

(8, 6) · (3, b) = 0

24 + 6b = 0

b = −4

5.2 Differential Calculus

In this section we’ll be considering the derivatives of functions in n-space.
The basic idea is to take the derivative of the function with respect to a
single variable, using our typical methods, while holding all other variables
fixed (treating them as if they were constants).

5.2.1 Partial Derivatives

Definition 5.1. The partial derivative of a function of n variables at
(x01, x

0
2, . . . , x

0
n) with respect to xi is

∂f(x01, x
0
2, . . . , x

0
n)

∂xi

= lim
h→0

f(x01, x
0
2, . . . , x

0
i − h, . . . , x0n)− f(x01, x

0
2, . . . , x

0
n)

h
. �

So the partial derivative is just defined in terms of a one-dimensional limit,
which we already know how to deal with. Let’s do a couple of examples to
illustrate.
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Example 5.2 (Partial derivatives)
1. Suppose f(x, y) = x2y + 3y3. Find ∂f

∂x
and ∂f

∂y
. To do this, simply

differentiate with respect to one variable while treating the other
as though it were simply a constant:

∂f(x, y)

∂x
= 2xy.

∂f(x, y)

∂y
= x2 + 9y2.

2. Consider the volume of a cone given by V = r2hπ
3

where r is the
radius and h is the height. Find the rate of change of the cone’s
volume as its radius varies and its height remains constant.

To do this, simply take the partial derivative with respect to r:

∂V

∂r
=

2rhπ

3
.

Since a partial derivative of a function of x and y is another function
of those same two variables, it can be differentiated yet again in the same
way, either with respect to x or with respect to y. Thus, in the case of two
variables, each first derivative has two possible second derivatives:

∂

∂x

(
∂f(x, y)

∂x

)
=
∂2f(x, y)

∂x2

∂

∂y

(
∂f(x, y)

∂x

)
=
∂2f(x, y)

∂y∂x

When we’ve differentiated with respect to multiple different variables, we call
that a mixed partial derivative.
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Example 5.3 (Second partial derivatives)
Find all the second partial derivatives of f(x, y) = xey + x3y2.

∂f

∂x
= ey + 3x2y2

∂2f

∂x2
= 6xy2

∂2f

∂y∂x
= ey + 6x2y

∂f

∂y
= xey + 2x3y

∂2f

∂y2
= xey + 2x3

∂2f

∂x∂y
= ey + 6x2y

Now let’s extend our notions of limits and continuity to n-dimensional
space.

Definition 5.2. Let ~x = (x1, . . . , xn) be an n-dimensional variable and ~a =
(a1, . . . , an) be a constant vector. To say that lim~x→~a f(x1, . . . , xn) = Lmeans
that for each ε > 0, there is a corresponding δ > 0 such that ‖f(x1, . . . , xn)−
L‖ < ε when 0 < ‖~x− ~a‖ < δ. �

There are 3 things to note about this definition of limits in n-space:

1. The path by which we approach ~a is totally irrelevant. Thus, if different
paths of approach lead to different values of L, the limit does not exist.

2. The actual behavior of the function at ~a is irrelevant; the function does
not even have to be defined at ~a. It only matters what happens as we
get arbitrarily close to ~a.

3. All of our previous limit results hold. So if we run into problems with
new n-space limits, we can refer back to our previous results.
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Example 5.4 (Limits in n-space)
Find lim(x,y)→(0,0)

x2−y2
x2+y2

or show that it doesn’t exist. We have

lim
(x,0)→(0,0)

x2 − 0

x2 + 0
= lim

(x,0)→(0,0)
1 = 1

lim
(0,y)→(0,0)

0− y2

0 + y2
= lim

(0,y)→(0,0)
−1 = −1

And so the limit does not exist.

Having defined limits in n-space, we can now consider the continuity of
functions.

Definition 5.3. We say that f(x1, . . . , xn) is continuous at a point ~a =
(a1, . . . , an) if

1. f has a value at ~a

2. f has a limit at ~a

3. lim~x→~a f(x1, . . . , xn) = f(a1, . . . , an) �

Intuitively, this is essentially the same as before: no jumps, no wild fluc-
tuations in the value of the function, and no unbounded behavior.

As in the case of functions of just one variable, we still have that polynomi-
als are continuous everywhere, rational functions are continuous everywhere
that the denominator is not zero, and the composition of two continuous
functions is continuous.

The next result gives a condition for symmetry of the mixed partial deriva-
tives.

Theorem 5.2 (Young’s Theorem) If ∂2f
∂x ∂y

and ∂2f
∂y ∂x

exist and are contin-
uous on an open set S, then at each point of that set S,

∂2f

∂x∂y
=

∂2f

∂y∂x
.

The theorem is stated just for the two-dimensional case, but its general-
ization to higher-order partial derivatives is straightforward.
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5.2.2 The Gradient

Recall that when we were discussing functions of a single variable, differ-
entiability of f at x meant the existence of the derivative f ′(x), which was
equivalent to the graph having a tangent line at x. How can we generalize
the notion of differentiability? What plays the role of the derivative for a
function of two or more variables? It can’t be the derivative itself, because
there is more than one of them.

Another way that we can think of a 1-variable derivative is that if f
is differentiable at a point c, there exists a tangent line that approximates
the function for the values of x near c. We can write this formally for the
2-dimensional case as follows.

Definition 5.4. Consider a function f : R2 → R. We say that f is locally
linear at (c1, c2) if f(c1 + h1, c2 + h2) = f(c1, c2) + h1

∂f(c1,c2)
∂x1

+ h2
∂f(c1,c2)
∂x2

+
ε(h1, h2) where ε(h1, h2)→ 0 as (h1, h2)→ 0. �

We can rewrite this in vector notation: let ~c = (c1, c2), ~h = (h1, h2) and

ε(~h) = ε(h1, h2). Then this simplifies to:

f(~c+ ~h) = f(~c) +

(
∂f(~c)

∂x1
,
∂f(~c)

∂x2

)
· ~h+ ε(~h).

We have a special name for the vector (∂f(~c)
∂x1

, ∂f(~c)
∂x2

) given above. We write
this as ∇f(~c) and call it the gradient of f at ~c.

Definition 5.5. Let f : Rn → R be differentiable at ~c. The gradient of f at
~c, written ∇f(~c), is the vector of partial deriatives of f evaluated at ~c,

∇f(~c) =

(
∂f(~c)

∂x1
,
∂f(~c)

∂x2
, . . . ,

∂f(~c)

∂xn

)
.

�

Now we can define differentiability in terms of local linearity for a function
of n variables.

Definition 5.6. A function f is differentiable at ~c if and only if it is locally
linear at ~c; i.e., if

f(~c+ ~h) = f(~c) +∇f(~c) · ~h+ ε(~h),

where ε(~h)→ 0 as ~h→ 0. �
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In practice we do not typically need to check this condition, thanks to
the following result.

Theorem 5.3 If f(~c) has continuous partial derivatives ∂f
∂x1
, ∂f
∂x2
, . . . , ∂f

∂xn
on

a set S ⊆ Rn whose interior contains ~c, then f is differentiable at ~c.

