
Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

University of Notre Dame
MPI Tutorial

Part 2
High-Performance MPI

Laboratory for Scientific Computing
Fall 1998

http://www.lam-mpi.org/tutorials/nd/
lam@lam-mpi.org

Fall 1998 1

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section V

Non-Blocking Communication

Fall 1998 2

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Buffering Issues
� Where does data go when you send it?

� One possibility is:

Local Buffer

Local Buffer

A:

B:

Process 1 Process 2

The Network

� This is not very efficient:

– Three copies in addition to the exchange of data between processes.

– Copies are “bad.”

Fall 1998 3

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Better Buffering
� We prefer

B:

A:

Process 1 Process 2

� But this requires that either that MPI_SENDnot return until the data has

been delivered or that we allow a send operation to return before completing

the transfer.

� In the latter case, we need to test for completion later.

Fall 1998 4

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Blocking and Non-Blocking Communication
� So far we have used blocking communication:

– MPI_SENDdoes not complete until buffer is empty (available for reuse).

– MPI_RECVdoes not complete until buffer is full (available for use).

� Simple, but can be prone to deadlocks:

Process 0 Process 1

Send(1) Send(0)

Recv(1) Recv(0)

Completion depends in general on size of message and amount of system

buffering.

� The semantics of blocking/non-blocking has nothing to do with when messages

are sent or recieved. The difference is when the buffer is free to re-use.

Fall 1998 5

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Some Solutions to the Deadlock Problem
� Order the operations more carefully:

Process 0 Process 1

Send(1) Recv(0)

Recv(1) Send(0)

� Supply receive buffer at same time as send, with MPI_SENDRECV:

Process 0 Process 1

Sendrecv(1) Sendrecv(0)

Fall 1998 6

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

More Solutions to the Deadlock Problem
� Use non-blocking operations:

Process 0 Process 1

Irecv(1) Irecv(0)

Isend(1) Isend(0)

Waitall Waitall

� Use MPI_BSEND

– Copies message into a user buffer (previously supplied) and returns

control to user program

– Sends message sometime later

Fall 1998 7

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI’s Non-Blocking Operations
� Non-blocking operations return (immediately) “request handles” that can be

waited on and queried:

MPI_ISEND(start, count, datatype, dest, tag, comm,

request)

MPI_IRECV(start, count, datatype, dest, tag, comm,

request)

MPI_WAIT(request, status)

� One can also test without waiting:

MPI_TEST(request, flag, status)

Fall 1998 8

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Multiple Completions
� It is often desirable to wait on multiple requests.

� An example is a worker/manager program, where the manager waits for one

or more workers to send it a message.

MPI_WAITALL(count, array_of_requests,

array_of_statuses)

MPI_WAITANY(count, array_of_requests, index, status)

MPI_WAITSOME(incount, array_of_requests, outcount,

array_of_indices, array_of_statuses)

� There are corresponding versions of test for each of these.

Fall 1998 9

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Probing the Network for Messages
� MPI_PROBEand MPI_IPROBEallow the user to check for incoming

messages without actually receiving them

� MPI_IPROBE returns “flag == TRUE ” if there is a matching message

available. MPI_PROBEwill not return until there is a matching receive

available:

MPI_IPROBE(source, tag, communicator, flag, status)

MPI_PROBE(source, tag, communicator, status)

� It is typically not good practice to use these functions.

Fall 1998 10

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI Send-Receive
� The send-receive operation combines the send and receive operations in one

call.

� The send-receive operation performs a blocking send and receive operation

using distinct tags but the same communicator.

� A send-receive operation can be used with regular send and receive

operations.

