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1. Message Passing Fundamentals  

Message Passing Fundamentals  
As a programmer, you may find that you need to solve ever larger, more memory 
intensive problems, or simply solve problems with greater speed than is possible on 
a serial computer. You can turn to parallel programming and parallel computers to 
satisfy these needs. Using parallel programming methods on parallel computers 
gives you access to greater memory and Central Processing Unit (CPU) resources not 
available on serial computers. Hence, you are able to solve large problems that may 
not have been possible otherwise, as well as solve problems more quickly.  

One of the basic methods of programming for parallel computing is the use of 
message passing libraries. These libraries manage transfer of data between 
instances of a parallel program running (usually) on multiple processors in a parallel 
computing architecture.  

The topics to be discussed in this chapter are 

! The basics of parallel computer architectures. 
! The difference between domain and functional decomposition. 
! The difference between data parallel and message passing models. 
! A brief survey of important parallel programming issues. 

 
1.1. Parallel Architectures  

Parallel Architectures 

Parallel computers have two basic architectures: distributed memory and shared 
memory.  

Distributed memory parallel computers are essentially a collection of serial 
computers (nodes) working together to solve a problem. Each node has rapid access 
to its own local memory and access to the memory of other nodes via some sort of 
communications network, usually a proprietary high-speed communications network. 
Data are exchanged between nodes as messages over the network.  

In a shared memory computer, multiple processor units share access to a global 
memory space via a high-speed memory bus. This global memory space allows the 
processors to efficiently exchange or share access to data. Typically, the number of 
processors used in shared memory architectures is limited to only a handful (2 - 16) 
of processors. This is because the amount of data that can be processed is limited by 
the bandwidth of the memory bus connecting the processors.  

The latest generation of parallel computers now uses a mixed shared/distributed 
memory architecture. Each node consists of a group of 2 to 16 processors connected 
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via local, shared memory and the multiprocessor nodes are, in turn, connected via a 
high-speed communications fabric. 

 
1.2. Problem Decomposition  

Problem Decomposition 

The first step in designing a parallel algorithm is to decompose the problem into 
smaller problems. Then, the smaller problems are assigned to processors to work on 
simultaneously. Roughly speaking, there are two kinds of decompositions.  

1. Domain decomposition  
2. Functional decomposition  

These are discussed in the following two sections. 

 
1.2.1. Domain Decomposition  

Domain Decomposition 

In domain decomposition or "data parallelism", data are divided into pieces of 
approximately the same size and then mapped to different processors. Each 
processor then works only on the portion of the data that is assigned to it. Of course, 
the processes may need to communicate periodically in order to exchange data.  

Data parallelism provides the advantage of maintaining a single flow of control. A 
data parallel algorithm consists of a sequence of elementary instructions applied to 
the data: an instruction is initiated only if the previous instruction is ended. Single-
Program-Multiple-Data (SPMD) follows this model where the code is identical on all 
processors.  

Such strategies are commonly employed in finite differencing algorithms where 
processors can operate independently on large portions of data, communicating only 
the much smaller shared border data at each iteration. An example of using data 
parallelism to solve the Poisson equation is provided.  

 
1.2.2. Functional Decomposition  

Functional Decomposition 

Frequently, the domain decomposition strategy turns out not to be the most efficient 
algorithm for a parallel program. This is the case when the pieces of data assigned to 
the different processes require greatly different lengths of time to process. The 
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performance of the code is then limited by the speed of the slowest process. The 
remaining idle processes do no useful work. In this case, functional decomposition or 
"task parallelism" makes more sense than domain decomposition. In task 
parallelism, the problem is decomposed into a large number of smaller tasks and 
then, the tasks are assigned to the processors as they become available. Processors 
that finish quickly are simply assigned more work.  

Task parallelism is implemented in a client-server paradigm. The tasks are allocated 
to a group of slave processes by a master process that may also perform some of 
the tasks. The client-server paradigm can be implemented at virtually any level in a 
program. For example, if you simply wish to run a program with multiple inputs, a 
parallel client-server implementation might just run multiple copies of the code 
serially with the server assigning the different inputs to each client process. As each 
processor finishes its task, it is assigned a new input. Alternately, task parallelism 
can be implemented at a deeper level within the code. Later in this section, you will 
see a client-server implementation of a matrix-vector multiplication.  

 
Figure 1.2 The client-server paradigm. 

 
1.3. Data Parallel and Message Passing Models  

Data Parallel and Message Passing Models 

Historically, there have been two approaches to writing parallel programs. They are  

1. use of a directives-based data-parallel language, and  
2. explicit message passing via library calls from standard programming 

languages.  
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In a directives-based data-parallel language, such as High Performance Fortran 
(HPF) or OpenMP, a serial code is made parallel by adding directives (which appear 
as comments in the serial code) that tell the compiler how to distribute data and 
work across the processors. The details of how data distribution, computation, and 
communications are to be done are left to the compiler. Data parallel languages are 
usually implemented on shared memory architectures because the global memory 
space greatly simplifies the writing of compilers. 

In the message passing approach, it is left up to the programmer to explicitly 
divide data and work across the processors as well as manage the communications 
among them. This approach is very flexible. 

 
1.4. Parallel Programming Issues  

Parallel Programming Issues 

The main goal of writing a parallel program is to get better performance over the 
serial version. With this in mind, there are several issues that you need to consider 
when designing your parallel code to obtain the best performance possible within the 
constraints of the problem being solved. These issues are 

! load balancing 
! minimizing communication 
! overlapping communication and computation 

Each of these issues is discussed in the following sections. 

 
1.4.1. Load Balancing  

Load Balancing 

Load balancing is the task of equally dividing work among the available processes. 
This can be easy to do when the same operations are being performed by all the 
processes (on different pieces of data). It is not trivial when the processing time 
depends upon the data values being worked on. When there are large variations in 
processing time, you may be required to adopt a different method for solving the 
problem.  

 
1.4.2. Minimizing Communication  

Minimizing Communication 
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Total execution time is a major concern in parallel programming because it is an 
essential component for comparing and improving all programs. Three components 
make up execution time:  

1. Computation time 
2. Idle time 
3. Communication time 

Computation time is the time spent performing computations on the data. Ideally, 
you would expect that if you had N processors working on a problem, you should be 
able to finish the job in 1/Nth the time of the serial job. This would be the case if all 
the processors' time was spent in computation. 

Idle time is the time a process spends waiting for data from other processors. 
During this time, the processors do no useful work. An example of this is the ongoing 
problem of dealing with with input and output (I/O) in parallel programs. Many 
message passing libraries do not address parallel I/O, leaving all the work to one 
process while all other processes are in an idle state. 

Finally, communication time is the time it takes for processes to send and receive 
messages. The cost of communication in the execution time can be measured in 
terms of latency and bandwidth. Latency is the time it takes to set up the envelope 
for communication, where bandwidth is the actual speed of transmission, or bits per 
unit time. Serial programs do not use interprocess communication. Therefore, you 
must minimize this use of time to get the best performance improvements.  

 
1.4.3. Overlapping Communication and Computation  

Overlapping Communication and Computation 

There are several ways to minimize idle time within processes, and one example is 
overlapping communication and computation. This involves occupying a process with 
one or more new tasks while it waits for communication to finish so it can proceed on 
another task. Careful use of nonblocking communication and data unspecific 
computation make this possible. It is very difficult in practice to interleave 
communication with computation.  

 
1.5. Self Test  

Message Passing Fundamentals Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 
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1.6. Course Problem  

Chapter 1 Course Problem 

At the end of each chapter of this course, you will be given the opportunity to work 
on a programming exercise related to the material presented. This exercise, called 
the "Course Problem", will get increasingly more sophisticated as the chapters 
progress. As you learn more of the complexities of MPI programming, you will see 
the initial simple, serial program grow into a parallel program containing most of 
MPI's salient features.  

Description  

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
to an output file. In addition, the program reads both the target value and all the 
array elements from an input file.  

Exercise 

This first chapter provided an introduction to the concepts of parallel programming. 
Using these concepts, write a description of a parallel approach to solving the Course 
Problem described above. (No coding is required for this exercise.)  

Solution  

When you think you have described your approach adequately, view the solution 
description.  

 
2. Getting Started with MPI  

Getting Started with MPI  
This chapter will familiarize you with some basic concepts of MPI programming, 
including the basic structure of messages and the main modes of communication. 

The topics that will be discussed are 

! The basic message passing model  
! What is MPI?  
! The goals and scope of MPI  
! A first program: Hello World!  
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! Point-to-point communications and messages  
! Blocking and nonblocking communications  
! Collective communications  

 
2.1. The Message Passing Model  

The Message Passing Model 

MPI is intended as a standard implementation of the "message passing" model of 
parallel computing.  

! A parallel computation consists of a number of processes, each working on 
some local data. Each process has purely local variables, and there is no 
mechanism for any process to directly access the memory of another.  

! Sharing of data between processes takes place by message passing, that is, 
by explicitly sending and receiving data between processes.  

Note that the model involves processes, which need not, in principle, be running on 
different processors. In this course, it is generally assumed that different processes 
are running on different processors and the terms "processes" and "processors" are 
used interchangeably (e.g., by speaking of processors communicating with one 
another).  

A primary reason for the usefulness of this model is that it is extremely general. 
Essentially, any type of parallel computation can be cast in the message passing 
form. In addition, this model  

! can be implemented on a wide variety of platforms, from shared-memory 
multiprocessors to networks of workstations and even single-processor 
machines.  

! generally allows more control over data location and flow within a parallel 
application than in, for example, the shared memory model. Thus programs 
can often achieve higher performance using explicit message passing. Indeed, 
performance is a primary reason why message passing is unlikely to ever 
disappear from the parallel programming world.  

 
2.2. What is MPI?  

What is MPI? 

MPI stands for "Message Passing Interface". It is a library of functions (in C) or 
subroutines (in Fortran) that you insert into source code to perform data 
communication between processes.  
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MPI was developed over two years of discussions led by the MPI Forum, a group of 
roughly sixty people representing some forty organizations.  

The MPI-1 standard was defined in Spring of 1994.  

! This standard specifies the names, calling sequences, and results of 
subroutines and functions to be called from Fortran 77 and C, respectively. All 
implementations of MPI must conform to these rules, thus ensuring 
portability. MPI programs should compile and run on any platform that 
supports the MPI standard.  

! The detailed implementation of the library is left to individual vendors, who 
are thus free to produce optimized versions for their machines.  

! Implementations of the MPI-1 standard are available for a wide variety of 
platforms.  

An MPI-2 standard has also been defined. It provides for additional features not 
present in MPI-1, including tools for parallel I/O, C++ and Fortran 90 bindings, and 
dynamic process management. At present, some MPI implementations include 
portions of the MPI-2 standard but the full MPI-2 is not yet available.  

This course covers MPI-1 except for Chapter 9 - Parallel I/O.  

 
2.3. Goals of MPI  

Goals of MPI 

The primary goals addressed by MPI are to  

! Provide source code portability. MPI programs should compile and run as-is 
on any platform.  

! Allow efficient implementations across a range of architectures.  

MPI also offers  

! A great deal of functionality, including a number of different types of 
communication, special routines for common "collective" operations, and the 
ability to handle user-defined data types and topologies.  

! Support for heterogeneous parallel architectures.  

Some things that are explicitly outside the scope of MPI-1 are  

! The precise mechanism for launching an MPI program. In general, this is 
platform-dependent and you will need to consult your local documentation to 
find out how to do this.  

! Dynamic process management, that is, changing the number of processes 
while the code is running.  

! Debugging  



9 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

! Parallel I/O  

Several of these issues are addressed in MPI-2.  

 
2.4. Why (Not) Use MPI?  

Why (Not) Use MPI? 

You should use MPI when you need to 

! Write portable parallel code.  
! Achieve high performance in parallel programming, e.g. when writing parallel 

libraries.  
! Handle a problem that involves irregular or dynamic data relationships that do 

not fit well into the "data-parallel" model.  

You should not use MPI when you 

! Can achieve sufficient performance and portability using a data-parallel (e.g., 
High-Performance Fortran) or shared-memory approach (e.g., OpenMP, or 
proprietary directive-based paradigms).  

! Can use a pre-existing library of parallel routines (which may themselves be 
written using MPI). For an introduction to using parallel numerical libraries, 
see Chapter 10 - Parallel Mathematical Libraries.  

! Don't need parallelism at all!  

 
2.5. Basic Features of Message Passing Programs  

Basic Features of Message Passing Programs  

Message passing programs consist of multiple instances of a serial program that 
communicate by library calls. These calls may be roughly divided into four classes:  

1. Calls used to initialize, manage, and finally terminate communications.  
2. Calls used to communicate between pairs of processors.  
3. Calls that perform communications operations among groups of processors. 
4. Calls used to create arbitrary data types.  

The first class of calls consists of calls for starting communications, identifying the 
number of processors being used, creating subgroups of processors, and identifying 
which processor is running a particular instance of a program.  

The second class of calls, called point-to-point communications operations, consists 
of different types of send and receive operations.  
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The third class of calls is the collective operations that provide synchronization or 
certain types of well-defined communications operations among groups of processes 
and calls that perform communication/calculation operations.  

The final class of calls provides flexibility in dealing with complicated data structures.  

The following sections of this chapter will focus primarily on the calls from the second 
and third classes: point-to-point communications and collective operations. 

 
2.6. A First Program: Hello World!  

A First Program: Hello World!  

C:  

#include <stdio.h>
#include <mpi.h>

void main (int argc, char *argv[]) {

int err;
err = MPI_Init(&argc, &argv);
printf("Hello world!\n");
err = MPI_Finalize();

}

Fortran:  

PROGRAM hello

INCLUDE 'mpif.h'
INTEGER err

CALL MPI_INIT(err)
PRINT *, "Hello world!"
CALL MPI_FINALIZE(err)

END

For the moment note from the example that 

! MPI functions/subroutines have names that begin with MPI_.  
! There is an MPI header file (mpi.h or mpif.h) containing definitions and 

function prototypes that is imported via an "include" statement.  
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! MPI routines return an error code indicating whether or not the routine ran 
successfully. A fuller discussion of this is given in Section 3.4. - MPI Routines 
and Return Values  

! Each process executes a copy of the entire code. Thus, when run on four 
processors, the output of this program is  

Hello world!
Hello world!
Hello world!
Hello world!