In other words, in order to have differentiability at a point, all we need
are continuous partial derivatives at that point.

Example 5.5 (Gradients and differentiability)
Calculate the gradient of f(x, y) = xey + x2y and show that it is differ-
entiable everywhere. We have

∂f

∂x
= ey + 2xy

∂f

∂y
= xey + x2,

Note that these are both continuous everywhere and so by the theorem
given above, f(x, y) is differentiable everywhere. The gradient is simply
the vector formed by these partial derivatives:

∇f(x, y) = (ey + 2xy, xey + x2).

Properties of the gradient:

1. ∇(f(~c) + g(~c)) = ∇f(~c) +∇g(~c)

2. ∇(αf(~c)) = α∇f(~c)

3. ∇(f(~c)g(~c)) = f(~c)∇g(~c) + g(~c)∇f(~c)

We also can establish that the relationship we saw between differentiabil-
ity and continuity in the one-dimensional case is also true in n dimensions.

Theorem 5.4 If f is differentiable at ~c, then f is continuous at ~c.

The same caveat applies as before: all differentiable functions are contin-
uous, but not all continuous functions are differentiable.
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5.2.3 Directional Derivatives

The partial derivatives tell us the rate of change in f(x, y) as we move along
the x or y axis. What if we wanted to consider the rate of change in some
other direction?

Definition 5.7. A unit vector is a vector ~u such that ‖~u‖ = 1. �

Note that if ~p is non-zero, then ~u = 1
‖~p‖~p is a unit vector in the same

direction as ~p.

Definition 5.8. For any unit vector ~u, consider the limit

D~uf(~c) = lim
h→0

f(~c+ h~u)− f(~c)

~h
.

If this limit exists and is finite, we call it the directional derivative of f at ~c
in direction ~u. �

The directional derivative has a very useful connection with the gradient—
one that lets us avoid computing this limit explicitly.

Theorem 5.5 Let f be differentiable at ~c. Then f has a directional deriva-
tive at ~c in the direction of the unit vector ~u and

D~uf(~c) = ~u · ∇f(~c).

Example 5.6 (Directional derivatives)
1. If f(x, y) = 4x2 − xy + 4y2, find the directional derivative of f at

(−2, 1) in the direction of (4, 3).

First, we compute the gradient:

∇f(x, y) = (8x− y, 8y − x) = (−17, 10).

Before computing the directional derivative, we need to convert the
direction into a unit vector,

~u =
1

‖~c‖
~c =

1√
42 + 32

(4, 3) =

(
4

5
,
3

5

)
.
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Therefore, we have

D~uf(−2, 1) =

(
4

5
,
3

5

)
· (−17, 10) =

−68

5
+

30

5
=
−38

5
.

2. Find the directional derivative of f(x, y, z, t) = xyzt at (1, 1,−3, 5)
in the direction (1, 2, 2, 4).

The gradient is

∇f(x, y, z, t) = (yzt, xzt, xyt, xyz) = (−15,−15, 5,−3).

The unit vector for the direction is

~u =
1

‖~c‖
~c =

1√
12 + 22 + 22 + 42

(1, 2, 2, 4) =

(
1

5
,
2

5
,
2

5
,
4

5

)
.

We then compute the directional derivative as

D~uf(1, 1,−3, 5) =

(
1

5
,
2

5
,
2

5
,
4

5

)
· (−15,−15, 5,−3)

= −3− 6 + 2− 12

5
=
−47

5
.

Theorem 5.6 (Direction of Steepest Ascent) A function increases most
rapidly at ~c in the direction of the gradient with rate ‖∇f(~c)‖ and decreases
most rapidly in the opposite direction with rate −‖∇f(~c)‖.

Example 5.7 (Direction of steepest ascent)
Suppose we are at a point (1, 1, 0) on a paraboliod defined by f(x, y) =
y2−x2. What direction should we move if we are looking for the steepest
climb and what will be the slope as we begin? The gradient is

∇f(x, y) = (−2x, 2y) = (−2, 2).

So we should move in direction (−2, 2) for the steepest climb. This will
be of slope ‖∇f(~c)‖ =

√
(−2)2 + 22 =

√
8.
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5.2.4 The Chain Rule Revisited

Remember that the chain rule was a means of differentiating composite func-
tions. This too can be generalized to functions of multiple variables.

Theorem 5.7 (Chain Rule, Part 1) Let x = x(t) and y = y(t) both be
differentiable at t, and let z = f(x, y) be differentiable at (x(t), y(t)). Then
z = f(x(t), y(t)) is differentiable at t and

dz

dt
=
∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
.

In this case, dz
dt

is also sometimes called the total derivative.

Example 5.8 (Total derivative)
1. Suppose z = x3y where x = 2t and y = t2, and find dz

dt
. We have

dz

dt
= 3x2y · 2 + x3 · 2t

= 3(2t)2 · 2t2 + (2t)3 · 2t
= 24t4 + 16t4 = 40t4.

Now you might be thinking this is lame — we didn’t really need the
chain rule for that, since a simple substitution would have turned
this into a one-variable problem. But the next example is not triv-
ial.

2. As a right solid cylinder is heated, its radius r and height h increase;
thus, so does its surface area:

S = 2πrh+ 2πr2.

Suppose that at the instant when the radius r = 10 and h = 100, r
is increasing at 0.2 units per hour, while h is increasing at 0.5 units
per hour. How fast is surface area increasing at this instant?

We want to find dS
dt

. The partial deriatives of S are

∂S

∂r
= 2πh+ 4πr.

∂S

∂h
= 2πr.
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Therefore, using the Chain Rule, we have

dS

dt
=
∂S

∂r

dr

dt
+
∂S

∂h

dh

dt
= (2πh+ 4πr)0.2 + (2πr)0.5

= (200π + 40π)0.2 + (20π)0.5

= 58π.

That is, surface area is increasing at 58π squared units per hour.

We can also state the Chain Rule for the case where the component
functions are themselves multivariate.

Theorem 5.8 (Chain Rule, Part 2) Let x = x(s, t) and y = y(s, t) have
first partial derivatives at (s, t) and let z = f(x, y) be differentiable at
(x(s, t), y(s, t)). Then z = f(x(s, t), y(s, t)) has first derivatives given by

dz

ds
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s
.

dz

dt
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
.

Example 5.9 (Total derivative with multivariate components)
Let z = 3x2 − y2 where x = 2s + 7t and y = 5st, and find dz

dt
and dz

ds

expressed in terms of s and t. The gradient of each function is as follows:

∇f(x, y) =

(
∂f

∂x
,
∂f

∂y

)
= (6x,−2y)

∇x(s, t) =

(
∂x

∂s
,
∂x

∂t

)
= (2, 7)

∇y(s, t) =

(
∂y

∂s
,
∂y

∂t

)
= (5t, 5s).
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Therefore, using the Chain Rule, the first derivatives of z =
f(x(s, t), y(s, t)) are

dz

ds
=
∂z

∂x

∂x

∂s
+
∂z

∂y

∂y

∂s

= 6x(2)− 2y(5t)

= 12(2s+ 7t)− 2(5st)(5t)

= 24s+ 84t− 50st2.

and

dz

dt
=
∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t

= 6x(7)− 2y(5s)

= 42(2s+ 7t)− 2(5st)(5s)

= 84s+ 294t− 50s2t.