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest,

sendtag, recvbuf, recvcount, recvtype,

source, recvtag, comm, status)

� Avoids user having to order send/receive to avoid deadlock

Fall 1998 11

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Non-Blocking Example: Manager –¿ 1 Worker

/* ... Only a portion of the code */

int flag = 0;

MPI_Status status;

double buffer[BIG_SIZE];

MPI_Request request;

/* Send some data */

MPI_Isend(buffer, BIG_SIZE, MPI_DOUBLE, dest, tag,

MPI_COMM_WORLD, &request);

/* While the send is progressing, do some useful work */

while (!flag && have_more_work_to_do) {

/* ...do some work... */

MPI_Test(&request, &flag, &status);

}

/* If we finished work but the send is still pending, wait */

if (!flag)

MPI_Wait(&request, &status);

/* ... */

Fall 1998 12

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Non-Blocking Example: Manager –¿ 4 Workers
/* ... Only a portion of the code */

MPI_Status status[4];

double buffer[BIG_SIZE];

MPI_Request requests[4];

int i, flag, index, each_size = BIG_SIZE / 4;

/* Send out the data to the 4 workers */

for (i = 0; i < 4; i++)

MPI_Isend(buffer + (i * each_size), each_size, MPI_DOUBLE, i + 1,

tag, MPI_COMM_WORLD, &requests[i]);

/* While the sends are progressing, do some useful work */

for (i = 0; i < 4 && have_more_work_to_do; i++) {

/* ...do some work... */

MPI_Testany(4, requests, &flag, &index, &status[0]);

if (!flag)

i--;

}

/* If we finished work but still have sends pending, wait for the rest*/

if (i < 4)

MPI_Waitall(4, requests, status);

/* ... */

Fall 1998 13

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

The 5 Sends

MPI SEND Normal send. Returns after the message has been copied to a buffer

OR after the message “on its way”.

MPI BSEND Buffered send. Returns after the message has been copied to an

internal MPI buffer (previously supplied by the user).

MPI SSEND Synchronous send. Returns after the message reaches the

receiver.

MPI RSEND Ready Send. The matching receive must be posted before the send

executes. Returns once the message has left the send buffer.

MPI ISEND Immediate send. Returns immediately. You may not modify contents

of the message buffer until the send has completed (MPI WAIT, MPI TEST).

Fall 1998 14

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Homework – Manager / Worker
� Objective: Calculate an average in parallel workers

� Write a program to do the following:

– Process 0 (the manager) should only use non-blocking communications

– The manager should send 100 integers to every other processor (e.g.,

0 : : : 99 to processor 1, 100 : : : 199 to processor 2, etc.)

– All other processors (the workers) should receive the integers, calculate

their sum, and return it to the manager

– The manager should receive the results from the workers and output the

average of all the numbers (i.e., 0 : : : (size � 100)� 1)

Fall 1998 15

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section VI

Persistent Communication

Fall 1998 16

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Persistent Communication Requests
� Save arguments of a communication call

� Take overhead out of subsequent calls (e.g., in a loop)

� MPI SENDINIT creates a communication request that completely

specifies a standard send operation

� MPI RECVINIT creates a communication request that completely

specifies a standard recv operation

� Similar routines for ready, synchronous, and buffered send modes

Fall 1998 17

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI SEND INIT

MPI SEND INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer

IN count number of elements sent

IN datatype type of each element

IN dest rank of destination

IN tag message tag

IN comm communicator

OUT request communication request

Fall 1998 18

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI SEND INIT bindings

int MPI_Send_init(void* buf, int count,

MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm,

MPI_Request *request)

Prequest Comm::Send_init(const void* buf, int count,

const Datatype& datatype, int dest,

int tag) const

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG,

COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER REQUEST, COUNT, DATATYPE, DEST, TAG,

COMM, REQUEST, IERROR

Fall 1998 19

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI RECV INIT

MPI RECV INIT(buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer

IN count number of elements received

IN datatype type of each element

IN source rank of source or MPI ANY SOURCE

IN tag message tag or MPI ANY TAG

IN comm communicator

OUT request communication request

Fall 1998 20

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI RECV INIT bindings

int MPI_Recv_init(void* buf, int count,

MPI_Datatype datatype,

int source,

int tag, MPI_Comm comm,

MPI_Request *request)

Prequest Comm::Recv_init(void* buf, int count,

const Datatype& datatype,

int source,

int tag) const

Fall 1998 21

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI RECV INIT bindings (cont.)