! However, different processors can be made to do different things using 
program branches, e.g.  

if (I am processor 1)
...do something...

if (I am processor 2)
...do something else...

  

 
2.7. Point-to-Point Communications and Messages  

Point-to-Point Communications and Messages 

The elementary communication operation in MPI is "point-to-point" communication, 
that is, direct communication between two processors, one of which sends and the 
other receives.  

Point-to-point communication in MPI is "two-sided", meaning that both an explicit 
send and an explicit receive are required. Data are not transferred without the 
participation of both processors.  

In a generic send or receive, a message consisting of some block of data is 
transferred between processors. A message consists of an envelope, indicating the 
source and destination processors, and a body, containing the actual data to be 
sent.  

MPI uses three pieces of information to characterize the message body in a flexible 
way:  

1. Buffer* - the starting location in memory where outgoing data is to be found 
(for a send) or incoming data is to be stored (for a receive). 

2. Datatype - the type of data to be sent. In the simplest cases this is an 
elementary type such as float/REAL, int/INTEGER, etc. In more advanced 
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applications this can be a user-defined type built from the basic types. These 
can be thought of as roughly analogous to C structures, and can contain data 
located anywhere, i.e., not necessarily in contiguous memory locations. This 
ability to make use of user-defined types allows complete flexibility in defining 
the message content. This is discussed further in Section 5 - Derived 
Datatypes. 

3. Count - the number of items of type datatype to be sent.  

Note that MPI standardizes the designation of the elementary types. This means that 
you don't have to explicitly worry about differences in how machines in 
heterogeneous environments represent them, e.g., differences in representation of 
floating-point numbers.  

 

* In C, buffer is the actual address of the array element where the data transfer 
begins. In Fortran, it is just the name of the array element where the data transfer 
begins. (Fortran actually gets the address behind the scenes.)  

 
2.8. Communication Modes and Completion Criteria  

Communication Modes and Completion Criteria 

MPI provides a great deal of flexibility in specifying how messages are to be sent. 
There are a variety of communication modes that define the procedure used to 
transmit the message, as well as a set of criteria for determining when the 
communication event (i.e., a particular send or receive) is complete. For example, a 
synchronous send is defined to be complete when receipt of the message at its 
destination has been acknowledged. A buffered send, however, is complete when 
the outgoing data has been copied to a (local) buffer; nothing is implied about the 
arrival of the message at its destination. In all cases, completion of a send implies 
that it is safe to overwrite the memory areas where the data were originally stored.  

There are four communication modes available for sends:  

! Standard 
! Synchronous 
! Buffered 
! Ready 

These are discussed in detail in Section 4 - Point-to-Point Communications.  

For receives there is only a single communication mode. A receive is complete when 
the incoming data has actually arrived and is available for use.  

 
2.9. Blocking and Nonblocking Communication  
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Blocking and Nonblocking Communication 

In addition to the communication mode used, a send or receive may be blocking or 
nonblocking.  

A blocking send or receive does not return from the subroutine call until the 
operation has actually completed. Thus it insures that the relevant completion 
criteria have been satisfied before the calling process is allowed to proceed. 

! With a blocking send, for example, you are sure that the variables sent can 
safely be overwritten on the sending processor. With a blocking receive, you 
are sure that the data has actually arrived and is ready for use.  

A nonblocking send or receive returns immediately, with no information about 
whether the completion criteria have been satisfied. This has the advantage that the 
processor is free to do other things while the communication proceeds "in the 
background." You can test later to see whether the operation has actually completed.  

! For example, a nonblocking synchronous send returns immediately, although 
the send will not be complete until receipt of the message has been 
acknowledged. The sending processor can then do other useful work, testing 
later to see if the send is complete. Until it is complete, however, you can not 
assume that the message has been received or that the variables to be sent 
may be safely overwritten.  

 
2.10. Collective Communications  

Collective Communications 

In addition to point-to-point communications between individual pairs of processors, 
MPI includes routines for performing collective communications. These routines 
allow larger groups of processors to communicate in various ways, for example, one-
to-several or several-to-one.  

The main advantages of using the collective communication routines over building 
the equivalent out of point-to-point communications are 

! The possibility of error is significantly reduced. One line of code -- the call to 
the collective routine -- typically replaces several point-to-point calls. 

! The source code is much more readable, thus simplifying code debugging and 
maintenance.  

! Optimized forms of the collective routines are often faster than the equivalent 
operation expressed in terms of point-to-point routines. 

Examples of collective communications include broadcast operations, gather and 
scatter operations, and reduction operations. These are briefly described in the 
following two sections.  
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2.10.1. Broadcast Operations  

Broadcast Operations 

The simplest kind of collective operation is the broadcast. In a broadcast operation 
a single process sends a copy of some data to all the other processes in a group. 
This operation is illustrated graphically in the figure below. Each row in the figure 
represents a different process. Each colored block in a column represents the 
location of a piece of the data. Blocks with the same color that are located on 
multiple processes contain copies of the same data.  

 

Figure 2.1. A broadcast operation  
 

2.10.2. Gather and Scatter Operations  

Gather and Scatter Operations  

Perhaps the most important classes of collective operations are those that distribute 
data from one processor onto a group of processors or vice versa. These are called 
scatter and gather operations. MPI provides two kinds of scatter and gather 
operations, depending upon whether the data can be evenly distributed across 
processors. These scatter and gather operations are illustrated below.  
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Figure 2.2 Scatter and gather operations 

In a scatter operation, all of the data (an array of some type) are initially collected 
on a single processor (the left side of the figure). After the scatter operation, pieces 
of the data are distributed on different processors (the right side of the figure). The 
multicolored box reflects the possibility that the data may not be evenly divisible 
across the processors. The gather operation is the inverse operation to scatter: it 
collects pieces of the data that are distributed across a group of processors and 
reassembles them in the proper order on a single processor.  

 
2.10.3. Reduction Operations  

Reduction Operations 

A reduction is a collective operation in which a single process (the root process) 
collects data from the other processes in a group and combines them into a single 
data item. For example, you might use a reduction to compute the sum of the 
elements of an array that is distributed over several processors. Operations other 
than arithmetic ones are also possible, for example, maximum and minimum, as well 
as various logical and bitwise operations.  
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Figure 2.3 A reduction operation 

In Figure 2.3, the data, which may be array or scalar values, are initially distributed 
across the processors. After the reduction operation, the reduced data (array or 
scalar) are located on the root processor.  

 
2.11. Compiling and Running MPI Programs  

Compiling and Running MPI Programs 

The MPI standard does not specify how MPI programs are to be started. Thus, 
implementations vary from machine to machine.  

When compiling an MPI program, it may be necessary to link against the MPI library. 
Typically, to do this, you would include the option  

-lmpi

to the loader.  

To run an MPI code, you commonly use a "wrapper" called mpirun or mpprun. The 
following command would run the executable a.out on four processors:  

$ mpirun -np 4 a.out

For further detail on using MPI on some of the Alliance platforms, see  

Ohio Supercomputer Center  
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! SGI Origin 2000  
! Cray T3E  
! Linux Cluster  

National Center for Supercomputing Applications  

! SGI Origin 2000/HP Exemplar  
! NT Cluster  

Boston University  

! SGI Origin 2000/PCA  

 
2.12. Self Test  

Getting Started Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
2.13. Course Problem  

Chapter 2 Course Problem  

In this chapter, you learned the terminology and concepts of MPI but not the syntax 
of the library routines. For this reason, the Course Problem is the same as the one 
described in Chapter 1 but with a different task to be performed.  

Description 

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
to an output file. In addition, the program reads both the target value and all the 
array elements from an input file.  

Exercise  

Before writing a parallel version of a program, you must first write a serial version 
(that is, a version that runs on one processor). That is the task for this chapter. You 
can use either Fortran or C/C++ and should confirm that the program works by 
using a test input array.  
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Solution 

After you have written your own code, view our version of the serial code for this 
problem.  

 
3. MPI Program Structure  

MPI Program Structure 
This chapter introduces the basic structure of an MPI program. After sketching this 
structure using a generic pseudo-code, specific program elements are described in 
detail for both C and Fortran. These include  

! Header files  
! MPI naming conventions  
! MPI routines and return values  
! MPI handles  
! MPI datatypes  
! Initializing and terminating MPI  
! Communicators  
! Getting communicator information: rank and size  

 
3.1. Generic MPI Program  

A Generic MPI Program 

All MPI programs have the following general structure: 

include MPI header file
variable declarations
initialize the MPI environment

...do computation and MPI communication calls...

close MPI communications

The MPI header file contains MPI-specific definitions and function prototypes. 

Then, following the variable declarations, each process calls an MPI routine that 
initializes the message passing environment. All calls to MPI communication routines 
must come after this initialization. 
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Finally, before the program ends, each process must call a routine that terminates 
MPI. No MPI routines may be called after the termination routine is called. Note that 
if any process does not reach this point during execution, the program will appear to 
hang. 

 
3.2. MPI Header Files  

MPI Header Files  

MPI header files contain the prototypes for MPI functions/subroutines, as well as 
definitions of macros, special constants, and datatypes used by MPI. An appropriate 
"include" statement must appear in any source file that contains MPI function calls or 
constants.  

C:  

#include <mpi.h>

Fortran:  

INCLUDE 'mpif.h'
 

3.3. MPI Naming Conventions  

MPI Naming Conventions  

The names of all MPI entities (routines, constants, types, etc.) begin with MPI_ to 
avoid conflicts.  

Fortran routine names are conventionally all upper case:  

MPI_XXXXX(parameter, ... , IERR)
Example: MPI_INIT(IERR).  

C function names have a mixed case:  

MPI_Xxxxx(parameter, ... )
Example: MPI_Init(&argc, &argv).  

The names of MPI constants are all upper case in both C and Fortran, for example,  

MPI_COMM_WORLD, MPI_REAL, ...
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In C, specially defined types correspond to many MPI entities. (In Fortran these are 
all integers.) Type names follow the C function naming convention above; for 
example,  

MPI_Comm

is the type corresponding to an MPI "communicator".
 

3.4. MPI Routines and Return Values  

MPI Routines and Return Values  

MPI routines are implemented as functions in C and subroutines in Fortran. In 
either case generally an error code is returned, enabling you to test for the 
successful operation of the routine.  

In C, MPI functions return an int, which indicates the exit status of the call.  

int err;
...
err = MPI_Init(&argc, &argv);
...

In Fortran, MPI subroutines have an additional INTEGER argument -- always the last 
one in the argument list -- that contains the error status when the call returns.  

INTEGER IERR
...
CALL MPI_INIT(IERR)
...

The error code returned is MPI_SUCCESS if the routine ran successfully (that is, the 
integer returned is equal to the pre-defined integer constant MPI_SUCCESS). Thus, 
you can test for successful operation with  

C:  

if (err == MPI_SUCCESS) {

...routine ran correctly...

}

Fortran:  

if (IERR.EQ.MPI_SUCCESS) THEN

...routine ran correctly...
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END IF

If an error occurred, then the integer returned has an implementation-dependent 
value indicating the specific error.  

 
3.5. MPI Handles  

MPI Handles  

MPI defines and maintains its own internal data structures related to communication, 
etc. You reference these data structures through handles. Handles are returned by 
various MPI calls and may be used as arguments in other MPI calls.  

In C, handles are pointers to specially defined datatypes (created via the C typedef 
mechanism). Arrays are indexed starting at 0.  

In Fortran, handles are integers (possibly arrays of integers) and arrays are 
indexed starting at 1.  

Examples:  

! MPI_SUCCESS - An integer in both C and Fortran. Used to test error codes. 
! MPI_COMM_WORLD - In C, an object of type MPI_Comm (a "communicator"); 

in Fortran, an integer. In either case it represents a pre-defined 
communicator consisting of all processors.  

Handles may be copied using the standard assignment operation in both C and 
Fortran.  

 
3.6. MPI Datatypes  

MPI Datatypes  

MPI provides its own reference datatypes corresponding to the various elementary 
datatypes in C and Fortran.  

! Variables are normally declared as C/Fortran types.  
! MPI type names are used as arguments in MPI routines when a type is 

needed.  

MPI hides the details of, e.g., the floating-point representation, which is an issue for 
the implementor.  
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MPI allows automatic translation between representations in a heterogeneous 
environment.  

As a general rule, the MPI datatype given in a receive must match the MPI datatype 
specified in the send.  

In addition, MPI allows you to define arbitrary data types built from the basic types. 
This is discussed in detail in Section 5 - Derived Datatypes. 

 
3.7. Basic MPI Datatypes - C   

Basic MPI Data Types - C  

In C, the basic MPI datatypes and their corresponding C types are  

MPI Datatype C Type 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGNED_SHORT 
unsigned short 
int 

MPI_UNSIGNED unsigned int 

MPI_UNSIGNED_LONG 
unsigned long 
int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

MPI_BYTE (none) 

MPI_PACKED (none) 

 
3.8. Basic MPI Datatypes - Fortran  

Basic MPI Datatypes - Fortran  
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In Fortran, the basic MPI datatypes and their corresponding Fortran types are  

MPI Datatype Fortran Type 

MPI_INTEGER integer 

MPI_REAL real 

MPI_DOUBLE_PRECISION double precision 

MPI_COMPLEX complex 

MPI_CHARACTER character(1) 

MPI_LOGICAL logical 

MPI_BYTE (none) 

MPI_PACKED (none) 

 
3.9. Special MPI Datatypes (C)  

Special MPI Datatypes (C)  

In C, MPI provides several special datatypes (structures). Examples include  

! MPI_Comm - a communicator  
! MPI_Status - a structure containing several pieces of status information for 

MPI calls  
! MPI_Datatype  

These are used in variable declarations, for example,  

MPI_Comm some_comm;

declares a variable called some_comm, which is of type MPI_Comm (i.e. a 
communicator).  

In Fortran, the corresponding types are all INTEGERs.  