5.2.5 Optimization

We’ll now look at using the derivative in n dimensions for the same purposes
as in one dimension: finding the maxima and minima of functions. In all
that follows, let ~x = (x1, x2, . . . , xn) and ~x0 = (x01, x

0
2, . . . , x

0
n).

Definition 5.9. A neighborhood of a point ~c ∈ Rn is a set of the form
{~x ∈ Rn | ‖~x− ~c‖ < ε} for some ε > 0. �

Note that in the one-dimensional case, a neighborhood is simply an in-
terval of the form (c− ε, c+ ε).

Definition 5.10. Consider a function f : S → R where S ⊆ Rn, and let ~x0
be any point in S.

• f(~x0) is a global maximum value of f on S if f(~x0) ≥ f(~x) for all ~x ∈ S.

• f(~x0) is a local maximum value of f on S if there exists a set U ⊆ S,
where U is a neighborhood of ~x0, such that f(~x0) is a global maximum
value of f on U .
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The definitions of global and local minimum values are analogous. �

Our result from the one-dimensional case on the existence of maxima and
minima also holds up in this context.

Theorem 5.9 If f is continuous on a closed, bounded set S, then f attains
both a global maximum value and a global minimum value on S.

So where do our extreme values occur in multidimensional space? It ends
up being analogous to what we saw before. The critical points of a function
f on S are again of three types:

1. Boundary points of S

2. Stationary points: we call ~x0 a stationary point if ~x0 is an interior point
of S where f is differentiable and ∇f(~x0) = ~0.

3. Singular points: we call ~x0 a singular point if ~x0 is an interior point of
S where f is not differentiable.

Theorem 5.10 (Critical Point Theorem) Let f be defined on a set S
containing ~x0. If f(~x0) is an extreme value, then ~x0 must be a critical point:

1. a boundary point of S

2. a stationary point of S

3. a singular point of S

Example 5.10 (Critical points in Rn)
1. Find the extreme points of f(x, y) = x2 − 2x + y2

4
. This is a poly-

nomial, so there are no boundary points or singular points. Thus,
we only have to look for stationary points. The gradient is

∇f(x, y) = (2x− 2, 1
2
y),

so the sole stationary point is (x, y) = (1, 0). Now we have to
determine if it is a maximum or a minimum. We have f(1, 0) = −1.
Note that x2−2x ≥ −1 for any x and y2/4 ≥ 0 for any y. Therefore,
we have found a minimum.
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2. Find the extreme values of f(x, y) = −x2
a2

+ y2

b2
. Again, no boundary

points or singular points, so we only need to look for stationary
points. The gradient is

∇f(x, y) =

(
−2x

a2
,
2y

b2

)
,

so obviously the only critical point is (x, y) = (0, 0).

Now for the tricky part: is this a maximum or a minimum? It is
neither: instead it is a saddle point, which is a maximum along one
dimension and a minimum along another. So when we speak about
the overall function, we get neither a maximum nor a minimum.

The second example illustrates something a little troubling about our
extreme points test, namely that for the gradient of a function to be zero at
a given point it is necessary for extrema but not sufficient.

Theorem 5.11 (Second Partials Test) Suppose that f(x, y) has contin-
uous second partial derivatives in a neighborhood of (x0, y0) and that
∇f(x0, y0) = ~0. Let

D(x0, y0) =
∂2f(x0, y0)

∂x2
∂2f(x0, y0)

∂y2
−
(
∂2f(x0, y0)

∂y∂x

)2

.

Then:

1. If D(x0, y0) > 0 and ∂2f(x0,y0)
∂x2

< 0, f(x0, y0) is a local maximum value.

2. If D(x0, y0) > 0 and ∂2f(x0,y0)
∂x2

> 0, f(x0, y0) is a local minimum value.

3. If D(x0, y0) < 0, f(x0, y0) is a saddle point, and thus not an extreme
value.

4. If D(x0, y0) = 0, the test is inconclusive.
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Example 5.11 (Second Partials Test)
1. Find the extrema of f(x, y) = 3x3 + y2 − 9x+ 4y

The gradient is

∇f(x, y) = (9x2 − 9, 2y + 4),

so the critical points are (x, y) = (1,−2) and (x, y) = (−1,−2).
We’ll now compute the second partial derivatives in order to apply
the above theorem:

∂2f

∂x2
= 18x

∂2f

∂y2
= 2

∂2f

∂x∂y
= 0.

Using the formula from the theorem, we have

D(x, y) =
∂2f(x0, y0)

∂x2
∂2f(x0, y0)

∂y2
−
(
∂2f(x0, y0)

∂y∂x

)2

= 36x.

We thus have D(1,−2) = 36 > 0 and ∂2f(1,−2)
∂x2

= 18 > 0, so
(1,−2) is a local minimum. For the other critical point, we have
D(−1,−2) = −36 < 0, so this is a saddle point.

2. Find the minimum distance between the origin and the surface z2 =
x2y + 4. First we need to come up with an expression for this
distance, which we will call d:

d =
√
x2 + y2 + z2

d2 = x2 + y2 + z2

= x2 + y2 + x2y + 4.

Any extreme value of d is also an extreme value of d2, so we’ll use
the latter since it’s easier to work with. The gradient is

∇d2(x, y) = (2x+ 2xy, 2y + x2).
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We need to solve the following nonlinear system to find critical
points:

2x+ 2xy = 0

2y + x2 = 0

The second equation implies 2y = −x2, so substituting that into
the first yields

2x− x3 = 0.

We thus have either x = 0 or x = ±
√

2. If x = 0, then the second
equation implies y = 0. If x = ±

√
2, it implies y = −1. So

the three critical points we must consider are (0, 0), (
√

2,−1), and
(−
√

2,−1).

The second partials are:

∂2(d2)

∂x2
= 2 + 2y

∂2(d2)

∂y2
= 2

∂2(d2)

∂x∂y
= 2x,

so we have

D = (2 + 2y)(2)− (2x)2 = 4 + 4y − 4x2.

Applying this to our three critical points, we see that (0, 0) is a
minimum, while the other two are both saddle points.

We’ve focused on two-dimensional examples throughout this section. Al-
though most of the other results generalize to higher dimensions, it is consid-
erably more complicated to apply the Second Partials Test with more than
two dimensions. We’ll come back to that when we do matrix algebra.
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5.3 Integral Calculus

5.3.1 Double Integration over a Rectangle

Remember we defined the Riemann integral for functions of one variable in
the following way: we formed an arbitrary partition P on the interval of
interest, call it [a, b], where we created subintervals of length ∆xk. We then
picked a sample point x̄k from the kth subinterval and wrote∫ b

a

f(x) dx = lim
|P |→0

n∑
k=1

f(x̄k)∆xk.

We will define the integral in multiple dimensions similarly. Suppose we
are interested in integrating over a rectangular region, call it R, where

R = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}.