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG,

COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM,

REQUEST, IERROR

Fall 1998 22

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Persistent Communication Requests
� To start a send or receive:

MPI_START (REQUEST, IERR)

MPI_START_ALL (COUNT, REQUESTARRAY, IERR)

� The wait and test routines can be used to block until completion, or to check

on status

Fall 1998 23

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI START

MPI START(request)

INOUT request communication request

int MPI_Start(MPI_Request *request)

void Prequest::Start()

MPI_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

Fall 1998 24

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI START ALL

MPI STARTALL(count, array of requests)

IN count list length

INOUT array of requests array of requests

Fall 1998 25

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI START ALL bindings

int MPI_Startall(int count,

MPI_Request *array_of_requests)

static void Prequest::Startall(int count,

Prequest array_of_requests[])

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

Fall 1998 26

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Homework - Persistent Communication
� Rewrite the ring program with persistent communication requests.

� Write a program to do the following:

– Process 0 should read in a single integer (> 0) from standard input

– Use MPI send and receive to pass the integer around a ring

– Use the user-supplied integer to determine how many times to pass the

message around the ring

– Process 0 should decrement the integer each time it is received.

– Processes should exit when they receive a “0”.

Fall 1998 27

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section VII

User-Defined Datatypes

Fall 1998 28

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Datatypes and Heterogeneity
� MPI datatypes have two main purposes:

– Heterogeneity — parallel programs between different processors

– Noncontiguous data — structures, vectors with non-unit stride, etc.

� Basic datatypes, corresponding to the underlying language, are predefined.

� The user can construct new datatypes at run time; these are called derived

datatypes.

� Datatypes can be constructed recursively

� Avoids packing/unpacking

Fall 1998 29

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Datatypes in MPI

Elementary: Language-defined types (e.g., MPI_INT or

MPI_DOUBLE_PRECISION)

Vector: Separated by constant “stride”

Contiguous: Vector with stride of one

Hvector: Vector, with stride in bytes

Indexed: Array of indices

Hindexed: Indexed, with indices in bytes

Struct: General mixed types (for C structs etc.)

Fall 1998 30

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI C Datatypes Revisited

MPI datatype C datatype

MPI CHAR signed char

MPI SHORT signed short int

MPI INT signed int

MPI LONG signed long int

MPI UNSIGNEDCHAR unsigned char

MPI UNSIGNEDSHORT unsigned short int

MPI UNSIGNED unsigned int

Fall 1998 31

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI C Datatypes Revisited (cont.)

MPI datatype C datatype

MPI UNSIGNEDLONG unsigned long int

MPI FLOAT float

MPI DOUBLE double

MPI LONGDOUBLE long double

MPI BYTE

MPI PACKED

Fall 1998 32

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI C++ Datatypes

MPI datatype C++ datatype

MPI::CHAR signed char

MPI::SHORT signed short int

MPI::INT signed int

MPI::LONG signed long int

MPI::UNSIGNED CHAR unsigned char

MPI::UNSIGNED SHORT unsigned short int

MPI::UNSIGNED unsigned int

Fall 1998 33

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI C++ Datatypes (cont.)

MPI datatype C++ datatype

MPI::UNSIGNED LONG unsigned long int

MPI::FLOAT float

MPI::DOUBLE double

MPI::LONG DOUBLE long double

MPI::BYTE

MPI::PACKED

Fall 1998 34

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI Fortran Datatypes Revisited

MPI datatype Fortran datatype

MPI INTEGER INTEGER

MPI REAL REAL

MPI DOUBLEPRECISION DOUBLE PRECISION

MPI COMPLEX COMPLEX

MPI LOGICAL LOGICAL

MPI CHARACTER CHARACTER

MPI BYTE

MPI PACKED

Fall 1998 35

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Type Contiguous
� Simplest derived data type

� Constructs a type map consisting of replications of a datatype in contiguous

locations.