 
3.10. Initializing MPI  

Initializing MPI  

The first MPI routine called in any MPI program must be the initialization routine 
MPI_INIT. This routine establishes the MPI environment, returning an error code if 
there is a problem.  
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MPI_INIT may be called only once in any program!  

C:  

int err;
...
err = MPI_Init(&argc, &argv);

Note that the arguments to MPI_Init are the addresses of argc and argv, the 
variables that contain the command-line arguments for the program.  

Fortran:  

INTEGER IERR
...
CALL MPI_INIT(IERR)

 
3.11. Communicators  

Communicators  

A communicator is a handle representing a group of processors that can 
communicate with one another.  

The communicator name is required as an argument to all point-to-point and 
collective operations.  

! The communicator specified in the send and receive calls must agree for 
communication to take place.  

! Processors can communicate only if they share a communicator.  

There can be many communicators, and a given processor can be a member of a 
number of different communicators. Within each communicator, processors are 
numbered consecutively (starting at 0). This identifying number is known as the 
rank of the processor in that communicator.  

! The rank is also used to specify the source and destination in send and 
receive calls. 

! If a processor belongs to more than one communicator, its rank in each can 
(and usually will) be different!  

MPI automatically provides a basic communicator called MPI_COMM_WORLD. It is 
the communicator consisting of all processors. Using MPI_COMM_WORLD, every 
processor can communicate with every other processor. You can define additional 
communicators consisting of subsets of the available processors. 
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3.11.1. Getting Communicator Information: Rank  

Getting Communicator Information: Rank  

A processor can determine its rank in a communicator with a call to 
MPI_COMM_RANK.  

! Remember: ranks are consecutive and start with 0. 
! A given processor may have different ranks in the various communicators to 

which it belongs.  

C:  

int MPI_Comm_rank(MPI_Comm comm, int *rank);

! The argument comm is a variable of type MPI_Comm, a communicator. For 
example, you could use MPI_COMM_WORLD here. Alternatively, you could 
pass the name of another communicator you have defined elsewhere. Such a 
variable would be declared as  

MPI_Comm some_comm;

! Note that the second argument is the address of the integer variable rank.  

Fortran:  

MPI_COMM_RANK(COMM, RANK, IERR)

! In this case the arguments COMM, RANK, and IERR are all of type INTEGER.  

 
3.11.2. Getting Communicator Information: Size  

Getting Communicator Information: Size  

A processor can also determine the size, or number of processors, of any 
communicator to which it belongs with a call to MPI_COMM_SIZE.  

C:  

int MPI_Comm_size(MPI_Comm comm, int *size);

! The argument comm is of type MPI_Comm, a communicator.  
! Note that the second argument is the address of the integer variable size.  
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Fortran:  

MPI_COMM_SIZE(COMM, SIZE, IERR)

! The arguments COMM, SIZE, and IERR are all of type INTEGER.  

 
3.12. Terminating MPI  

Terminating MPI  

The last MPI routine called should be MPI_FINALIZE which  

! cleans up all MPI data structures, cancels operations that never completed, 
etc.  

! must be called by all processes; if any one process does not reach this 
statement, the program will appear to hang.  

Once MPI_FINALIZE has been called, no other MPI routines (including MPI_INIT) 
may be called.  

C:  

int err;
...

err = MPI_Finalize();

Fortran:  

INTEGER IERR
...
call MPI_FINALIZE(IERR)

 
3.13. Hello World! mk. 2 (C version)  

Sample Program: Hello World! mk. 2  

In this modified version of the "Hello World" program, each processor prints its rank 
as well as the total number of processors in the communicator MPI_COMM_WORLD.  

C: 

#include <stdio.h>
#include <mpi.h>
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void main (int argc, char *argv[]) {

int myrank, size;

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get my rank */
MPI_Comm_size(MPI_COMM_WORLD, &size); /* Get the total

number of processors */
printf("Processor %d of %d: Hello World!\n", myrank, size);

MPI_Finalize(); /* Terminate MPI */

}

Notes: 

! Makes use of the pre-defined communicator MPI_COMM_WORLD.  
! Not testing for error status of routines!  

 
3.14. Hello World! mk. 2 (Fortran version)  

Sample Program: Hello World! mk. 2  

Fortran:  

PROGRAM hello

INCLUDE 'mpif.h'

INTEGER myrank, size, ierr

C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Get the total number of processors:

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

PRINT *, "Processor", myrank, "of", size, ": Hello World!"

C Terminate MPI:

call MPI_FINALIZE(ierr)
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END

Notes:  

! Makes use of the pre-defined communicator MPI_COMM_WORLD. 
! Not testing for error status of routines!  

 
3.15. Sample Program Output  

Sample Program: Output  

Running this code on four processors will produce a result like:  

Processor 2 of 4: Hello World!
Processor 1 of 4: Hello World!
Processor 3 of 4: Hello World!
Processor 0 of 4: Hello World!

Each processor executes the same code, including probing for its rank and size and 
printing the string.  

The order of the printed lines is essentially random!  

! There is no intrinsic synchronization of operations on different processors.  
! Each time the code is run, the order of the output lines may change.  

 
3.16. Self Test  

Program Structure Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
3.17. Course Problem  

Chapter 3 Course Problem  

In this chapter, you learned the overall structure of an MPI program and a set of 
ubiquitous MPI routines for initializing and terminating the MPI library. The critical 
routine each processor can call to get its identifying rank number was also discussed. 



29 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

You will use these routines in the exercise described below. Again, the problem 
description is the same as the one given in Chapter 1.  

Description 

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
to an output file. In addition, the program reads both the target value and all the 
array elements from an input file.  

Exercise  

You now have enough knowledge to write pseudo-code for the parallel search 
algorithm introduced in Chapter 1. In the pseudo-code, you should correctly initialize 
MPI, have each processor determine and use its rank, and terminate MPI. By 
tradition, the Master processor has rank 0. Assume in your pseudo-code that the real 
code will be run on 4 processors. 

Solution 

When you have finished writing the code for this exercise, view our version of the 
Parallel Pseudo-Code.  

 
4. Point-to-Point Communication  

Point-to-Point Communication 
Point-to-point communication is the fundamental communication facility provided by 
the MPI library.  

Point-to-point communication is conceptually simple: one process sends a message 
and another process receives it. However, it is less simple in practice. For example, a 
process may have many messages waiting to be received. In that case, a crucial 
issue is how MPI and the receiving process determine what message to receive.  

Another issue is whether send and receive routines initiate communication 
operations and return immediately, or wait for the initiated communication operation 
to complete before returning. The underlying communication operations are the 
same in both cases, but the programming interface is very different.  

The topics to be discussed in this chapter are: 

! Fundamentals of point-to-point communication 
! Blocking send and receive 
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! Nonblocking send and receive 
! Send modes 

 
4.1. Fundamentals  

Fundamentals 

The issues discussed in the next three sections -- Source and Destination, Messages, 
and Sending and Receiving Messages -- are fundamental to point-to-point 
communication in MPI. These apply to all versions of send and receive, both blocking 
and nonblocking, and to all send modes.  

 
4.1.1. Source and Destination  

Source and Destination 

The point-to-point communication facilities discussed here are two-sided and require 
active participation from the processes on both sides. One process (the source) 
sends, and another process (the destination) receives.  

In general, the source and destination processes operate asynchronously. Even the 
sending and receiving of a single message is typically not synchronized. The source 
process may complete sending a message long before the destination process gets 
around to receiving it, and the destination process may initiate receiving a message 
that has not yet been sent.  

Because sending and receiving are typically not synchronized, processes often have 
one or more messages that have been sent but not yet received. These sent, but not 
yet received messages are called pending messages. It is an important feature of 
MPI that pending messages are not maintained in a simple FIFO queue. Instead, 
each pending message has several attributes and the destination process (the 
receiving process) can use the attributes to determine which message to receive. 

 
4.1.2. Messages  

Messages 

Messages consist of 2 parts: the envelope and the message body.  

The envelope of an MPI message is analogous to the paper envelope around a letter 
mailed at the post office. The envelope of a posted letter typically has the destination 
address, the return address, and any other information needed to transmit and 
deliver the letter, such as class of service (airmail, for example).  
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The envelope of an MPI message has 4 parts:  

1. source - the sending process; 
2. destination - the receiving process; 
3. communicator - specifies a group of processes to which both source and 

destination belong (See Section 3.11 - Communicators.);  
4. tag - used to classify messages. 

The tag field is required, but its use is left up to the program. A pair of 
communicating processes can use tag values to distinguish classes of messages. For 
example, one tag value can be used for messages containing data and another tag 
value for messages containing status information.  

The message body was previously described in Section 2.7 - Point-to-Point 
Communications and Messages. It has 3 parts:  

1. buffer - the message data; 
2. datatype - the type of the message data; 
3. count - the number of items of type datatype in buffer. 

Think of the buffer as an array; the dimension is given by count, and the type of the 
array elements is given by datatype. Using datatypes and counts, rather than bytes 
and bytecounts, allows structured data and noncontiguous data to be handled 
smoothly. It also allows transparent support of communication between 
heterogeneous hosts.  

 
4.1.3. Sending and Receiving Messages  

Sending and Receiving Messages 

Sending messages is straightforward. The source (the identity of the sender) is 
determined implicitly, but the rest of the message (envelope and body) is given 
explicitly by the sending process.  

Receiving messages is not quite so simple. As mentioned in Section 4.1.1 - Source 
and Destination, a process may have several pending messages.  

To receive a message, a process specifies a message envelope that MPI compares to 
the envelopes of pending messages. If there is a match, a message is received. 
Otherwise, the receive operation cannot be completed until a matching message is 
sent.  

In addition, the process receiving a message must provide storage into which the 
body of the message can be copied. The receiving process must be careful to provide 
enough storage for the entire message.  

 



32 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

4.2. Blocking Send and Receive  

Blocking Send and Receive 

The two functions, MPI_SEND and MPI_RECV, are the basic point-to-point 
communication routines in MPI. Their calling sequences are presented and discussed 
in the following sections.  

Both functions block the calling process until the communication operation is 
completed. Blocking creates the possibility of deadlock, a key issue that is explored 
by way of simple examples. In addition, the meaning of completion is discussed.  

The nonblocking analogues of MPI_SEND and MPI_RECV are presented in Section 4.3 
- Nonblocking Sends and Receives.  

 
4.2.1. Sending a Message: MPI_SEND  

Sending a Message: MPI_SEND 

MPI_SEND takes the following arguments: 

 

The message body contains the data to be sent: count items of type datatype. The 
message envelope tells where to send it. In addition, an error code is returned. Both 
C and Fortran bindings are shown below.  

C:  

int MPI_Send(void *buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm);

! All arguments are input arguments. 
! An error code is returned by the function. 
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Fortran:  

MPI_SEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, IERR)

! The input argument BUF is an array; its type should match the type given in 
DTYPE. 

! The input arguments COUNT, DTYPE, DEST, TAG, COMM are of type INTEGER. 
! The output argument IERR is of type INTEGER; it contains an error code when 

MPI_SEND returns. 

 
4.2.2. Receiving a Message: MPI_RECV  

Receiving a Message: MPI_RECV 

MPI_RECV takes a set of arguments similar to MPI_SEND, but several of the 
arguments are used in a different way.  

 

The message envelope arguments determine what messages can be received by the 
call. The source, tag, and communicator arguments must match those of a pending 
message in order for the message to be received. (See Section 4.1.3 - Sending and 
Receiving Messages).  

Wildcard values may be used for the source (accept a message from any process) 
and the tag (accept a message with any tag value). If wildcards are not used, the 
call can accept messages from only the specified sending process, and with only the 
specified tag value. Communicator wildcards are not available.  

The message body arguments specify where the arriving data are to be stored, what 
type it is assumed to be, and how much of it the receiving process is prepared to 
accept. If the received message has more data than the receiving process is 
prepared to accept, it is an error.  
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In general, the sender and receiver must agree about the message datatype, and it 
is the programmer's responsibility to guarantee that agreement. If the sender and 
receiver use incompatible message datatypes, the results are undefined.  

The status argument returns information about the message that was received. The 
source and tag of the received message are available this way (needed if wildcards 
were used); also available is the actual count of data received.  

In addition, an error code is returned.  

Both C and Fortran bindings are shown below.  

C: 

int MPI_Recv(void *buf, int count, MPI_Datatype dtype,
int source, int tag, MPI_Comm comm,
MPI_Status *status);

! buf and status are output arguments; the rest are inputs. 
! An error code is returned by the function. 

Fortran: 

MPI_RECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, STATUS, IERR)

! The output argument BUF is an array; its type should match the type in 
DTYPE. 

! The input arguments COUNT, DTYPE, SOURCE, TAG, COMM are of type 
INTEGER. 

! The output argument STATUS is an INTEGER array with MPI_STATUS_SIZE 
elements. 

! The output argument IERR is of type INTEGER; it contains an error code when 
MPI_RECV returns. 

Notes:  

! A maximum of COUNT items of type DTYPE are accepted; if the message 
contains more, it is an error.  

! The sending and receiving processes must agree on the datatype; if they 
disagree, results are undefined (MPI does not check). 

! When this routine returns, the received message data have been copied into 
the buffer; and the tag, source, and actual count of data received are 
available via the status argument. 

 
4.2.3. Example: Send and Receive  

Example: Send and Receive 
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In this program, process 0 sends a message to process 1, and process 1 receives it. 
Note the use of myrank in a conditional to limit execution of code to a particular 
process.  

Fortran: 

PROGRAM simple_send_and_receive

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
REAL a(100)

C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 sends, process 1 receives:

if( myrank.eq.0 )then
call MPI_SEND( a, 100, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)

else if ( myrank.eq.1 )then
call MPI_RECV( a, 100, MPI_REAL, 0, 17, MPI_COMM_WORLD, status,

ierr )
endif

C Terminate MPI:

call MPI_FINALIZE(ierr)

END

C: 

/* simple send and receive */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {

int myrank;
MPI_Status status;
double a[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if( myrank == 0 ) /* Send a message */

MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
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else if( myrank == 1 ) /* Receive a message */
MPI_Recv( a, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );

MPI_Finalize(); /* Terminate MPI */

}

 
4.2.4. What Happens at Runtime  

What Happens at Runtime 

It is useful to keep in mind the following model for the runtime behavior of 
MPI_SEND. According to the model, when a message is sent using MPI_SEND one of 
two things may happen:  

1. The message may be copied into an MPI internal buffer and transferred to its 
destination later, in the background, or 

2. The message may be left where it is, in the program's variables, until the 
destination process is ready to receive it. At that time, the message is 
transferred to its destination.  