Next, we form a partition P of the rectangular region R by means of lines
parallel to the x and y axes. We divide R into subrectangles, say n of them,
denoted Rk, k = 1, 2, . . . , n. Let ∆xk and ∆yk be lengths of the sides of the
rectangles, so that Ak = ∆xk∆yk is the area of the kth rectangle. Then, as
before, we pick a sample point for each of the n rectangles (x̄k, ȳk).

Now consider the Reimann sum,

n∑
k=1

f(x̄k, ȳk)Ak.

This is the sum of the volumes of these n boxes, where the height of each
represents the value of f at the respective sample point. Just as in the
univariate case, we will define the integrability of a function in terms of the
existence of a limit of such sums.

Definition 5.11. Let f be a function of two variables that is defined on a
closed rectangle R. If

lim
|P |→0

n∑
k=1

f(x̄k, ȳk)Ak

exists and is finite, we say that f is integrable on R. We write the value of
the limit as

∫∫
R

f(x, y) dA, also called the double integral of f over R. �
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The double integral given above represents the volume of the region under
the curve given by the function of two variables f(x, y).

There is an analogous sufficient condition for integrability to the one we
saw in the univariate case.

Theorem 5.12 If f is bounded on the closed rectangle R and is continuous
there except on at most a finite number of smooth curves, then f is integrable
on R.

Properties of the double integral:

1.
∫∫
R

kf(x, y) dA = k
∫∫
R

f(x, y) dA.

2.
∫∫
R

f(x, y) + g(x, y) dA =
∫∫
R

f(x, y) dA+
∫∫
R

g(x, y) dA.

3. The double integral is additive on rectangles that overlap only on a
line segment:

∫∫
R

f(x, y) dA =
∫∫
R1

f(x, y) dA +
∫∫
R2

f(x, y) dA. Where

R = R1 ∪R2.

4. If f(x, y) ≤ g(x, y) for all (x, y) ∈ R, then
∫∫
R

f(x, y) ≤
∫∫
R

g(x, y) dA.

Example 5.12 (Riemann sum in two dimensions)
Let f be a staircase function where:

f(x, y) =


1 0 ≤ x ≤ 3, 0 ≤ y ≤ 1

2 0 ≤ x ≤ 3, 1 < y ≤ 2

3 0 ≤ x ≤ 3, 2 < y ≤ 3

We introduce the following partition,

R1 = {(x, y) | 0 ≤ x ≤ 3, 0 ≤ y ≤ 1} = [0, 3]× [0, 1],

R2 = {(x, y) | 0 ≤ x ≤ 3, 1 ≤ y ≤ 2} = [0, 3]× [1, 2],

R3 = {(x, y) | 0 ≤ x ≤ 3, 2 ≤ y ≤ 3} = [0, 3]× [2, 3],
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where the area of each rectangular segment is ARi
= 3 · 1 = 3. We can

then evaluate the integral as∫∫
R

f(x, y) dA =

∫∫
R1

f(x, y) dA+

∫∫
R2

f(x, y) dA+

∫∫
R3

f(x, y) dA

= 1 · AR1 + 2 · AR2 + 3 · AR3

= (1 + 2 + 3) · 3 = 18.

Now let’s never use Reimann sums again. There is another, more precise
and much less putzy way to compute the volume of solids under curves: the
iterated integral.

Consider the problem of ascertaining the volume of some solid by cutting
it into “slices” along the y axis. We can approximate the volume of the slice
at yi by multiplying its width by the area of its face, which is

A(yi) =

∫ b

a

f(x, yi) dx.

Our approximation to the overall volume would then be

V '
n∑
i=1

∆yiA(yi) =
n∑
i=1

∆yi ·
∫ b

a

f(x, yi) dx.

If we kept making the slices smaller and smaller, until the width of each
became infinitesimal, we would end up with an iterated integral,

V =

∫ d

c

A(y) dy =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy.

But recall that V =
∫∫
R

f(x, y) dA. So we get the result:

∫∫
R

f(x, y) dA =

∫ d

c

(∫ b

a

f(x, y) dx

)
dy =

∫ b

a

(∫ d

c

f(x, y) dy

)
dx.

This is the technique we will almost always use to evaluate integrals in
practice.



CHAPTER 5. MULTIVARIATE CALCULUS 124

Example 5.13 (Iterated integral)
1. Evaluate

∫∫
2x+ 3y dA on R = [1, 2]× [0, 3].∫∫

R

2x+ 3y dA =

∫ 3

0

∫ 2

1

2x+ 3y dx dy

=

∫ 3

0

x2 + 3yx
∣∣2
x=1

dy

=

∫ 3

0

4 + 6y − 1− 3y dy

= 3y +
3

2
y2
∣∣∣∣3
y=0

= 9 +
3

2
· 9 =

45

2
.

2. Evaluate
∫∫

1
16

(64− 8x+ y2) dA on R = [0, 4]× [0, 8].∫∫
R

1

16
(64− 8x+ y2) dA =

1

16

∫ 8

0

∫ 4

0

64− 8x+ y2 dx dy

=
1

16

∫ 8

0

64x− 4x2 + y2x
∣∣4
x=0

dy

=
1

16

∫ 8

0

256− 64 + 4y2 dy

=

∫ 8

0

12 +
1

4
y2 dy

= 12y +
1

12
y3
∣∣∣∣8
y=0

= 96 +
512

12
=

416

3
.
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5.3.2 Double Integration over Non-Rectangular Spaces

This is all well and good for rectangular regions, but what about more arbi-
trary spaces?

Obviously, this can get to be quite complicated. For our purposes here,
we will consider two types of areas.

Definition 5.12. We call a set S y-simple if there are functions φ1 and φ2

on [a, b] such that

S = {(x, y) |φ1(x) ≤ y ≤ φ2(x), a ≤ x ≤ b}.

We call a set S x-simple if there are functions ψ1 and ψ2 on [c, d] such that

S = {(x, y) |ψ1(y) ≤ x ≤ ψ2(y), c ≤ y ≤ d}. �

We can integrate over a y-simple region via∫∫
S

f(x, y) dA =

∫ b

a

∫ φ2(x)

φ1(x)

f(x, y) dy dx.

Similarly, we can integrate over an x-simple region via∫∫
S

f(x, y) dA =

∫ d

c

∫ ψ2(y)

ψ1(y)

f(x, y) dx dy.

Example 5.14 (Integrals over non-rectangular spaces)
1. Evaluate the iterated integral

∫ 5

3

∫ x2
−x 4x+ 10y dy dx.
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We have

∫ 5

3

∫ x2

−x
4x+ 10y dy dx =

∫ 5

3

4xy + 5y2
∣∣x2
y=−x dx

=

∫ 5

3

4x3 + 5x4 − (−4x2 + 5x2) dx

=

∫ 5

3

4x3 + 5x4 − x2 dx

= x4 + x5 − x3

3

∣∣∣∣5
x=3

= 54 + 55 − 53

3
− 34 − 35 +

33

3
.

2. Use double integration to find the volume of the tetrahedron
bounded by the coordinate planes and the plane 3x+6y+4z−12 =
0.

It’s always helpful in these sorts of problems to draw the region.
First, solve for z: 4z = 12 − 3x − 6y and so z = 3 − 3

4
x − 3

2
y.