Fall 1998 36

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

MPI TYPE CONTIGUOUS(count, oldtype, newtype)

IN count replication count (nonnegative integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_contiguous(int count,

MPI_Datatype oldtype, MPI_Datatype *newtype)

Datatype Datatype::Create_contiguous(int count) const

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

Fall 1998 37

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Vectors

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

To specify this column (in row order), we can use

MPI_TYPE_VECTOR(count, blocklen, stride, oldtype,

newtype);

MPI_TYPE_COMMIT(newtype);

The exact code for this is

MPI_TYPE_VECTOR(5, 1, 7, MPI_DOUBLE, newtype);

MPI_TYPE_COMMIT(newtype);

Fall 1998 38

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Extents
� The extent of a datatype is (normally) the distance between the first and last

member (in bytes).

LB UB

EXTENT

Memory locations specified by datatype

� You can set an artificial extent by using MPI_UBand MPI_LB in

MPI_TYPE_STRUCT.

Fall 1998 39

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Extent and Size
� The size returns the total size, in bytes, of the entries in the type signature

associated with datatype; i.e., the total size of the data in a message that

would be created with this datatype.

� What is the size of the vector in the previous example?

� What is the extent?

Fall 1998 40

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Example: C Structures
struct {

char display[50]; /* Name of display */

int maxiter; /* max # of iterations */

double xmin, ymin; /* lower left corner of rectangle */

double xmax, ymax; /* upper right corner */

int width; /* of display in pixels */

int height; /* of display in pixels */

} cmdline;

/* set up 4 blocks */

int blockcounts[4] = {50,1,4,2};

MPI_Datatype types[4];

MPI_Aint displs[4];

MPI_Datatype cmdtype;

/* initialize types and displs with addresses of items */

MPI_Address(&cmdline.display, &displs[0]);

MPI_Address(&cmdline.maxiter, &displs[1]);

MPI_Address(&cmdline.xmin, &displs[2]);

MPI_Address(&cmdline.width, &displs[3]);

types[0] = MPI_CHAR;

types[1] = MPI_INT;

types[2] = MPI_DOUBLE;

types[3] = MPI_INT;

for (i = 3; i >= 0; i--)

displs[i] -= displs[0];

MPI_Type_struct(4, blockcounts, displs, types, &cmdtype);

MPI_Type_commit(&cmdtype);

Fall 1998 41

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Structures
� Structures are described by arrays of

– number of elements (array_of_len)

– displacement or location (array_of_displs)

– datatype (array_of_types)

MPI_Type_struct(count, array_of_len,

array_of_displs,

array_of_types, &newtype);

Fall 1998 42

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

C++ Objects
� Objects are combinations of data and functions

– Literally, a C struct with function pointers

– Can associate actions with functions on the object (e.g., construction,

destruction)

� MPI is only built upon moving data, not functions

– MPI can only “fill” an object’s data, just like a struct

– Does not automatically perform any actions or functions on the object

Fall 1998 43

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

C++ Objects
� Ramifications:

– Objects have to be instantiated on receiving side before they can be

received

– A member (or friend) function must receive the data buffer and “fill” the

object (and vice versa for sending; a member/friend function must

marshall the data and send the buffer)

– MPI does not combine the receive and instantiation (nor the send with

destruction)

– Other products can literally move objects from one process to another

(SOM, CORBA, DCOM), but are more “distributed” rather than “parallel”

� Alternatives:

– Object Oriented MPI (OOMPI):

http://www.osl.iu.edu/research/oompi/

Fall 1998 44

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Vectors Revisited
� This code creates a datatype for an arbitrary number of elements in a row of

an array stored in Fortran order (column first).

int blens[2], displs[2];

MPI_Datatype types[2], rowtype;

blens[0] = 1;

blens[1] = 1;

displs[0] = 0;

displs[1] = number_in_column * sizeof(double);

types[0] = MPI_DOUBLE;

types[1] = MPI_UB;

MPI_Type_struct(2, blens, displs, types, &rowtype);

MPI_Type_commit(&rowtype);

� To send n elements, you can use

MPI_Send(buf, n, rowtype, ...);

Fall 1998 45

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Structures Revisited
� When sending an array of structures, it is important to ensure that MPI and

the C compiler have the same value for the size of each structure.