The first option allows the sending process to move on to other things after the copy 
is completed. The second option minimizes copying and memory use, but may result 
in extra delay to the sending process. The delay can be significant.  

Surprisingly, in 1., a call to MPI_SEND may return before any non-local action has 
been taken or even begun, i.e., before anything has happened that might naively be 
associated with sending a message. In 2., a synchronization between sender and 
receiver is implied.  

To summarize, according to the model sketched above, when a message is sent 
using MPI_SEND, the message is either buffered immediately and delivered later 
asynchronously, or the sending and receiving processes synchronize.  

 
4.2.5. Blocking and Completion  

Blocking and Completion 

Both MPI_SEND and MPI_RECV block the calling process. Neither returns until the 
communication operation it invoked is completed.  

The meaning of completion for a call to MPI_RECV is simple and intuitive -- a 
matching message has arrived, and the message’s data have been copied into the 
output arguments of the call. In other words, the variables passed to MPI_RECV 
contain a message and are ready to be used.  
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For MPI_SEND, the meaning of completion is simple but not as intuitive. A call to 
MPI_SEND is completed when the message specified in the call has been handed off 
to MPI. In other words, the variables passed to MPI_SEND can now be overwritten 
and reused. Recall from the previous section that one of two things may have 
happened: either MPI copied the message into an internal buffer for later, 
asynchronous delivery; or else MPI waited for the destination process to receive the 
message. Note that if MPI copied the message into an internal buffer, then the call to 
MPI_SEND may be officially completed, even though the message has not yet left the 
sending process.  

If a message passed to MPI_SEND is larger than MPI’s available internal buffer, then 
buffering cannot be used. In this case, the sending process must block until the 
destination process begins to receive the message, or until more buffer is available. 
In general, messages that are copied into MPI internal buffer will occupy buffer space 
until the destination process begins to receive the message.  

Note that a call to MPI_RECV matches a pending message if it matches the pending 
message’s envelope (source, tag, communicator). Datatype matching is also 
required for correct execution but MPI does not check for it. Instead, it is the 
obligation of the programmer to guarantee datatype matching.  

 
4.2.6. Deadlock  

Deadlock 

Deadlock occurs when 2 (or more) processes are blocked and each is waiting for the 
other to make progress. Neither process makes progress because each depends on 
the other to make progress first. The program shown below is an example -- it fails 
to run to completion because processes 0 and 1 deadlock.  

In the program, process 0 attempts to exchange messages with process 1. Each 
process begins by attempting to receive a message sent by the other; each process 
blocks pending receipt. Process 0 cannot proceed until process 1 sends a message; 
process 1 cannot proceed until process 0 sends a message.  

The program is erroneous and deadlocks. No messages are ever sent, and no 
messages are ever received.  

C Example: 

/* simple deadlock */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {

int myrank;
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MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if( myrank == 0 ) {

/* Receive, then send a message */
MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );

}
else if( myrank == 1 ) {

/* Receive, then send a message */
MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );
MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );

}

MPI_Finalize(); /* Terminate MPI */

}

Fortran Example: 

PROGRAM simple_deadlock

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
REAL a(100), b(100)

C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 receives and sends; same for process 1

if( myrank.eq.0 )then
call MPI_RECV( b, 100, MPI_REAL, 1, 19, MPI_COMM_WORLD, status,

ierr )
call MPI_SEND( a, 100, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)

else if ( myrank.eq.1 )then
call MPI_RECV( b, 100, MPI_REAL, 0, 17, MPI_COMM_WORLD, status,

ierr )
call MPI_SEND( a, 100, MPI_REAL, 0, 19, MPI_COMM_WORLD, ierr)

endif

C Terminate MPI:
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call MPI_FINALIZE(ierr)

END

  

 
4.2.6.1. Avoiding Deadlock  

Avoiding Deadlock 

In general, avoiding deadlock requires careful organization of the communication in a 
program. The programmer should be able to explain why the program does not (or 
does) deadlock.  

The program shown below is similar to the program in the preceding section, but its 
communication is better organized and the program does not deadlock. Once again, 
process 0 attempts to exchange messages with process 1. Process 0 receives, then 
sends; process 1 sends, then receives. The protocol is safe. Barring system failures, 
this program always runs to completion.  

Note that increasing array dimensions and message sizes have no effect on the 
safety of the protocol. The program still runs to completion. This is a useful property 
for application programs -- when the problem size is increased, the program still 
runs to completion.  

C Example: 

/* safe exchange */
#include <stdio.h>
#include <mpi.h>
void main (int argc, char **argv) {

int myrank;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if( myrank == 0 ) {

/* Receive a message, then send one */
MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );
MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );

}
else if( myrank == 1 ) {

/* Send a message, then receive one */
MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );
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}

MPI_Finalize(); /* Terminate MPI */

}

Fortran Example: 

PROGRAM safe_exchange

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
REAL a(100), b(100)

C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 receives and sends; process 1 sends and receives

if( myrank.eq.0 )then
call MPI_RECV( b, 100, MPI_REAL, 1, 19, MPI_COMM_WORLD, status,

ierr )
call MPI_SEND( a, 100, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)

else if ( myrank.eq.1 )then
call MPI_SEND( a, 100, MPI_REAL, 0, 19, MPI_COMM_WORLD, ierr )
call MPI_RECV( b, 100, MPI_REAL, 0, 17, MPI_COMM_WORLD, status,

ierr)

endif

C Terminate MPI:

call MPI_FINALIZE(ierr)

END

 
4.2.6.2. Avoiding Deadlock (Sometimes but Not Always)  

Avoiding Deadlock (Sometimes but Not Always) 

The program shown below is similar to preceding examples. Again, process 0 
attempts to exchange messages with process 1. This time, both processes send first, 
then receive. Success depends on the availability of buffering in MPI. There must be 
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enough MPI internal buffer available to hold at least one of the messages in its 
entirety.  

Under most MPI implementations, the program shown will run to completion. 
However, if the message sizes are increased, sooner or later the program will 
deadlock. This behavior is sometimes seen in computational codes -- a code will run 
to completion when given a small problem, but deadlock when given a large 
problem. This is inconvenient and undesirable. The inconvenience is increased when 
the original authors of the code are no longer available to maintain it.  

In general, depending on MPI internal buffer to avoid deadlock makes a program less 
portable and less scalable. The best practice is to write programs that run to 
completion regardless of the availability of MPI internal buffer.  

C Example: 

/* depends on buffering */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {

int myrank;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if( myrank == 0 ) {

/* Send a message, then receive one */
MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
MPI_Recv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );

}
else if( myrank == 1 ) {

/* Send a message, then receive one */
MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
MPI_Recv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );

}

MPI_Finalize(); /* Terminate MPI */

}

Fortran Example:  

PROGRAM depends_on_buffering

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
REAL a(100), b(100)
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C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 sends and receives; same for process 1

if( myrank.eq.0 )then
call MPI_SEND( a, 100, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)
call MPI_RECV( b, 100, MPI_REAL, 1, 19, MPI_COMM_WORLD, status,

ierr )

else if ( myrank.eq.1 )then
call MPI_SEND( a, 100, MPI_REAL, 0, 19, MPI_COMM_WORLD, ierr )
call MPI_RECV( b, 100, MPI_REAL, 0, 17, MPI_COMM_WORLD, status,

ierr)

endif

C Terminate MPI:

call MPI_FINALIZE(ierr)

END

 
4.2.6.3. Probable Deadlock  

Probable Deadlock 

The only significant difference between the program shown below and the preceeding 
one is the size of the messages. This program will deadlock under the default 
configuration of nearly all available MPI implementations. 

C Example: 

/* probable deadlock */
#include <stdio.h>
#include <mpi.h>

void main (int argc, char **argv) {

int myrank;
MPI_Status status;
#define N 100000000
double a[N], b[N];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
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if( myrank == 0 ) {
/* Send a message, then receive one */
MPI_Send( a, N, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
MPI_Recv( b, N, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &status );

}
else if( myrank == 1 ) {

/* Send a message, then receive one */
MPI_Send( a, N, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
MPI_Recv( b, N, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &status );

}

MPI_Finalize(); /* Terminate MPI */

}

Fortran Example: 

PROGRAM probable_deadlock

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
INTEGER n
PARAMETER (n=100000000)
REAL a(n), b(n)

C Initialize MPI:

call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 sends, then receives; same for process 1

if( myrank.eq.0 )then
call MPI_SEND( a, n, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)
call MPI_RECV( b, n, MPI_REAL, 1, 19, MPI_COMM_WORLD, status,

ierr )

else if ( myrank.eq.1 )then
call MPI_SEND( a, n, MPI_REAL, 0, 19, MPI_COMM_WORLD, ierr )
call MPI_RECV( b, n, MPI_REAL, 0, 17, MPI_COMM_WORLD, status,

ierr)
endif

C Terminate MPI:

call MPI_FINALIZE(ierr)

END

 
4.3. Nonblocking Sends and Receives  
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Nonblocking Sends and Receives 

Recall that both MPI_SEND and MPI_RECV block the calling process. Neither returns 
until the communication operation it invoked is completed. As discussed in Section 
4.2.5 - Blocking and Completion, the requirement for the communication operation 
to complete can cause delays and even deadlock. 

MPI provides another way to invoke send and receive operations. It is possible to 
separate the initiation of a send or receive operation from its completion by making 
two separate calls to MPI. The first call initiates the operation, and the second call 
completes it. Between the two calls, the program is free to do other things.  

The underlying communication operations are the same whether they are invoked by 
a single call, or by two separate calls -- one to initiate the operation and another to 
complete it. The communication operations are the same, but the interface to the 
library is different.  

 
4.3.1. Posting, Completion, and Request Handles  

Posting, Completion, and Request Handles 

The nonblocking interface to send and receive requires two calls per communication 
operation: one call to initiate the operation, and a second call to complete it. 
Initiating a send operation is called posting a send. Initiating a receive operation is 
called posting a receive.  

Once a send or receive operation has been posted, MPI provides two distinct ways of 
completing it. A process can test to see if the operation has completed, without 
blocking on the completion. Alternately, a process can wait for the operation to 
complete.  

After posting a send or receive with a call to a nonblocking routine, the posting 
process needs some way to refer to the posted operation. MPI uses request handles 
for this purpose (See Section 3.6 - MPI Handles). Nonblocking send and receive 
routines all return request handles, which are used to identify the operation posted 
by the call.  

In summary, sends and receives may be posted (initiated) by calling nonblocking 
routines. Posted operations are identified by request handles. Using request handles, 
processes can check the status of posted operations or wait for their completion.  

 
4.3.2. Posting Sends without Blocking  

Posting Sends without Blocking 
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A process calls the routine MPI_ISEND to post (initiate) a send without blocking on 
completion of the send operation. The calling sequence is similar to the calling 
sequence for the blocking routine MPI_SEND but includes an additional output 
argument, a request handle. The request handle identifies the send operation that 
was posted. The request handle can be used to check the status of the posted send 
or to wait for its completion.  

None of the arguments passed to MPI_ISEND should be read or written until the 
send operation it invokes is completed.  

Nonblocking C and Fortran versions of the standard mode send are given below.  

C:  

int MPI_Isend(void *buf, int count, MPI_Datatype dtype,
int dest, int tag, MPI_Comm comm,
MPI_Request *request);

! An error code is returned by the function.  

Fortran: 

MPI_ISEND(BUF, COUNT, DTYPE, DEST, TAG, COMM, REQ, IERR)

! The input argument BUF is an array; its type should match the type in DTYPE.  
! The input arguments COUNT, DTYPE, DEST, TAG, COMM have type INTEGER. 
! The output argument REQ has type INTEGER; it is used to identify a request 

handle. 
! The output argument IERR has type INTEGER; it contains an error code when 

MPI_SEND returns. 

Notes:  

! The message body is specified by the first three arguments (BUF, COUNT and 
DTYPE in Fortran) and the message envelope by the second three (DEST, TAG 
and COMM in Fortran). 

! The source of the message, the sending process, is determined implicitly. 
! When this routine returns, a send has been posted (but not yet completed). 
! Another call to MPI is required to complete the send operation posted by this 

routine. 
! None of the arguments passed to MPI_ISEND should be read or written until 

the send operation is completed. 

 
4.3.3. Posting Receives without Blocking  

Posting Receives without Blocking 
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A process calls the routine MPI_IRECV to post (initiate) a receive without blocking on 
its completion. The calling sequence is similar to the calling sequence for the 
blocking routine MPI_RECV, but the status argument is replaced by a request handle; 
both are output arguments. The request handle identifies the receive operation that 
was posted and can be used to check the status of the posted receive or to wait for 
its completion.  

None of the arguments passed to MPI_IRECV should be read or written until the 
receive operation it invokes is completed. 

Nonblocking C and Fortran versions of the standard mode send are given below.  

C:  

int MPI_Irecv(void *buf, int count, MPI_Datatype dtype,
int source, int tag, MPI_Comm comm,
MPI_Request *request);

! An error code is returned by the function.  

Fortran:  

MPI_IRECV(BUF, COUNT, DTYPE, SOURCE, TAG, COMM, REQUEST, IERR)

! The output argument BUF is an array; its type should match the type in 
DTYPE.  

! The input arguments COUNT, DTYPE, SOURCE, TAG, COMM have type 
INTEGER.  

! The output argument REQUEST has type INTEGER; it is used to identify a 
request handle.  

! The output argument IERR has type INTEGER; it contains an error code when 
MPI_RECV returns. 

Notes:  

! The message body is specified by the first three arguments (BUF, COUNT, and 
DTYPE in Fortran) and the message envelope by the second three (DEST, TAG 
and COMM in Fortran). 

! A maximum of count items of type DTYPE is accepted; if the message 
contains more, it is an error. 