(Setting x = z = 0, we get a y-intercept at 2; setting z = y = 0, we
get an x-intercept at 4.)

Now let’s call the area of interest in the xy plane the region S. This
corresponds to the following triangle. The line is y = 2 − 1

2
x, so

this corresponds to either the y-simple region

S = {(x, y) | 0 ≤ y ≤ 2− 1
2
x, 0 ≤ x ≤ 4}

or the x-simple region

S = {(x, y) | 0 ≤ y ≤ 2, 0 ≤ x ≤ 4− 2y}.

We’ll get the same answer either way, so let’s just use the y-simple
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one.

∫∫
S

f(x, y) dA =

∫ 4

0

∫ 2−x
2

0

3− 3

4
x− 3

2
y dy dx

=
3

4

∫ 4

0

4y − xy − y2
∣∣2−x

2

y=0
dx

=
3

4

∫ 4

0

8− 2x− x(2− x

2
)− (2− x

2
)2 dx

=
3

4

∫ 4

0

8− 2x− 2x+
x2

2
− (4− 2x+

x2

4
) dx

=
3

4

∫ 4

0

8− 4x+
x2

2
− 4 + 2x− x2

4
dx

=
3

4

∫ 4

0

8− 2x+
x2

4
dx

=
3

4

(
4x− x2 +

x3

12

)∣∣∣∣4
x=0

=
3

4
· 64

12
= 4.

3. Evaluate
∫ 4

0

∫ 2
x
2
ey

2
dy dx.

The first thing to recognize here is that ey
2

has no simple antideriva-
tive: it is impossible to do this as written. But we can convert the
given y-simple region into an x-simple one.

{(x, y) | 0 ≤ x ≤ 4, x
2
≤ y ≤ 2} = {(x, y) | 0 ≤ x ≤ 2y, 0 ≤ y ≤ 2}.



CHAPTER 5. MULTIVARIATE CALCULUS 128

We now have ∫ 4

0

∫ 2

x
2

ey
2

dy dx =

∫ 2

0

∫ 2y

0

ey
2

dx dy

=

∫ 2

0

ey
2

x
∣∣∣2y
x=0

dy

=

∫ 2

0

2yey
2

dy

= ey
2
∣∣∣2
y=0

= e4 − 1.

Note that when the region of interest is not x- or y-simple, we can typically
break it up into multiple simple regions and then integrate each individually.

5.3.3 Application: Center of Mass

Consider a surface of variable density d(x, y) covering a region S in the xy-
plane. Then the center of mass of this surface is given by the following
formulas:

x̄ =

∫∫
S

xd(x, y) dA∫∫
S

d(x, y) dA

ȳ =

∫∫
S

yd(x, y) dA∫∫
S

d(x, y) dA

When d is a probability density functions, the denominator integrates to 1
and we call this the expected value.

Example 5.15 (Center of mass)
Find the center of mass of a surface with density d(x, y) = xy bounded

by the x-axis, the line x = 8 and the curve y = x
2
3 . The denominator for
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both x̄ and ȳ is

∫ 8

0

∫ x
2
3

0

xy dy dx =

∫ 8

0

xy2

2

∣∣∣∣x
2
3

y=0

dx =

∫ 8

0

x
7
3

2
dx =

3

20
x

10
3

∣∣∣∣8
x=0

=
3

20
210.

The numerator for x̄ is∫ 8

0

∫ x
2
3

0

x(xy) dy dx =

∫ 8

0

x2y2

2

∣∣∣∣x
2
3

y=0

dx =

∫ 8

0

x
10
3

2
dx =

3

26
x

13
3

∣∣∣∣8
x=0

=
3

26
213,

so we have

x̄ =
3
26

213

3
20

210
=

10

13
· 8 =

80

13
.

The numerator for ȳ is

∫ 8

0

∫ x
2
3

0

y(xy) dy dx =

∫ 8

0

xy3

3

∣∣∣∣x
2
3

y=0

dx =

∫ 8

0

x3

3
dx =

x4

12

∣∣∣∣8
x=0

=
1

12
212,

so we have

ȳ =
1
12

212

3
20

210
=

4

12
· 20

3
=

20

9
.

Therefore, the center of mass is (x̄, ȳ) = (80
13
, 20

9
).



Chapter 6

Matrix Algebra

6.1 Operations on Matrices

6.1.1 Definitions

Now, we are going to completely switch gears and talk a bit about matrices
and the operations we perform on them, an area of mathematics known as
linear algebra. We’ll come back to calculus later and use the things we talk
about here to come up with conditions for maxima in multiple dimensions.

Definition 6.1. A matrix is a rectangular array of numbers denoted by

A = [aij] =


a11 a12 . . . a1n
a21 a22 . . . a2n
... . . .

...
am1 am2 . . . amn

 .
If a matrix has m rows and n columns, we call this an m×n matrix. We say
that the ith row of A is [ai1, ai2, . . . , ain] and the jth row is

a1j
a2j
...
amj

 .
Note that in the special case where m = n, we say that A is a square matrix
of order n, and moreover that elements a11, a22, . . . , ann are on the main
diagonal of A. �

130
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Definition 6.2. Two m × n matrices A = [aij] and B = [bij] are equal if
they agree entry by entry, that is, if aij = bij for all i ∈ {1, . . . ,m} and
j ∈ {1, . . . , n}. �

Example 6.1 (Matrix equality)
The following matrices,

A =

1 2 −1
2 −3 4
0 −4 5

 , B =

1 2 w
2 x 4
y −4 z

 ,
are equal if and only if x = −3, y = 0, w = −1, and z = 5.

Definition 6.3. If A = [aij] and B = [bij] are both m × n matrices, then
the sum A + B is a m × n matrix C = [cij] defined by cij = aij + bij for all
i = 1, 2, . . . ,m and j = 1, 2, . . . , n. �

Example 6.2 (Matrix addition)
With

A =

[
1 −2 3
2 −1 4

]
, B =

[
0 2 1
1 3 −4

]
,

we have

A+B =

[
1 0 4
3 2 0

]
.

Definition 6.4. If A = [aij] is an m×n matrix and r is a real number, then
the scalar multiple of A by r, denoted rA, is the m × n matrix C = [cij]
where cij = raij for all i = 1, 2, . . . ,m and j = 1, 2, . . . , n. �
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Example 6.3 (Scalar multiplication of a matrix)
Let r = −2 and

A =

[
4 −2 −3
7 −3 2

]
.

Then we have

rA =

[
−8 4 6
−14 6 −4

]
.

Note that we can define the difference between two matrices using the
previous two properties; that is, for matrices A and B, both m×n, A−B =
A+ (−1)B.