� Most portable way to do this is to use MPI_UB in the structure definition for
the end of the structure. In the previous example, this would be:

/* initialize types and displs with addresses of items */

MPI_Address(&cmdline.display, &displs[0]);

MPI_Address(&cmdline.maxiter, &displs[1]);

MPI_Address(&cmdline.xmin, &displs[2]);

MPI_Address(&cmdline.width, &displs[3]);

MPI_Address(&cmdline+1, &displs[4]);

types[0] = MPI_CHAR;

types[1] = MPI_INT;

types[2] = MPI_DOUBLE;

types[3] = MPI_INT;

types[4] = MPI_UB;

for (i = 4; i >= 0; i--)

displs[i] -= displs[0];

MPI_Type_struct(5, blockcounts, displs, types, &cmdtype);

MPI_Type_commit(&cmdtype);

Fall 1998 46

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Interleaving Data
� By moving the UB inside the data, you can interleave data.

� Consider the matrix

To rank 0! 0 8 16 24 32 40 48 56 To rank 2

1 9 17 25 33 41 49 57

2 10 18 26 34 42 50 58

3 11 19 27 35 43 51 59

To rank 1! 4 12 20 28 36 44 52 60 To rank 3

5 13 21 29 37 45 53 61

6 14 22 30 38 46 54 62

7 15 23 31 39 47 55 63

� We wish to send 0-3,8-11,16-19, and 24-27 to rank 0; 4-7,12-15,20-23, and

28-31 to rank 1; etc.

� How can we do this with MPI_SCATTERV?

Fall 1998 47

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

An Interleaved Datatype
� To define a block of this matrix (in C):

MPI_Type_vector(4, 4, 8, MPI_DOUBLE, &vec);

� To define a block whose extent is just one entry:

blens[0] = 1; blens[1] = 1;

types[0] = vec; types[1] = MPI_UB;

displs[0] = 0; displs[1] = sizeof(double);

MPI_Type_struct(2, blens, displs, types,

&block);

Fall 1998 48

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Scattering a Matrix
� We set the displacements for each block as the location of the first element in

the block.

� This works because MPI_SCATTERVuses the extents to determine the

start of each piece to send.

scdispls[0] = 0; sendcounts[0] = 1;

scdispls[1] = 4; sendcounts[1] = 1;

scdispls[2] = 32; sendcounts[2] = 1;

scdispls[3] = 36; sendcounts[3] = 1;

MPI_Scatterv(sendbuf, sendcounts, scdispls, block,

recvbuf, 16, MPI_DOUBLE, 0,

MPI_COMM_WORLD);

Fall 1998 49

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab - Datatypes
� Create a datatype called submatrix that consists of elements in alternate rows

and alternate columns of the given original matrix.

� Use MPI SENDRECV to send the submatrix from a process to itself and print

the results. To test this program you can run the program on just one

processor.

� For example, if the given matrix is:

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

� The submatrix created should look like:

1 3 5

13 15 17

Fall 1998 50

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Section VIII

MPI Idioms for
High-performance

Fall 1998 51

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Latency and Bandwidth
� Latency [=] time

– A measure of a duration of time for an operation to transpire

– A measure of a “fixed cost” associated with an operation

– Includes overhead costs in software and hardware

– Zero message latency or “startup time”. Time to send an empty message

� Bandwidth [=] bytes/time

– A measure of a rate of transfer

– A measure of the size dependent cost of an operation

– Asymptotic bandwidth is the rate for sending an infinitely long message

– Contended bandwidth is the actual bandwidth of a network considering

congestion from multiple transfers

Fall 1998 52

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Latency and Bandwidth

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10Mbps

100Mbps

155Mbps

Message Size (bytes)