! The sending and receiving processes must agree on the datatype; if they 
disagree, it is an error. 

! When this routine returns, the receive has been posted (initiated) but not yet 
completed. 

! Another call to MPI is required to complete the receive operation posted by 
this routine. 

! None of the arguments passed to MPI_IRECV should be read or written until 
the receive operation is completed. 
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4.3.4. Completion  

Completion: Waiting and Testing  

Posted sends and receives must be completed. If a send or receive is posted by a 
nonblocking routine, then its completion status can be checked by calling one of a 
family of completion routines. MPI provides both blocking and nonblocking 
completion routines. The blocking routines are MPI_WAIT and its variants. The 
nonblocking routines are MPI_TEST and its variants. These routines are discussed in 
the following two sections. 

 
4.3.4.1. Completion: Waiting  

Completion: Waiting 

A process that has posted a send or receive by calling a nonblocking routine (for 
instance, MPI_ISEND or MPI_IRECV) can subsequently wait for the posted operation 
to complete by calling MPI_WAIT. The posted send or receive is identified by passing 
a request handle.  

The arguments for the MPI_WAIT routine are: 

request a request handle (returned when the send or receive was
posted

status for receive, information on the message received; for send,
may

contain an error code

In addition, an error code is returned.  

C and Fortran versions of MPI_WAIT are given below.  

C:  

int MPI_Wait( MPI_Request *request, MPI_Status *status );

! An error code is returned.  

Fortran:  

MPI_WAIT(REQUEST, STATUS, IERR )

! The in/out argument REQUEST has type INTEGER. 
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! The output argument STATUS is an INTEGER array with MPI_STATUS_SIZE 
elements.  

! The output argument IERR has type INTEGER and contains an error code 
when the call returns. 

Notes:  

! The request argument is expected to identify a previously posted send or 
receive. 

! MPI_WAIT returns when the send or receive identified by the request 
argument is complete.  

! If the posted operation was a receive, then the source, tag, and actual count 
of data received are available via the status argument.  

! If the posted operation was a send, the status argument may contain an error 
code for the send operation (different from the error code for the call to 
MPI_WAIT). 

 
4.3.4.2. Completion: Testing  

Completion: Testing 

A process that has posted a send or receive by calling a nonblocking routine can 
subsequently test for the posted operation’s completion by calling MPI_TEST. The 
posted send or receive is identified by passing a request handle.  

The arguments for the MPI_TEST routine are: 

request a request handle (returned when the send or receive was
posted).
flag true if the send or receive has completed.
status undefined if flag equals false. Otherwise, like MPI_WAIT.

In addition, an error code is returned.  

C and Fortran versions of MPI_TEST are given below.  

C: 

int MPI_Test( MPI_Request *request, int *flag, MPI_Status *status );

! An error code is returned.  

Fortran:  

MPI_TEST(REQUEST, FLAG, STATUS, IERR)

! The in/out argument REQUEST has type INTEGER.  
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! The output argument FLAG has type LOGICAL. 
! The output argument STATUS is an INTEGER array with MPI_STATUS_SIZE 

elements. 
! The output argument IERR has type INTEGER and contains an error code 

when the call returns. 

Notes:  

! The request argument is expected to identify a previously posted send or 
receive. 

! MPI_TEST returns immediately.  
! If the flag argument is true, then the posted operation is complete.  
! If the flag argument is true and the posted operation was a receive, then the 

source, tag, and actual count of data received are available via the status 
argument.  

! If the flag argument is true and the posted operation was a send, then the 
status argument may contain an error code for the send operation (not for 
MPI_TEST). 

 
4.3.5. Advantages and Disadvantages  

Nonblocking Sends and Receives: Advantages and 
Disadvantages  

Selective use of nonblocking routines makes it much easier to write deadlock-free 
code. This is a big advantage because it is easy to unintentionally write deadlock into 
programs.  

On systems where latencies are large, posting receives early is often an effective, 
simple strategy for masking communication overhead. Latencies tend to be large on 
physically distributed collections of hosts (for example, clusters of workstations) and 
relatively small on shared memory multiprocessors. In general, masking 
communication overhead requires careful attention to algorithms and code structure.  

On the downside, using nonblocking send and receive routines may increase code 
complexity, which can make code harder to debug and harder to maintain.  

 
4.3.6. Send/Receive Example  

Send/Receive Example  

This program is a revision of the earlier example given in Section 4.2.3. This version 
runs to completion.  
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Process 0 attempts to exchange messages with process 1. Each process begins by 
posting a receive for a message from the other. Then, each process blocks on a 
send. Finally, each process waits for its previously posted receive to complete.  

Each process completes its send because the other process has posted a matching 
receive. Each process completes its receive because the other process sends a 
message that matches. Barring system failure, the program runs to completion.  

C Example: 

/* deadlock avoided */
#include
#include

void main (int argc, char **argv) {

int myrank;
MPI_Request request;
MPI_Status status;
double a[100], b[100];

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank); /* Get rank */
if( myrank == 0 ) {

/* Post a receive, send a message, then wait */
MPI_Irecv( b, 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD, &request );
MPI_Send( a, 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD );
MPI_Wait( &request, &status );

}
else if( myrank == 1 ) {

/* Post a receive, send a message, then wait */
MPI_Irecv( b, 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD, &request );
MPI_Send( a, 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD );
MPI_Wait( &request, &status );

}

MPI_Finalize(); /* Terminate MPI */

}

Fortran Example: 

PROGRAM simple_deadlock_avoided

INCLUDE 'mpif.h'
INTEGER myrank, ierr, status(MPI_STATUS_SIZE)
INTEGER request
REAL a(100), b(100)

C Initialize MPI:
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call MPI_INIT(ierr)

C Get my rank:

call MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C Process 0 posts a receive, then sends; same for process 1

if( myrank.eq.0 )then
call MPI_IRECV( b, 100, MPI_REAL, 1, 19, MPI_COMM_WORLD, request,

ierr )
call MPI_SEND( a, 100, MPI_REAL, 1, 17, MPI_COMM_WORLD, ierr)
call MPI_WAIT( request, status, ierr )

else if ( myrank.eq.1 )then
call MPI_IRECV( b, 100, MPI_REAL, 0, 17, MPI_COMM_WORLD, request,

ierr )
call MPI_SEND( a, 100, MPI_REAL, 0, 19, MPI_COMM_WORLD, ierr)
call MPI_WAIT( request, status, ierr )

endif

C Terminate MPI:

call MPI_FINALIZE(ierr)

END

 
4.4. Send Modes  

Send Modes 

MPI provides the following four send modes: 

1. Standard Mode Send 
2. Synchronous Mode Send 
3. Ready Mode Send  
4. Buffered Mode Send 

This section describes these send modes and briefly indicates when they are useful. 
Standard mode, used in all example code so far in this chapter, is the most widely 
used.  

Although there are four send modes, there is only one receive mode. A receiving 
process can use the same call to MPI_RECV or MPI_IRECV, regardless of the send 
mode used to send the message.  

Both blocking and nonblocking calls are available for each of the four send modes.  
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4.4.1. Standard Mode Send  

Standard Mode Send 

Standard mode send is MPI’s general-purpose send mode. The other three send 
modes are useful in special circumstances, but none have the general utility of 
standard mode.  

Recall the discussion of Sections 4.2.4 - What Happens at Runtime and 4.2.5 - 
Blocking and Completion. When MPI executes a standard mode send, one of two 
things happens. Either the message is copied into an MPI internal buffer and 
transferred asynchronously to the destination process, or the source and destination 
processes synchronize on the message. The MPI implementation is free to choose 
(on a case-by-case basis) between buffering and synchronizing, depending on 
message size, resource availability, etc.  

If the message is copied into an MPI internal buffer, then the send operation is 
formally completed as soon as the copy is done. If the two processes synchronize, 
then the send operation is formally completed only when the receiving process has 
posted a matching receive and actually begun to receive the message.  

The preceding comments apply to both blocking and nonblocking calls, i.e., to both 
MPI_SEND and MPI_ISEND. MPI_SEND does not return until the send operation it 
invoked has completed. Completion can mean the message was copied into an MPI 
internal buffer, or it can mean the sending and receiving processes synchronized on 
the message. In contrast, MPI_ISEND initiates a send operation and then returns 
immediately, without waiting for the send operation to complete. Completion has the 
same meaning as before: either the message was copied into an MPI internal buffer 
or the sending and receiving processes synchronized on the message.  

Note: the variables passed to MPI_ISEND cannot be used (should not even be read) 
until the send operation invoked by the call has completed. A call to MPI_TEST, 
MPI_WAIT or one of their variants is needed to determine completion status.  

One of the advantages of standard mode send is that the choice between buffering 
and synchronizing is left to MPI on a case-by-case basis. In general, MPI has a 
clearer view of the tradeoffs, especially since low-level resources and resources 
internal to MPI are involved.  

 
4.4.2. Synchronous, Ready Mode, and Buffered Send  

Synchronous, Ready Mode, and Buffered Send 

Synchronous mode send requires MPI to synchronize the sending and receiving 
processes.  
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When a synchronous mode send operation is completed, the sending process may 
assume the destination process has begun receiving the message. The destination 
process need not be done receiving the message, but it must have begun receiving 
the message.  

The nonblocking call has the same advantages the nonblocking standard mode send 
has: the sending process can avoid blocking on a potentially lengthy operation.  

Ready mode send requires that a matching receive has already been posted at the 
destination process before ready mode send is called. If a matching receive has not 
been posted at the destination, the result is undefined. It is your responsibility to 
make sure the requirement is met.  

In some cases, knowledge of the state of the destination process is available without 
doing extra work. Communication overhead may be reduced because shorter 
protocols can be used internally by MPI when it is known that a receive has already 
been posted.  

The nonblocking call has advantages similar to the nonblocking standard mode send: 
the sending process can avoid blocking on a potentially lengthy operation.  

Buffered mode send requires MPI to use buffering. The downside is that you must 
assume responsibility for managing the buffer. If at any point, insufficient buffer is 
available to complete a call, the results are undefined. The functions 
MPI_BUFFER_ATTACH and MPI_BUFFER_DETACH allow a program to make buffer 
available to MPI. 

 
4.4.3. Naming Conventions and Calling Sequences  

Naming Conventions and Calling Sequences  

There are eight send functions in MPI: four send modes, each available in both 
blocking and nonblocking forms.  

Synchronous, buffered, and ready mode sends are indicated by adding the letters S, 
B, and R, respectively, to the function name. Nonblocking calls are indicated by 
adding an I to the function name. The table below shows the eight function names.  

Send Mode  Blocking Function  Nonblocking Function  

Standard  MPI_SEND  MPI_ISEND  

Synchronous  MPI_SSEND  MPI_ISSEND  

Ready  MPI_RSEND  MPI_IRSEND  

Buffered  MPI_BSEND  MPI_IBSEND  
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The blocking send functions take the same arguments (in the same order) as 
MPI_SEND. The nonblocking send functions take the same arguments (in the same 
order) as MPI_ISEND. 

 
4.5. Self Test  

Point-to-Point Communications Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
4.6. Course Problem  

Chapter 4 Course Problem  

In this chapter, you learned about the heart of MPI: point-to-point message passing 
routines. Both their blocking and non-blocking forms were discussed as well as the 
various modes of communication. Armed with the knowledge of this chapter, you can 
now write the real (not pseudo) parallel MPI code to solve the first version of the 
course problem. Again, the problem description is the same as the one given in 
Chapter 1. 

Description 

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
to an output file. In addition, the program reads both the target value and all the 
array elements from an input file.  

Exercise  

Go ahead and write the real parallel code for the search problem! Using the pseudo-
code from the previous chapter as a guide, fill in all the sends and receives with calls 
to the actual MPI send and receive routines. For this task, use only the blocking 
routines. If you have access to a parallel computer with the MPI library installed, run 
your parallel code using 4 processors. See if you get the same results as those 
obtained with the serial version of Chapter 2. Of course, you should. 

Solution 
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When you have finished writing the code for this exercise, view our version of the 
MPI parallel search code. 

 
5. Derived Datatypes  

Derived Datatypes and Related Features 
In previous sections, you learned how to send and receive messages in which all the 
data was of a single type intrinsic to MPI and stored contiguously in memory. While 
your data may occasionally be that well behaved, it is likely that you will need to 
transmit collections of data of mixed types defined by the program, or data that are 
scattered in memory. In this chapter, you will learn strategies and features in MPI 
that allow you to address these circumstances.  

 
5.1. Multiple Messages  

The Simplest Strategy - Multiple Messages 

Conceptually, the simplest approach is to identify the largest pieces of your data that 
individually meet the requirements of being of homogeneous intrinsic type and 
contiguous in memory and send each of those pieces as a separate message.  

For example, consider the following problem: You have a large matrix stored in a 
two-dimensional array and you wish to send a rectangular submatrix to another 
processor. In Fortran, arrays are stored so that successive elements of a column are 
contiguous in memory, with the last element in one column followed by the first 
element of the next column. Since you are not sending full columns of the original 
matrix, the columns of your submatrix will not be contiguous. However, the elements 
within a column will be contiguous, so you can send one message for each column of 
the submatrix. If the array is declared to be NN by MM and you are sending the N 
by M portion whose upper left corner is at position (K,L), this might look like  

DO 10 J=1,M
CALL MPI_SEND(A(K,L+J-1), N, MPI_DOUBLE,

& DEST, TAG, MPI_COMM_WORLD, IERROR)
10 CONTINUE

In C, the approach would be similar but because arrays are stored with the elements 
of rows contiguous in memory rather than columns, you would send N messages 
containing the M elements in a row of the submatrix. Whereas in the Fortran 
example, you sent M messages containing the N elements of a column.  

for (i=0; i<n; ++i) {
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MPI_Send(&a[k+i][l], m, MPI_DOUBLE,
dest, tag, MPI_COMM_WORLD);

}

In either language, if the receiving processor doesn't know the values of N, M, K, or 
L , they can be sent in a separate message.  

! The principal advantage of this approach is that you don't need to learn 
anything new to apply it.  