Definition 6.5. If A = [aij] is an m × n matrix and B = [bij] is an n × p
matrix, then the product of A and B, written AB = C = [cij], is an m × p
matrix defined by

cij =
n∑
k=1

aikbkj = ai1b1j + ai2b2j + . . .+ ainbnj

for all i = 1, 2, . . . ,m and j = 1, 2, . . . , p. �

Example 6.4 (Matrix multiplication)
With

A =

[
1 2 −1
3 1 4

]
, B =

−2 5
4 −3
2 1

 ,
we have

AB =

[
1 · −2 + 2 · 4 + (−1) · 2 1 · 5 + 2 · (−3) +−1 · 1
3 · (−2) + 1(4) + 4(2) 3(5) + 1(−3) + 4(1)

]
=

[
4 −2
6 16

]
What about BA? We know from the definition that it will be 3× 3, and
hence not the same thing. This is our first hint that matrix multiplication
does not satisfy commutation, meaning it is possible (and in fact is almost
always the case) that AB 6= BA.
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Note that AB does not exist if the number of columns in A is not equal
to the number of rows in B.

Definition 6.6. If A = [aij] is an m × n matrix, then the transpose of A,
AT = [aTij] is the n ×m matrix defined by aTij = aji. The transpose is also
sometimes written A′. �

Example 6.5 (Transpose)
With

A =

[
1 2 −1
−3 2 7

]
,

we have

AT =

 1 −3
2 2
−1 7

 .

6.1.2 Properties

With these definitions in hand, we can consider some of their implications.
For the sake of time, I won’t offer proofs of most of the following facts, but
you can look at any introductory linear algebra text to find them.

Theorem 6.1 (Properties of Matrix Addition) Let A, B, and C be m×
n matrices.

1. A+B = B + A.

2. A+ (B + C) = (A+B) + C.

3. There is a unique additive identity, an m × n matrix 0mn such that
A+ 0mn = A.

4. There is a unique additive inverse, an m×n matrix D such that A+D =
0mn. We write D as −A so that A− A = 0mn.

Theorem 6.2 (Properties of Scalar Multiplication) Let r and s be real
numbers, and let A and B be matrices.
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1. r(sA) = (rs)A

2. (r + s)A = rA+ sA

3. r(A+B) = rA+ rB

4. A(rB) = r(AB) = (rA)B

Theorem 6.3 (Properties of Matrix Multiplication) Let A, B and C
be matrices.

1. A(BC) = (AB)C

2. (A+B)C = AC +BC

3. C(A+B) = CA+ CB

Theorem 6.4 (Properties of Transpose) Let r be a scalar and let A and
B be matrices.

1. (AT )T = A

2. (A+B)T = AT +BT

3. (AB)T = BTAT

4. (rA)T = rAT

Now let me quickly note some common confusions that can arise when we
deal with matrices. They look like scalars at times, but they are not scalars
and do not operate in the same way real numbers do:

1. If a and b are real numbers, then ab = 0 can hold only if a = 0 or b = 0.
This is not true for matrices.

2. If a, b, and c are real numbers and ab = ac with a 6= 0, then b = c.
However, we cannot simply cancel out A when dealing with matrices,
and hence C may not equal B even if AB = AC.

3. As already observed, AB need not equal BA.
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6.2 Special Types of Matrices

There are a few special types of matrices that we might care about.

Definition 6.7. An n × n matrix A = [aij] is called a diagonal matrix if
aij = 0 for all i, j ∈ {1, . . . , n} where i 6= j. That is, all the terms off the
main diagonal are equal to zero. �

Definition 6.8. A diagonal matrix where all the elements on the main di-
agonal are the same is called a scalar matrix. �

Definition 6.9. The scalar matrix In = [aij] where aii = 1 for all i and
aij = 0 for all i 6= j is called the n× n identity matrix. �

Example 6.6 (Special types of matrices)
Consider the following matrices:

A =

1 0 0
0 2 0
0 0 3

 , B =

2 0 0
0 2 0
0 0 2

 , C =

1 0 0
0 1 0
0 0 1

 .
Of these A is diagonal, B is scalar (hence also diagonal), and C is the
3× 3 identity matrix (hence also scalar and diagonal).

Theorem 6.5 If A is an m× n matrix, AIn = ImA = A.

Proof. Let AIn = C = [cij]. Take any i = 1, . . . ,m and j = 1, . . . , n, and
consider the matrix entry cij. By definition of matrix multiplication, we have

cij =
n∑
k=1

aikIkj

= ai1I1j + . . .+ aijIjj + . . .+ ainInj

= ai1 · 0 + . . .+ aij · 1 + . . .+ ain · 0
= aij.

The proof for ImA is analogous. �
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Definition 6.10. An n × n matrix A = [aij] is upper triangular if aij = 0
for all i > j. Similarly, we say that A is lower triangular if aij = 0 for all
i < j. �

Example 6.7 (Triangular matrices)
Consider

A =

1 3 3
0 2 5
0 0 3

 , B =

1 0 0
3 2 0
3 5 3

 ,
A is upper triangular and B is lower triangular.

Definition 6.11. An n × n matrix A = [aij] is symmetric if AT = A. It is
skew symmetric if AT = −A. �

Definition 6.12. An n × n matrix A = [aij] is non-singular, or invertible
if there exists an n × n matrix B such that AB = BA = In. B is called
the inverse of A. If no such matrix B exists, A is called singular, or non-
invertible. �

Example 6.8 (Inverse of a matrix)
The matrices A and B are inverses of each other:

A =

[
4 1
7 2

]
, B =

[
2 −1
−7 4

]

Theorem 6.6 The inverse of a matrix, if it exists, is unique.

Proof. Let B and C be inverses of A. Then we have

B = BIn = B(AC) = (BA)C = InC = C,

so B = C. �
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Theorem 6.7 If A and B are both non-singular n × n matrices, then AB
is non-singular and (AB)−1 = B−1A−1.

Proof. We know that A−1 and B−1 exist and are both n× n. We then have

(B−1A−1)(AB) = B−1(A−1A)B = B−1InB = B−1B = In.

Since the inverse of a matrix is unique, we conclude (AB)−1 = B−1A−1. �

Theorem 6.8 If A is a non-singular matrix, then A−1 is non-singular and
(A−1)−1 = A.

Proof. Immediate from the fact that AA−1 = A−1A = In for any non-singular
A. �

Theorem 6.9 If A is a non-singular matrix, then AT is non-singular and
(AT )−1 = (A−1)T .

Proof. Note that AA−1 = In, which implies

(AA−1)T = (A−1)TAT = ITn = In. �

6.3 Gauss-Jordan Reduction

6.3.1 Solving Linear Systems

Now it’s time to start applying matrix algebra. To do this systematically, we
need to develop some basic tools, and then we’ll be able to solve for inverses
by hand, as well as linear systems of equations.

Suppose that we have the following system of equations:

x1 + 2x2 = 3

x2 + x3 = 2

x2 = 1

We can represent this as something called an augmented matrix where we
take the coefficients from the unknowns and the solutions to the equations
and combine them in the following way:1 2 0 3

0 1 1 2
0 1 0 1

 .
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There is a systematic way to manipulate this system, represented by an
augmented matrix, into a form from which the solution can be found quite
easily. To do this, we’ll need some definitions.