C
os

t (
m

ill
is

ec
on

ds
)

Fall 1998 53

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Message Size and Frequency
� Size and frequency are not inter-changeable

� The total cost of sending a message is

Ttotal = Tlatency +N=Bandwidth

� The choice of size and frequency affects performance

� Multiple small messages should be collected into larger messages

Fall 1998 54

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Message Size and Frequency
� Cluster-based parallel machines:

– Favor fewer and larger message because latency is high

– For example, 100Mbps switched ethernet, all messages under

approximately 1K bytes take the same amount of time to transmit

� “Real” parallel machines:

– Latency is lower (faster interconnection between CPUs)

– Tradeoff point may be different

Fall 1998 55

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Serialization
� Consider the following communication pattern — we wish each process to

exchange a data item with its left and right neighbors.

Time=1 Time=2 Time=3

Rank 0 Rank 1 Rank 2 Rank 3

Fall 1998 56

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Serialization
� One approach

– Everyone sends right

– Everyone receives from the left

– Everyone sends left

– Everyone receives from the right

� Nice, parallel approach (?)

Fall 1998 57

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Serialization
� MPI implementation (code snippet)

if (my_rank != size - 1)

MPI_Send(right);

if (my_rank != 0)

MPI_Recv(left);

if (my_rank != 0)

MPI_Send(left);

if (my_rank != size - 1)

MPI_Recv(right);

� What is wrong with this approach?

Fall 1998 58

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Avoiding Serialization
� The suggested approach may induce serialization of the communication

� The sends may not complete until there is a matching receive (why?)

� Initially there will only be one receive posted

� Creates a daisy-chain effect

� What would happen if we wanted to exchange data around a ring?

Time=1 Time=2 Time=3

Rank 0 Rank 1 Rank 2 Rank 3

Fall 1998 59

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

A Better Implementation
� Code snippet:

if (my_rank != 0)

MPI_Irecv(left);

if (my_rank != size - 1)

MPI_Irecv(right);

if (my_rank != size - 1)

MPI_Send(right);

if (my_rank != 0)

MPI_Send(left);

/* ... wait for recvs to complete */

Fall 1998 60

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

A Better Implementation
� Why is this better?

� How can you receive data before it is sent?

Fall 1998 61

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Overlapping Communication and Computation
� There is lots of “wasted” time spent waiting for sends and receives to

complete

� Better to do some computation while waiting

� Use non-blocking sends and receives

� BUT: Be aware that communication is not guaranteed to take place in the

background with non-blocking operations

Fall 1998 62

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Overlapping Communication and Computation

1. Post non-blocking (perhaps persistent) receive

2. Post (non-blocking, persistent) send

3. While receive has not completed

� do some computation

4. Handle received message

5. Wait for sent messages to complete

Fall 1998 63

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Overlapping Communication and Computation
� What MPI calls would you use for each step above?

� Why do we want to wait for sent messages to complete?

� What does it mean for the sent messages to complete?

Fall 1998 64

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Overlapping Communication and Computation
� Code snippet:

if (my_rank != 0)

MPI_Irecv(left);

if (my_rank != size - 1)

MPI_Irecv(right);

if (my_rank != size - 1)

MPI_Isend(right);

if (my_rank != 0)

MPI_Isend(left);

/* Do some computation */

/* ... wait for sends and recvs to complete */

Fall 1998 65

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Non-blocking “Gotchas”
� Be careful about abusing number of outstanding asynchronous

communication requests

– Causes more overhead in the MPI layer

– Buffers for the pending sends and receives can be expensive

memory-wise, which will also hurt performance

� Make sure you understand the difference between non-blocking

communication and background communication operations.

Fall 1998 66

Laboratory for Scientific Computing MPI Tutorial University of Notre Dame'
&

$
%

Lab - Idioms
� Implement the very first lab exercise

� Algorithm (for each processor)

– Initialize x = number of neighbors

– Update x with average of neighbor’s values of x

– Repeat until done

Fall 1998 67