! The principal disadvantage of this approach is its overhead. A fixed overhead 
is associated with the sending and receiving of a message, however long or 
short it is. If you replace one long message with multiple short messages, you 
slow down your program by greatly increasing your overhead.  

If you are working in a portion of your program that will be executed infrequently 
and the number of additional messages is small, the total amount of added overhead 
may be small enough to ignore. However, for most programs there won't be any 
advantage in limiting yourself to this strategy. You will have to learn other 
techniques for the heavily executed portions.  

 
5.2. Copying Data into a Buffer  

Another Simple Strategy - Copying Data into a Buffer 

If your data isn't stored in contiguous memory, why not copy it into a contiguous 
buffer?  

For our submatrix example, this might look like  

p = &buffer;
for (i=0; i<n; ++i) {

for(j=0; j<m; ++j) {
*(p++) = a[i][j];

}
}

MPI_Send(p, n*m, MPI_DOUBLE, dest, tag, MPI_COMM_WORLD)

Notes: 

! This approach eliminates the excessive messages of the previous 
approach, at the cost of extra memory for the buffer and extra CPU time 
to perform the copy into the buffer.  

! The obvious limitation of this approach is that it still handles only one type 
of data at a time. 
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5.3. A Tempting Wrong Way to Extend Buffering  

A Tempting Wrong Way to Extend Buffering 

It is often possible to encode the values of one type as values of another type. In our 
submatrix example, we could convert the values of N, M, K, and L to floating point 
in order to include them in our buffer. However, such conversions generally take 
more CPU time than a simple copy and, in most cases, the result will occupy more 
memory.  

At this point, you may be tempted to use a programming trick (e.g., EQUIVALENCE, 
the TRANSFER function, or casting the type of a pointer) to put the bit patterns for 
values of one type into a buffer declared to be of some other type. This approach can 
be very dangerous. If you code up a test program to try it out, it is highly likely that 
it will "work" for you. However, if you use this approach extensively, especially in 
programs that are run in a variety of environments, it is almost inevitable that it will 
eventually fail. If you are lucky, it will fail spectacularly. If you are not lucky, you 
may just get incorrect results without realizing that something has gone wrong.  

The fundamental problem here is that MPI transmits values, not just bit patterns. As 
long as you are using a set of processors that all represent values the same way, 
MPI optimizes its communications by simply transmitting the bit patterns in your 
message and tricks like this will "work". If there is any chance of communicating with 
a processor that uses a different representation for some or all of the values, MPI 
translates the values in your message into a standard intermediate representation, 
transmits the bits of the intermediate representation, and then translates the 
intermediate representation back into values on the other processor. This extra 
translation ensures that the same value is received as was sent. However, on the 
receiving processor that value may no longer have the same bit pattern as the value 
in the original type.  

 
5.4. Buffering the Right Way  

Buffering the Right Way - Pack Up Your Troubles 

The MPI_PACK routine allows you to fill a buffer "the right way". You call MPI_PACK 
with arguments that describe the buffer you are filling and with most of the 
arguments you would have provided to MPI_SEND in our simplest approach. 
MPI_PACK copies your data into the buffer and, if necessary, translates it into a 
standard intermediate representation. After all the data you want to send have been 
placed in the buffer by MPI_PACK, you can send the buffer (giving its type as 
MPI_PACKED) and no further translations will be performed.  

With MPI_PACK, the submatrix example becomes  
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COUNT = 0
DO 10 I=1,M
CALL MPI_PACK(A(K,L+I-1), N, MPI_DOUBLE,

& BUFFER, BUFSIZE, COUNT,
& MPI_COMM_WORLD, IERROR)

10 CONTINUE
CALL MPI_SEND(BUFFER, COUNT, MPI_PACKED,

& DEST, TAG, MPI_COMM_WORLD, IERROR)

COUNT is initially set to zero to indicate you are starting the construction of a new 
message and have an empty buffer. The successive calls to MPI_PACK update 
COUNT to reflect the data that have been added to the buffer. The final value of 
COUNT is then used in the call to MPI_SEND as the amount of data to send.  

On the receiving side, you can similarly specify type MPI_PACKED to receive a buffer 
without translation and then use MPI_UNPACK (which bears the same resemblance 
to MPI_RECV as MPI_PACK bears to MPI_SEND) to translate and copy the data from 
the buffer to where you really want it.  

Because of translation, data may occupy a different amount of space in the buffer 
than it does natively. You can make your buffer large enough by using the routine 
MPI_PACK_SIZE to calculate how much buffer space is required for the different 
types of data you plan to place in your buffer.  

Nothing in the content of a message indicates it was or was not built with MPI_PACK. 
If, as in our example, all the data packed into the buffer is of a single type, the 
message could be received in a buffer of that type rather than receiving it as 
MPI_PACKED and using MPI_UNPACK to decode it. Conversely, a message that was 
sent as an ordinary intrinsic type could be received as MPI_PACKED and distributed 
using calls to MPI_UNPACK.  

Use of MPI_PACK and MPI_UNPACK provides great flexibility. In addition to allowing 
messages that include arbitrary mixtures of datatypes, its incremental construction 
and interpretation of messages allows the values of data early in a message to affect 
the type, size, or destination of data appearing later in the same message. The 
principal costs of this flexibility are the memory used for the buffers and CPU time 
used in copying data to and from those buffers. If constructing a message requires a 
large number of calls to MPI_PACK (or interpreting a message requires a large 
number of calls to MPI_UNPACK), the added procedure call overhead may also be 
significant.  

 
5.5. Packing  

Packing "On-the-Fly" - MPI Derived Types 

You can look at the MPI derived type facility as a way to get MPI to do packing and 
unpacking "on-the-fly" as part of the send and receive operations. The packing and 



59 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

unpacking can then be done directly to and from its internal communications buffers, 
eliminating the need for  

! the explicit intermediate buffer used when you do the packing and unpacking 
and  

! the copying between the intermediate buffer and the communications buffer.  

Thus, using MPI derived types in place of explicit packing and unpacking will 
generally make your program more efficient.  

When sending, instead of building up a list of already packed data, you build up a list 
of locations from which data need to be packed. This list is used to define a type and 
the type is used in the send. The submatrix example might become  

DO 10 I=1,M
LENA(I) = N
CALL MPI_ADDRESS(A(K,L+I-1), LOCA(I), IERROR)
TYPA(I) = MPI_DOUBLE

10 CONTINUE
CALL MPI_TYPE_STRUCT(M, LENA, LOCA, TYPA,

& MY_MPI_TYPE, IERROR)
CALL MPI_TYPE_COMMIT(MY_MPI_TYPE,IERROR)
CALL MPI_SEND(MPI_BOTTOM, 1, MY_MPI_TYPE,

& DEST, TAG, MPI_COMM_WORLD, IERROR)
CALL MPI_TYPE_FREE(MY_MPI_TYPE,IERROR)

The three arrays LENA, LOCA, and TYPA are used to record the length, location, and 
type of the data that in the previous version were fed to MPI_PACK to put in the 
buffer. MPI_ADDRESS is used to obtain the location of data relative to the magic 
address MPI_BOTTOM. After the three arrays have been filled, MPI_TYPE_STRUCT is 
used to convert that information into a new MPI type indicator stored in the variable 
MY_MPI_TYPE. MPI_TYPE_COMMIT is used to inform MPI that MY_MPI_TYPE will be 
used in a send or receive. MY_MPI_TYPE is then used as the type indicator in an 
actual send operation. The special fixed address, MPI_BOTTOM, is specified here as 
the nominal location of the data to send. That is because the locations in an MPI 
derived type specification are always interpreted relative to the data location and the 
location values obtained from MPI_ADDRESS are relative to MPI_BOTTOM. Finally, 
MPI_TYPE_FREE is used to inform MPI that you don't intend to use this particular 
type again, so the resources used to represent this type inside MPI may be release or 
reused.  

When receiving, you must similarly build up a list of locations to receive the data 
from a message, convert those locations to a committed type, and use that type in a 
receive operation.  

Note:  
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! As a direct replacement for pack and unpack operations, MPI derived type 
operations are usually more efficient but somewhat more verbose, because of 
the need to explicitly create, commit, and free MPI type indicators.  

! If one is packing data that doesn't remain in existence until the time the 
packed buffer is sent (e.g., if successive values to be packed are computed 
into the same variables), derived type operations lose their efficiency 
advantage because you must institute some other form of buffering to retain 
those values until they can be sent.  

! Similarly, if the locations to which data are to be unpacked are not disjoint 
(e.g., if successive values from a message are processed in the same 
variables), derived type operations lose their efficiency advantage. This is 
because you will need to buffer those values somewhere else until they can 
be processed. Buffering is also necessary if the locations to receive the data 
cannot be determined in advance.  

! Derived type operations cannot be used to replace unpacking in those cases 
where values in the early part of a message determine the structure of the 
later part of the message. In such cases, explicitly typed buffering will not 
work and you need the flexibility of piecemeal unpacking of an MPI_PACKED 
buffer.  

 
5.6. Using MPI Derived Types for User-Defined Types  

Using MPI Derived Types for User-Defined Types 

Creating an MPI derived type to use it just once before freeing it can be a bit 
verbose. It is far more effective to create MPI derived types that describe recurring 
patterns of access and then reuse such types for each occurrence of that pattern of 
access. The classic example of this is the use of an MPI derived type to describe the 
access associated with a user-defined datatype in the language you are using. This 
technique is called mapping. 

Here is a simple example of mapping a C struct type:  

struct SparseElt { /* representation of a sparse matrix element
*/

int location[2]; /* where the element belongs in the overall
matrix */

double value; /* the value of the element */
};

struct SparseElt anElement; /* a representative variable of this
type */

int lena[2]; /* the three arrays used to describe an MPI
derived type */

MPI_Aint loca[2]; /* their size reflects the number of
components in SparseElt */

MPI_Datatype typa[2];



61 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

MPI_Aint baseaddress;

MPI_Datatype MPI_SparseElt; /* a variable to hold the MPI type
indicator for SparseElt */

/* set up the MPI description of SparseElt */

MPI_Address(&anElement, &baseaddress);
lena[0] = 2; MPI_Address(&anElement.location,&loca[0]);
loca[0] -= baseaddress; typa[0] = MPI_INT;
lena[1] = 1; MPI_Address(&anElement.value ,&loca[1]);
loca[1] -= baseaddress; typa[1] = MPI_DOUBLE;
MPI_Type_struct(2, lena, loca, typa, &MPI_SparseElt);
MPI_Type_commit(&MPI_SparseElt);

As in our earlier example, we construct three arrays containing the length, location, 
and types of the components to be transferred when this type is used. Unlike our 
earlier example, we subtract the address of the whole variable from the addresses of 
its components, so the locations are specified relative to the variable rather than 
relative to MPI_BOTTOM. This allows us to use the type indicator MPI_SparseElt to 
describe a variable of type SparseElt anywhere in the program.  

Once a type has been created and committed, it may be used anywhere an intrinsic 
type indicator can be used, not just in send and receive operations. In particular, this 
includes its use in defining another MPI derived type that might have a SparseElt 
component or in performing pack or unpack operations on variables of type 
SparseElt.  

 
5.7. Other Ways of Defining MPI Derived Types  

Other Ways of Defining MPI Derived Types 

MPI_TYPE_STRUCT is the most general way to construct an MPI derived type 
because it allows the length, location, and type of each component to be specified 
independently. Less general procedures are available to describe common patterns of 
access, primarily within arrays. These are 

! MPI_TYPE_CONTIGUOUS 
! MPI_TYPE_VECTOR 
! MPI_TYPE_HVECTOR 
! MPI_TYPE_INDEXED 
! MPI_TYPE_HINDEXED 

MPI_TYPE_CONTIGUOUS is the simplest of these, describing a contiguous sequence 
of values in memory. For example,  

MPI_Type_contiguous(2,MPI_DOUBLE,&MPI_2D_POINT);
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MPI_Type_contiguous(3,MPI_DOUBLE,&MPI_3D_POINT);

creates new type indicators MPI_2D_POINT and MPI_3D_POINT. These type 
indicators allow you to treat consecutive pairs of doubles as point coordinates in a 2-
dimensional space and sequences of three doubles as point coordinates in a 3-
dimensional space.  

MPI_TYPE_VECTOR describes several such sequences evenly spaced but not 
consecutive in memory. With it, you can reduce the submatrix example to  

CALL MPI_TYPE_VECTOR(M, N, NN, MPI_DOUBLE,
& MY_MPI_TYPE, IERROR)
CALL MPI_TYPE_COMMIT(MY_MPI_TYPE,IERROR)
CALL MPI_SEND(A(K,L), 1, MY_MPI_TYPE,

& DEST, TAG, MPI_COMM_WORLD, IERROR)
CALL MPI_TYPE_FREE(MY_MPI_TYPE,IERROR)

The consecutive blocks are the columns of the submatrix, each N elements long. 
There are M of them. These columns start NN elements apart because that is the 
declared column size of the array containing the submatrix.  

MPI_TYPE_HVECTOR is similar to MPI_TYPE_VECTOR except that the distance 
between successive blocks is specified in bytes rather than elements. The most 
common reason for specifying this distance in bytes would be that elements of some 
other type are interspersed in memory with the elements of interest. For example, if 
you had an array of type SparseElt, you could use MPI_TYPE_HVECTOR to describe 
the "array" of value components.  

MPI_TYPE_INDEXED describes sequences that may vary both in length and in 
spacing. Because the location of these sequences is measured in elements rather 
than bytes, it is most appropriate for identifying arbitrary parts of a single array.  

MPI_TYPE_HINDEXED is similar to MPI_TYPE_INDEXED except that the locations are 
specified in bytes rather than elements. It allows the identification of arbitrary parts 
of arbitrary arrays, subject only to the requirement that they all have the same type.  

 
5.8. Message Matching and Mismatching  

Message Matching and Mismatching 

Just as there is nothing in the content of a message to indicate whether it was built 
with MPI_PACK, there is nothing to indicate whether or what kind of MPI derived 
types may have been used in its construction. All that matters is that the sender and 
receiver agree on the nature of the sequence of primitive values the message 
represents. Thus, a message constructed and sent using MPI_PACK could be received 
using MPI derived types, or a message sent using using MPI derived types could be 
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received as MPI_PACKED and distributed using MPI_UNPACK. Similarly, a message 
could be sent using one MPI derived type and received using a different type.  