Definition 6.13. An m × n matrix A = [aij] is said to be in reduced row
echelon form if it satisfies the following:

1. All zero rows, if there are any, appear at the bottom of the matrix.

2. The first non-zero entry of a non-zero row is a 1. This entry is called a
leading 1 of its row.

3. For each non-zero row, the leading 1 appears to the right and below
any leading ones in preceding rows.

4. If a column contains a leading 1, then all other entries in that column
are zero. �

Example 6.9 (Reduced row echelon form)
An example of a matrix in reduced row echelon form is

A =


1 0 0 0 −2 4
0 1 0 0 4 8
0 0 0 1 7 −2
0 0 0 0 0 0
0 0 0 0 0 0

 .

Definition 6.14. The elementary row operations are:

1. Interchange any two rows

2. Multiply a row by a non-zero number

3. Add a multiple of one row to another �
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Example 6.10 (Elementary row operations)
1. Find a matrix in reduced row echelon form starting with the matrix

A =


0 2 3 −4 1
0 0 2 3 4
2 2 −5 2 4
2 0 −6 9 7

 .
(a) Interchange rows 1 and 3

A1 =


2 2 −5 2 4
0 0 2 3 4
0 2 3 −4 1
2 0 −6 9 7


(b) Multiply R1 by 1

2

A2 =


1 1 −5

2
1 2

0 0 2 3 4
0 2 3 −4 1
2 0 −6 9 7


(c) −2R1 +R4

A3 =


1 1 −5

2
1 2

0 0 2 3 4
0 2 3 −4 1
0 −2 −1 7 3


(d) R2 swapped with R3

A4 =


1 1 −5

2
1 2

0 2 3 −4 1
0 0 2 3 4
0 −2 −1 7 3


(e) R2 +R4

A5 =


1 1 −5

2
1 2

0 2 3 −4 1
0 0 2 3 4
0 0 2 3 4


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(f) −R3 +R4

A6 =


1 1 −5

2
1 2

0 2 3 −4 1
0 0 2 3 4
0 0 0 0 0


(g) Multiply both R2 and R3 by 1

2

A7 =


1 1 −5

2
1 2

0 1 3
2
−2 1

2

0 0 1 3
2

2
0 0 0 0 0


(h) −3

2
R3 +R2

A8 =


1 1 −5

2
1 2

0 1 0 −17
4

−5
2

0 0 1 3
2

2
0 0 0 0 0


(i) 5

2
R3 +R1

A9 =


1 1 0 19

4
7

0 1 0 −17
4

−5
2

0 0 1 3
2

2
0 0 0 0 0


(j) R1 −R2

A10 =


1 0 0 9 19

2

0 1 0 −17
4

−5
2

0 0 1 3
2

2
0 0 0 0 0


Note that A10 is in reduced row echeleon form. The process we used
here is called Gauss-Jordan reduction.

2. Consider the system of equations

x1 + 2x2 + 3x3 = 9

2x1 − x2 + x3 = 8

3x1 − x3 = 3
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This corresponds to the following augmented matrix:1 2 3 9
2 −1 1 8
3 0 −1 3


Let’s apply Gauss-Jordan reduction to solve the system:

(a) R3 − 3R1 → R3 1 2 3 9
2 −1 1 8
0 −6 −10 −24


(b) R2 − 2R1 1 2 3 9

0 −5 −5 −10
0 −6 −10 −24


(c) 1

5
R2 → R2 and 1

6
R3 → R31 2 3 9

0 −1 −1 −2
0 −1 −10

6
−4


(d) −R2 +R3 → R3 1 2 3 9

0 −1 −1 −2
0 0 −4

6
−2


(e) −6

4
R3 → R3 1 2 3 9

0 −1 −1 −2
0 0 1 3


(f) R3 +R2 → R2 1 2 3 9

0 −1 0 1
0 0 1 3


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(g) 2R3 +R1 → R1 1 0 3 11
0 −1 0 1
0 0 1 3


(h) −1R2 → R2 and −3R3 +R1 → R11 0 0 2

0 1 0 −1
0 0 1 3


This corresponds to the solution x1 = 2, x2 = −1, x3 = 3.

3. Consider the linear system given by the following augmented ma-
trix: 1 2 3 4 5

0 1 2 3 6
0 0 0 0 1

 .
This system will have no solution; the last equation suggests that
0x1 + 0x2 + 0x3 + 0x4 = 1, which is not possible.

4. Consider the linear system given by the following augmented matrix
in reduced row echelon form:

1 2 3 4 5 6
0 1 2 3 −1 7
0 0 1 2 3 7
0 0 0 1 2 9


This corresponds to:

x4 + 2x5 = 9

x3 + 2x4 + 3x5 = 7

x2 + 2x3 + 3x4 − x5 = 7

x1 + 2x2 + 3x3 + 4x4 + 5x5 = 6
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Thus:

x4 = 9− 2x5

x3 = 7− 2x4 + 3x5 = 7− 2(9− 2x5)− 3x5 = −11 + x5

x2 = 7 + x5 − 2x3 − 3x4 = 7 + x5 − 2(−11 + x5)− 3(9− 2x5) = 2 + 5x5

x1 = 6− 2x2 − 3x3 − 4x4 − 5x5 = −1− 10x5

This system therefore has infinitely many solutions!

x1 = −1− 10x5

x2 = 2 + 5x5

x3 = −11 + x5

x4 = 9− 2x5

x5 = any real number!

6.3.2 Inverting Matrices

We can use the same techniques to find the inverses of non-singular matrices.

Example 6.11 (Matrix inversion)
Let

A =

1 1 1
0 2 3
5 5 1

 .
We form the following augmented matrix:

[
A

... I3

]
=

1 1 1
... 1 0 0

0 2 3
... 0 1 0

5 5 1
... 0 0 1

 .
We now begin Gauss-Jordan reduction:
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1. −5R1 +R3 → R3 1 1 1
... 1 0 0

0 2 3
... 0 1 0

0 0 −4
... −5 0 1


2. −1

4
R3 → R3 and 1

2
R2 → R21 1 1

... 1 0 0

0 1 3
2

... 0 1
2

0

0 0 1
... 5

4
0 −1

4


3. −3

2
R3 +R2 → R2 1 1 1

... 1 0 0

0 1 0
... −15

8
1
2

3
8

0 0 1
... 5

4
0 −1

4


4. −R3 +R1 → R1 1 1 0

... −1
4

0 1
4

0 1 0
... −15

8
1
2

3
8

0 0 1
... 5

4
0 −1

4


5. R1 −R2 → R1 1 0 0

... 13
8

−1
2

−1
8

0 1 0
... −15

8
1
2

3
8

0 0 1
... 5

4
0 −1

4


So our inverse is  13

8
−1
2

−1
8

−15
8

1
2

3
8

5
4

0 −1
4

 .
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6.4 The Determinant

A determinant is a function that associates a scalar value det(A), to every
n × n square matrix A. To talk about determinants we first need to talk
quickly about permutations.

Definition 6.15. Let S = {1, 2, . . . , n} be the set of integers from 1 to n,
arranged in ascending order. A rearrangement of these integers is called a
permutation of S. That is, a permutation is a one-to-one mapping of S onto
itself. �

Example 6.12 (Permutations)
Let S = {1, 2, 3, 4}. Then 4321 is a 4-permutation of S corresponding to
the function:

f(1) = 4

f(2) = 3

f(3) = 2

f(4) = 1

Note that the general form for the number of permutations of n objects
can be constructed by simply considering how many possibilities are available
for the first position, how many are available for the second position, how
many for the third, etc. This results in n! = n(n−1)(n−2)(n−3) . . . (3)(2)(1)
possibilities.