This leads to one significant difference between MPI derived types and its primitive 
types. If you send data using the same MPI derived type with which you will be 
receiving it, the message will necessarily contain an integral number of that type, 
and MPI_GET_COUNT will work for that type in the same way it does for primitive 
types. However, if the types are different, you could end up with a partial value at 
the end. For example, if the sending processor sends an array of four 
MPI_3D_POINTs (or a total of twelve MPI_DOUBLEs) and the receiving processor 
receives the message as an array of MPI_2D_POINTs, MPI_GET_COUNT will report 
that six MPI_2D_POINTs were received. If instead five MPI_3D_POINTs were sent 
(i.e., fifteen MPI_DOUBLEs), seven and a half MPI_2D_POINTs will be changed on 
the receiving side, but MPI_GET_COUNT cannot return "7.5". Rather than return a 
potentially misleading value such as "7" or "8", MPI_GET_COUNT returns the flag 
value MPI_UNDEFINED. If you need more information about the size of the transfer, 
you can still use MPI_GET_ELEMENTS to learn that nine primitive values were 
transferred.  

 
5.9. Controlling the Extent of a Derived Type  

Controlling the Extent of a Derived Type 

The concept of several derived type values being contiguous in memory can be 
somewhat problematic in the general case of transferring arbitrary sequences of 
data. MPI's rules for this are designed to work as you might expect for the common 
case of mapping an MPI derived type onto a user-defined type. First, MPI computes 
the lower and upper bounds of the type. By default, the lower bound is the beginning 
of the component that appears first in memory, and the upper bound is the end of 
the component that appears last in memory (with "end" possibly including 
adjustments to reflect alignment or padding rules). The distance between the lower 
bound and upper bound of a type is called its extent. Two elements of that type are 
considered to be contiguous in memory if the distance between them matches the 
extent. In other words, they are contiguous if the lower bound of the second element 
exactly coincides with the upper bound of the first. This approach to defining the 
extent of a derived type element usually produces the "right" results. However, there 
are cases where it does not.  

! The MPI library can implement only one set of padding and alignment rules. If 
your compiler has options to control these rules or if the compilers for 
different languages use different rules, then MPI may occasionally compute 
the upper bound using the "wrong" padding and alignment rules.  

! If your MPI derived type maps only part of the components in the user-
defined type, MPI may not know about the real first component or last 
component and thus underestimate the extent.  

! If the components of your derived type are arbitrary storage sequences, the 
default extent will nearly always lack any useful meaning.  
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In these cases, you can control the bounds of the type, and thus the extent, by 
inserting components of type MPI_LB and MPI_UB into your derived type definition. 
The locations of these components are then treated as the lower and upper bounds, 
regardless of the locations of the other components. One of the simplest solutions is 
to base the lower and upper bounds on an array of the type you are mapping, 
specifying the location of the first element in the array as the lower bound of the 
type and the location of the second element in the array as the upper bound of the 
type. For example, consider a program in which you have arrays X, Y, and Z. At 
some point, you would like to send the first N values from X, Y, and Z to another 
processor. If you do things in the obvious way, transmitting first N values from X, 
then N values from Y, and finally N values from Z, the receiving processor won't 
know where the values from X end and the values from Y begin until it has received 
all the values and can use the length of the message to determine the value of N. 
Putting the value of N at the beginning of the message doesn't help, because the 
receiving processor must define where it wants the values delivered before it 
receives any part of the message. The solution to this problem is to rearrange the 
values in the message so first you transfer the first X, the first Y, and the first Z, 
then the second X, Y, and Z, then the third, etc. This arrangement allows the 
receiving processor to know which value is which without knowing the total number 
of values in advance.  

LENA(1) = 1
CALL MPI_ADDRESS(X(1), LOCA(1), IERROR)
TYPA(1) = MPI_DOUBLE
LENA(2) = 1
CALL MPI_ADDRESS(Y(1), LOCA(2), IERROR)
TYPA(2) = MPI_DOUBLE
LENA(3) = 1
CALL MPI_ADDRESS(Z(1), LOCA(3), IERROR)
TYPA(3) = MPI_DOUBLE
LENA(4) = 1
CALL MPI_ADDRESS(X(1), LOCA(4), IERROR)
TYPA(4) = MPI_LB
LENA(5) = 1
CALL MPI_ADDRESS(X(2), LOCA(5), IERROR)
TYPA(5) = MPI_UB
CALL MPI_TYPE_STRUCT(5, LENA, LOCA, TYPA, MY_TYPE, IERROR)
CALL MPI_TYPE_COMMIT(MY_TYPE,IERROR)
CALL MPI_SEND(MPI_BOTTOM, N, MY_TYPE,

& DEST, TAG, MPI_COMM_WORLD,IERROR)
CALL MPI_TYPE_FREE(MY_TYPE,IERROR)

This formulation of MY_TYPE works because X, Y, and Z are of the same type, so 
Y(2) is at the same position relative to X(2) as Y(1) is to X(1), etc. Note that N is 
used only in the send, not in the definition of MY_TYPE, so you can define MY_TYPE 
once and use it for multiple sends rather than freeing it after each use and redefining 
it for the next send.  

 
5.10. Obtaining Information About Your Derived Types  
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Obtaining Information About Your Derived Types 

Once you have defined a derived type, several utility procedures can provide you 
with information about that type.  

! MPI_TYPE_LB and MPI_TYPE_UB can provide the lower and upper bounds of 
the type.  

! MPI_TYPE_EXTENT can provide the extent of the type. In most cases, this is 
the amount of memory a value of the type will occupy.  

! MPI_TYPE_SIZE can provide the size of the type in a message. If the type is 
scattered in memory, this may be significantly smaller than the extent of the 
type.  

 
5.11. Self Test  

Derived Datatypes Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
5.12. Course Problem  

Chapter 5 Course Problem  

This chapter discussed a powerful feature of MPI: the ability to make up one's own 
data type to match the collection of different kinds of data that are being sent from 
one processor to another. For this chapter, the initial Course Problem is modified so 
that each slave must send an integer and a real value back to the master. A new 
datatype will be created and used to send/receive both of these data as a single 
entity.  

Description 

The new problem still implements a parallel search of an integer array. The program 
should find all occurences of a certain integer which will be called the target. It 
should then calculate the average of the target value and its index. Both the target 
location and the average should be written to an output file. In addition, the program 
should read both the target value and all the array elements from an input file.  

Exercise  
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Modify your code from Chapter 4 to create a program that solves the new Course 
Problem. Use the techniques/routines of this chapter to make a new derived type 
called MPI_PAIR that will contain both the target location and the average. All of the 
slave sends and the master receives must use the MPI_PAIR type. 

Solution 

When you have finished writing your code for this exercise, view our version of 
Derived Type Code. 

 
6. Collective Communications  

Collective Communications 
Collective communication involves the sending and receiving of data among 
processes. In general, all movement of data among processes can be accomplished 
using MPI send and receive routines. However, some sequences of communication 
operations are so common that MPI provides a set of collective communication 
routines to handle them. These routines are built using point-to-point communication 
routines. Even though you could build your own collective communication routines, 
these "blackbox" routines hide a lot of the messy details and often implement the 
most efficient algorithm known for that operation.  

Collective communication routines transmit data among all processes in a group. It is 
important to note that collective communication calls do not use the tag mechanism 
of send/receive for associating calls. Rather they are associated by order of program 
execution. Thus, the user must ensure that all processors execute the same 
collective communication calls and execute them in the same order.  

The collective communication routines allow data motion among all processors or 
just a specified set of processors. The notion of communicators that identify the set 
of processors specifically involved in exchanging data was introduced in Section 3.11 
- Communicators. The examples and discussion for this chapter assume that all of 
the processors participate in the data motion. However, you may define your own 
communicator that provides for collective communication between a subset of 
processors.  

MPI provides the following collective communication routines:  

! Barrier sychronization across all processes  
! Broadcast from one process to all other processes  
! Global reduction operations such as sum, min, max or user-defined reductions  
! Gather data from all processes to one process  
! Scatter data from one process to all processes  
! Advanced operations where all processes receive the same result from a 

gather, scatter, or reduction. There is also a vector variant of most collective 
operations where each message can be a different size.  
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Each of these routines is described in more detail in the following sections.  

Note:  

! For many implementations of MPI, calls to collective communication routines 
will sychronize the processors. However, this synchronization is not 
guaranteed and you should not depend on it. More detail can be found in 
Section 11 - Portability Issues.  

! One routine, MPI_BARRIER, synchronizes the processes but does not pass 
data. It is nevertheless often categorized as one of the collective 
communications routines.  

   

   

 
6.1. Barrier Synchronization  

Barrier Synchronization  

There are occasions when some processors cannot proceed until other processors 
have completed their current instructions. A common instance of this occurs when 
the root process reads data and then transmits these data to other processors. The 
other processors must wait until the I/O is completed and the data are moved.  

The MPI_BARRIER routine blocks the calling process until all group processes have 
called the function. When MPI_BARRIER returns, all processes are synchronized at 
the barrier.  

MPI_BARRIER is done in software and can incur a substantial overhead on some 
machines. In general, you should only insert barriers when they are needed.  

C:  

int MPI_Barrier ( comm )
MPI_Comm comm

Fortran:  

MPI_BARRIER ( COMM, ERROR )
INTEGER COMM, ERROR

 
6.2. Broadcast  

Broadcast  
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The MPI_BCAST routine enables you to copy data from the memory of the root 
processor to the same memory locations for other processors in the communicator.  

Figure 6.1: A Simple Broadcast Example  

In this example, one data value in processor 0 is broadcast to the same memory 
locations in the other 3 processors. Clearly, you could send data to each processor 
with multiple calls to one of the send routines. The broadcast routine makes this data 
motion a bit easier.  

All processes call the following:  

o
o
o

send_count = 1;
root = 0;
MPI_Bcast ( &a, &send_count, MPI_INT, root, comm )

o
o
o

Syntax:  

MPI_Bcast ( send_buffer, send_count, send_type, rank, comm )

The arguments for this routine are: 

send_buffer in/out starting address of send buffer
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send_count in number of elements in send buffer
send_type in data type of elements in send buffer
rank in rank of root process
comm in mpi communicator

C:  

int MPI_Bcast ( void* buffer, int count,
MPI_Datatype datatype, int rank,
MPI_Comm comm )

Fortran:  

MPI_BCAST ( BUFFER, COUNT, DATATYPE, ROOT, COMM, ERROR )

INTEGER COUNT, DATATYPE, ROOT, COMM, ERROR
<type> BUFFER

Sample Code  

 
6.3. Reduction  

Reduction  

The MPI_REDUCE routine enables you to  

! collect data from each processor 
! reduce these data to a single value (such as a sum or max) 
! and store the reduced result on the root processor 

The example shown in Figure 6.2 sums the values of A on each processor and stores 
the results in X on processor 0.  
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Figure 6.2: A Simple Reduction Example 

The routine calls for this example are  

count = 1;
rank = 0;
MPI_Reduce ( &a, &x, count, MPI_REAL,

MPI_SUM, rank, MPI_COMM_WORLD );

COUNT = 1
RANK = 0
CALL MPI_REDUCE ( A, X, COUNT, MPI_REAL,

* MPI_SUM, RANK, MPI_COMM_WORLD )

In general, the calling sequence is  

MPI_Reduce( send_buffer, recv_buffer, count, data_type,
reduction_operation, rank_of_receiving_process,

communicator )

MPI_REDUCE combines the elements provided in the send buffer, applies the 
specified operation (sum, min, max, ...), and returns the result to the receive buffer 
of the root process.  
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The send buffer is defined by the arguments send_buffer, count, and datatype.  

The receive buffer is defined by the arguments recv_buffer, count, and datatype.  

Both buffers have the same number of elements with the same type. The arguments 
count and datatype must have identical values in all processes. The argument rank, 
which is the location of the reduced result, must also be the same in all processes.  

The following are predefined operations available for MPI_REDUCE.  

Operation  Description  

MPI_MAX  maximum  

MPI_MIN  minimum  

MPI_SUM  sum  

MPI_PROD  product  

MPI_LAND  logical and  

MPI_BAND  bit-wise and  

MPI_LOR  logical or  

MPI_BOR  bit-wise or  

MPI_LXOR  logical xor  

MPI_BXOR  logical xor  

MPI_MINLOC  computes a global minimum and an index attached 
to the minimum value -- can be used to determine 
the rank of the process containing the minimum 
value  

MPI_MAXLOC  computes a global maximum and an index attached 
to the rank of the process containing the minimum 
value  

Syntax:  

MPI_Reduce ( send_buffer, recv_buffer, count, datatype, operation,
rank, comm )

The arguments for this routine are: 
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send_buffer in address of send buffer
recv_buffer out address of receive buffer
count in number of elements in send buffer
datatype in data type of elements in send buffer
operation in reduction operation
rank in rank of root process
comm in mpi communicator

C:  

int MPI_Reduce ( void* send_buffer, void* recv_buffer, int count,
MPI_Datatype datatype, MPI_Op operation, int rank, MPI_Comm comm )

Fortran:  

MPI_Reduce ( SEND_BUFFER, RECV_BUFFER, COUNT, DATATYPE,
OPERATION, RANK, COMM, ERROR )

INTEGER COUNT, DATATYPE, OPERATION, COMM, ERROR
<datatype> SEND_BUFFER,RECV_BUFFER

Sample Code  

 
6.4. Gather  

Gather  

This section describes two gather routines: MPI_GATHER and MPI_ALLGATHER.  

MPI_GATHER 

The MPI_GATHER routine is an all-to-one communication. MPI_GATHER has the 
same arguments as the matching scatter routines. The receive arguments are only 
meaningful to the root process.  

When MPI_GATHER is called, each process (including the root process) sends the 
contents of its send buffer to the root process. The root process receives the 
messages and stores them in rank order.  

The gather also could be accomplished by each process calling MPI_SEND and the 
root process calling MPI_RECV N times to receive all of the messages.  
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Figure 6.3: A Simple Gather Example 

In this example, data values A on each processor are gathered and moved to 
processor 0 into contiguous memory locations.  