Definition 6.16. A permutation j1, j2, . . . , jn is said to have an inversion if
a larger integer, call it jr precedes a smaller one, call it js. A permutation is
called even if the total number of inversions in it is even and odd if the total
number of inversions in it is odd. �

Example 6.13 (Even and odd permutations)
1. In the 4-permutation 4312:
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• 4 precedes 1, 2, and 3

• 3 precedes 1 and 2

Hence, there are 5 total inversions, so this is an odd permutation.

2. Consider S3 = {1, 2, 3}. There are 3! permutations:

• 123 with 0 inversions

• 213 with 1 inversion

• 231 with 2 inversions

• 132 with 1 inversion

• 312 with 2 inversions

• 321 with 3 inversions

We use the notion of even and odd permutations to define the determi-
nant.

Definition 6.17. Let A = [aij] be an n × n matrix. Then we define the
determinant as

det(A) =
∑
±a1j1a2j2 . . . anjn ,

where the summation is over all permutations j1j2 . . . jn of the set S =
{1, 2, . . . , n} and the sign is + if the permutation j1j2 . . . jn is even and − if
it is odd. �

In each term ±a1j1anjn . . . anjn of det(A) the row subscripts are in their
natural numerical order, while the column subscripts are in a permuted order.

Thankfully, we never use this. It’s a pain. We have algorithms that we
use instead.

Determinant of a 2× 2. Consider the 2× 2 matrix

A =

[
a11 a12
a21 a22

]
.
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To obtain the determinant of A, we need to consider the two permutations:
j1j2 = 12 and j′1j

′
2 = 21. The first has no inversions and hence is even;

the second has one inversion and hence is odd. So, using the definition of a
determinant, we have

det(A) = ±a1j1a2j2 ± a1j′1a2j′2 = a11a22 − a12a21.

Example 6.14 (Determinant of a 2× 2)
If

A =

[
2 −3
4 5

]
,

then det(A) = 2(5)− (4(−3)) = 22.

Determinant of a 3× 3. Consider the 3× 3 matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
In this case, we can use the following rule:1

You take the product along each of the diagonal lines, multiplying said prod-
uct by 1 if it goes down to the right, and by −1 if it runs down to the left.
This produces the following:

det(A) = a11a22a33 +a12a23a31 +a13a21a32−a12a21a33−a11a23a32−a13a22a31.
1Graphic from Wikipedia.
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Example 6.15 (Determinant of a 3× 3)
Let

A =

1 2 3
2 1 3
3 1 2

 .
The determinant is

det(A) = 1(1)(2) + 2(3)(3) + 3(2)(1)− 2(2)(2)− 1(3)(1)− 3(1)(3)

= 2 + 18 + 6− 8− 3− 9

= 6.

We are now unfortunately out of clever tricks, and can’t apply these
methods to larger matrices. You could probably do the algebra for a 4 × 4
matrix, but anything beyond this would be quite difficult.

If you ever had to take the determinant of a larger matrix by hand, you
would probably want to use cofactor expansion. This is a method whereby
we find the determinant of an n-order matrix by reducing it to the evaluation
of several determinants of order n− 1.

Before we move on to definiteness, let’s go over some properties of the
determinant and its use for solving linear systems.

Theorem 6.10 (Properties of Determinants) Let A and B be n×n ma-
trices, and let c be a real number.

1. det(A) = det(AT ).

2. If a row or column of A consists entirely of zeros, then det(A) = 0.

3. If A is upper or lower triangular, then det(A) = a11a22 · · · ann.

4. A is non-singular if and only if det(A) 6= 0. In this case, det(A−1) =
1

det(A)
.

5. det(AB) = det(A) det(B).
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6. If B results from A by interchanging two rows or columns of A, then
det(B) = − det(A).

7. If B is obtained from A by multiplying a row or column of A by c, then
det(B) = c det(A).

8. det(cA) = cn det(A).

We can also use determinants to solve linear systems of equations. The
method can be a bit . . . awkward . . . but if you greatly prefer computing
determinants to row reducing, then by all means go for it!

Theorem 6.11 (Cramer’s Rule) Consider a linear system of n equations
in n unknowns,

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

an1x1 + an2x2 + . . .+ annxn = bn,

and let A = [aij] be the coefficient matrix so that we can write the given
system as Ax = b, where

b =


b1
b2
...
bn

 .
If det(A) 6= 0, then the system has the unique solution:

x1 =
det(A1)

det(A)

x2 =
det(A2)

det(A)
...

xn =
det(An)

det(A)
,

where each Ai is the matrix obtained from A by replacing the ith column of
A by b.
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Example 6.16 (Cramer’s Rule)
Consider the linear system

3x1 + 2x2 = 7,

−2x1 + 2x2 = 2.

We have

A =

[
3 2
−2 2

]
, det(A) = 6− (−4) = 10,

A1 =

[
7 2
2 2

]
, det(A1) = 14− 4 = 10,

A2 =

[
3 7
−2 2

]
, det(A2) = 6− (−14) = 20.

The solution to the system is thus

(x1, x2) =

(
det(A1)

det(A)
,
det(A2)

det(A)

)
= (1, 2).

6.5 Definiteness

Finally, we’ll talk about definiteness at a strictly mechanical level—its im-
plications will be left for PSC 404 and PSC 407.

Definition 6.18. An n× n matrix A is:

• positive definite if xTAx > 0 for all non-zero length-n vectors x,

• negative definite if xTAx < 0 for all non-zero length-n vectors x,

• indefinite if there exists x for which xTAx < 0 and y for which yTAy >
0. �
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Definition 6.19. Let A be a n × n matrix. Any k × k matrix formed by
deleting n− k columns i1, i2, . . . , in−k and the same n− k rows is a kth-order
principal submatrix of A. The determinant of a k× k principal submatrix is
called a kth-order principal minor of A. The principal submatrix formed by
deleting the last n−k rows is the kth-order leading principal submatrix, and
its determinant is the kth-order leading principal minor. �

Example 6.17 (Principal minors)
Consider the general 3× 3 matrix,

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 .
1. There are three first-order principal minors: det[a11] (leading),

det[a22], and det[a33].

2. There are three second-order principal minors:

(a) delete row and column 3 (leading):

det

[
a11 a12
a21 a22

]
(b) delete row and column 2:

det

[
a11 a13
a31 a33

]
(c) delete row and column 1:

det

[
a22 a23
a32 a33

]
3. There is one third-order principal minor, det(A) (leading).

Theorem 6.12 Let A be an n× n symmetric matrix. Then:
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1. A is positive definite if and only if all of its n leading principal minors
are strictly positive.

2. A is negative definite if and only if its odd-order leading principal mi-
nors are negative and its even-order leading principal minors are posi-
tive.

3. If some leading principal minor is not zero, but does not fit this pattern,
then the matrix is indefinite.

And that’s it for the prefresher!
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