The function calls for this example are  

send_count = 1;
recv_count = 1;
recv_rank = 0;
MPI_Gather ( &a, send_count, MPI_REAL,

&a, recv_count, MPI_REAL,
recv_rank, MPI_COMM_WORLD );

SEND_COUNT = 1
RECV_COUNT = 1
RECV_RANK = 0
CALL MPI_GATHER ( A, SEND_COUNT, MPI_REAL,

* A, RECV_COUNT, MPI_REAL,
* RECV_RANK, MPI_COMM_WORLD )

MPI_GATHER requires that all processes, including the root, send the same amount 
of data, and the data are of the same type. Thus send_count = recv_count.  

Syntax:  

MPI_Gather ( send_buffer, send_count, send_type,
recv_buffer, recv_count, recv_count,
recv_rank, comm )
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The arguments for this routine are: 

send_buffer in starting address of send buffer
send_count in number of elements in send buffer
send_type in data type of send buffer elements
recv_buffer out starting address of receive buffer
recv_count in number of elements in receive buffer for a single

receive
recv_type in data type of elements in receive buffer
recv_rank in rank of receiving process
comm in mpi communicator

C:  

int MPI_Gather ( void* send_buffer, int send_count, MPI_datatype
send_type, void* recv_buffer, int recv_count,
MPI_Datatype recv_type, int rank, MPI_Comm comm )

Fortran:  

MPI_GATHER ( SEND_BUFFER, SEND_COUNT, SEND_TYPE, RECV_BUFFER,
RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR )

INTEGER SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE, RANK, COMM,
ERROR

<datatype> SEND_BUFFER, RECV_BUFFER

Sample Code  

MPI_ALLGATHER  

In the previous example, after the data are gathered into processor 0, you could 
then MPI_BCAST the gathered data to all of the other processors. It is more 
convenient and efficient to gather and broadcast with the single MPI_ALLGATHER 
operation.  

The result is the following:  
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Figure 6.4: An AllGather Example 

The calling sequence for MPI_ALLGATHER is exactly the same as the calling sequence 
for MPI_GATHER.  

 
6.5. Scatter  

Scatter  

The MPI_SCATTER routine is a one-to-all communication. Different data are sent 
from the root process to each process (in rank order).  

When MPI_SCATTER is called, the root process breaks up a set of contiguous 
memory locations into equal chunks and sends one chunk to each processor. The 
outcome is the same as if the root executed N MPI_SEND operations and each 
process executed an MPI_RECV.  

The send arguments are only meaningful to the root process.  
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Figure 6.5. A Simple Scatter Example 

In this example shown in Figure 6.5, four contiguous data values, elements of 
processor 0 beginning at A , are copied with one element going to each processor at 
location A.  

The function calls for this example are  

send_count = 1;
recv_count = 1;
send_rank = 0;
MPI_Scatter ( &a, send_count, MPI_REAL,

&a, recv_count, MPI_REAL,
send_rank, MPI_COMM_WORLD );

SEND_COUNT = 1
RECV_COUNT = 1
SEND_RANK = 0
CALL MPI_SCATTER ( A, SEND_COUNT, MPI_REAL,

* A, RECV_COUNT, MPI_REAL,
* SEND_RANK, MPI_COMM_WORLD )

Syntax:  

MPI_Scatter ( send_buffer, send_count, send_type, recv_buffer,
recv_count,

recv_type, rank, comm )

The arguments for this routine are: 

send_buffer in starting address of send buffer
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send_count in number of elements in send buffer to send to each
process

(not the total number sent)
send_type in data type of send buffer elements
recv_buffer out starting address of receive buffer
recv_count in number of elements in receive buffer
recv_type in data type of elements in receive buffer
rank in rank of receiving process
comm in mpi communicator

C:  

int MPI_Scatter ( void* send_buffer, int send_count, MPI_datatype
send_type, void* recv_buffer, int recv_count, MPI_Datatype recv_type,
int rank, MPI_Comm comm )

Fortran :  

MPI_Scatter ( SEND_BUFFER, SEND_COUNT, SEND_TYPE, RECV_BUFFER,
RECV_COUNT, RECV_TYPE, RANK, COMM, ERROR )

INTEGER SEND_COUNT, SEND_TYPE, RECV_COUNT, RECV_TYPE, RANK, COMM,
ERROR <datatype> SEND_BUFFER, RECV_BUFFER

Sample Code  

 
6.6. Advanced Operations  

Advanced Operations 

MPI_ALLREDUCE  

! MPI_ALLREDUCE is used to combine the elements of each process's input 
buffer  

! Stores the combined value on the receive buffer of all group members 

User Defined Reduction Operations  

! Reduction can be defined to be an arbitrary operation  

Gather / Scatter Vector Operations  

! MPI_GATHERV and MPI_SCATTERV allow a varying count of data from/to each 
process  

Other Gather / Scatter Variations  
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! MPI_ALLGATHER and MPI_ALLTOALL 
! No root process specified: all processes get gathered or scattered data 
! Send and receive arguments are meaningful to all processes 

MPI_SCAN  

! MPI_SCAN is used to carry out a prefix reduction on data throughout the 
group 

! Returns the reduction of the values of all of the processes 

MPI_REDUCE_SCATTER  

! MPI_REDUCE_SCATTER combines an MPI_REDUCE and an MPI_SCATTERV  

 
6.7. Self Test  

Collective Communications Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
6.8. Course Problem  

Chapter 6 Course Problem  

In almost every MPI program there are instances where all the proccessors in a 
communicator need to perform some sort of data transfer or calculation. These 
"collective communication" routines have been the subject of this chapter and our 
parallel search program is no exception. There are two obvious places where the 
code we have created so far can be simplified (and perhaps sped up) by the use of 
the correct collective communication routines. This problem description is the same 
as the one used in Chapter 5 but you will utilize collective communication routines to 
modify the code you wrote for that exercise. 

Description 

The new problem still implements a parallel search of an integer array. The program 
should find all occurrences of a certain integer which will be called the target. It 
should then calculate the average of the target value and its index. Both the target 
location and the average should be written to an output file. In addition, the program 
should read both the target value and all the array elements from an input file.  

Exercise  
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Modify your code from Chapter 5, to change how the master first sends out the 
target and subarray data to the slaves. Use the MPI broadcast routines to give each 
slave the target. Use the MPI scatter routine to give all processors a section of the 
array b it will search.  

When you use the standard MPI scatter routine you will see that the global array b is 
now split up into four parts and the master process now has the first fourth of the 
array to search. So you should add a search loop (similar to the slaves') in the 
master section of code to search for the target and calculate the average and then 
write the result to the output file. This is actually an improvement in performance 
since all the processors perform part of the search in parallel.  

Solution 

When you have finished writing the code for this exercise, view our version of the 
Collective Communication Code. 

 
 
7. Communicators  

Communicators 
So far, the communicator that you are familiar with is MPI_COMM_WORLD (See 
Section 3.11 - Communicators). This is a communicator defined by MPI to permit all 
processes of your program to communicate with each other at run time, either 
between two processes ( point-to-point ) or among all processes ( collective ). For 
some applications however, communications among a selected subgroup of 
processes may be desirable or required. In this section, you will learn how to create 
new communicators for these situations.  

Two types of communicators exist within MPI: intra-communicators and inter-
communicators. This chapter will focus on intra-communicators that deal with 
communications among processes within individual communicators. Inter-
communicators, on the other hand, deal with communications between intra-
communicators. Essentially, intra-communicators are subsets of processes of 
MPI_COMM_WORLD. The need for these new communicators is often driven by the 
need to deal with, for instance, rows, columns or subblocks of a matrix. These 
communicators are often used in conjunction with a virtual topology -- more often 
than not a Cartesian topology -- to facilitate implementation of parallel operations. 
Furthermore, the use of communicators, and quite frequently together with virtual 
topology, generally enhances the readability and maintainability of a program.  

To this end, many routines are available in the MPI library to perform various 
communication-related tasks. These are 

! MPI_COMM_GROUP 
! MPI_GROUP_INCL 
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! MPI_GROUP_EXCL 
! MPI_GROUP_RANK 
! MPI_GROUP_FREE 
! MPI_COMM_CREATE 
! MPI_COMM_SPLIT 

These routines are described in the following sections. 

 
7.1. MPI_COMM_GROUP  
 

MPI_COMM_GROUP 

The MPI_COMM_GROUP routine determines the group handle of a communicator. 

C: 

int MPI_Comm_group( MPI_Comm comm, MPI_Group *group )

Fortran: 

MPI_COMM_GROUP( comm, group, ierr )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

comm  MPI_Comm  INTEGER  Input  Communicator handle  

group  MPI_Group 
*  INTEGER  Output  Group handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

#include "mpi.h"
MPI_Comm comm_world;
MPI_Group group_world;

comm_world = MPI_COMM_WORLD;
MPI_Comm_group(comm_world, &group_world);

Fortran Example:  
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include "mpif.h"
integer comm_world, ierr, group_world

comm_world = MPI_COMM_WORLD
call MPI_Comm_group(comm_world, group_world, ierr)

Associated with a communicator is its group identity, or handle. In the above 
example, we used MPI_COMM_GROUP to obtain the group handle of the 
communicator MPI_COMM_WORLD. This handle can then be used as input to the 
routine  

! MPI_GROUP_INCL to select among the processes of one group to form 
another (new) group;  

! MPI_COMM_CREATE to create a new communicator whose members are 
those of the new group;  

! MPI_GROUP_RANK to find the current process rank's equivalent process rank 
in a group.  

 
7.2. MPI_GROUP_INCL  

MPI_GROUP_INCL 

The MPI_GROUP_INCL routine creates a new group from an existing group and 
specifies member processes.  

C: 

int MPI_Group_incl( MPI_Group old_group, int count, int *members,
MPI_Group *new_group )

Fortran: 

MPI_GROUP_INCL( OLD_GROUP, COUNT, MEMBERS, NEW_GROUP, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

old_group  MPI_Group  INTEGER  Input  Group handle  

count  int  INTEGER  Input  Number of processes in new_group  

members  int *  INTEGER  Input  
Array of size count defining process 
ranks (in old_group) to be included 
(in new_group)  

new_group  MPI_Group 
*  INTEGER  Output  Group handle  
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ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

#include "mpi.h"
MPI_Group group_world, odd_group, even_group;
int i, p, Neven, Nodd, members[8], ierr;

MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_group(MPI_COMM_WORLD, &group_world);

Neven = (p+1)/2; /* processes of MPI_COMM_WORLD are divided */
Nodd = p - Neven; /* into odd- and even-numbered groups */
for (i=0; i<Neven; i++) { /* "members" determines members of

even_group */
members[i] = 2*i;

};

MPI_Group_incl(group_world, Neven, members, &even_group);

Fortran Example: 

include "mpif.h"
implicit none
integer group_world, odd_group, even_group
integer i, p, Neven, Nodd, members(0:7), ierr

call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)
call MPI_Comm_group(MPI_COMM_WORLD,group_world,ierr)

Neven = (p + 1)/2 ! processes of MPI_COMM_WORLD are divided
Nodd = p - Neven ! into odd- and even-numbered groups
do i=0,Neven - 1 ! "members" determines members of even_group

members(i) = 2*i
enddo

call MPI_Group_incl(group_world, Neven, members, even_group, ierr)

In the above example, a new group is created whose members are the even-
numbered processes of the communicator MPI_COMM_WORLD. In the new 
communicator, the group members are ordered, with stride 1, in ascending order (0, 
1, 2, ..., Neven-1). They are associated, one on one, with processes of the old group 
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as specified by the array (members(0), members(1), ..., members(Neven-1)). In 
this example, the old group consists of all processes of MPI_COMM_WORLD while the 
members array picks out the old group's even processes, i.e., members(0) = 0, 
members(1) = 2, members(2) = 4, and so on.  

 

Figure 7.1. Graphical representation of MPI_GROUP_INCL example 

Note:  

! The position of the calling process in the new group is defined by the 
members array. Specifically, calling process number "members(i)" has rank 
"i" in new_group with "i" ranging from "0" to "count - 1".  

! The same task could also be accomplished by a similar routine, 
MPI_GROUP_EXCL.  

! If count = 0, new_group has the value MPI_GROUP_EMPTY.  
! Two groups may have identical members but in different orders by how the 

members array is defined.  

 
7.3. MPI_GROUP_EXCL  

MPI_GROUP_EXCL 

The MPI_GROUP_EXCL routine creates a new group from an existing group and 
specifies member processes (by exclusion).  
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C: 

int MPI_Group_excl( MPI_Group group, int count, int *nonmembers,
MPI_Group *new_group )

Fortran: 

MPI_GROUP_EXCL(GROUP, COUNT, NONMEMBERS, NEW_GROUP, IERR)

Variable 
Name C Type Fortran 

Type  In/Out  Description  

group  MPI_Group  INTEGER  Input  Group handle  

count  int  INTEGER  Input  Number of processes in 
nonmembers  

nonmembers  int *  INTEGER  Output  Array of size count defining process 
ranks to be excluded  

new_group  MPI_Group 
*  INTEGER  Output  Group handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag. 

C Example:  

#include "mpi.h"
MPI_Group group_world, odd_group, even_group;
int i, p, Neven, Nodd, nonmembers[8], ierr;

MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_group(MPI_COMM_WORLD, &group_world);

Neven = (p+1)/2; /* processes of MPI_COMM_WORLD are divided */
Nodd = p - Neven; /* into odd- and even-numbered groups */
for (i=0; i<Neven; i++) { /* "nonmembers" are even-numbered procs

*/
nonmembers[i] = 2*i;

};

MPI_Group_excl(group_world, Neven, nonmembers, &odd_group);

Fortran Example:  

include "mpif.h"
implicit none
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integer group_world, odd_group, even_group
integer i, p, Neven, Nodd, nonmembers(0:7), ierr

call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)
call MPI_Comm_group(MPI_COMM_WORLD, group_world, ierr)

Neven = (p + 1)/2 ! processes of MPI_COMM_WORLD are divided
Nodd = p - Neven ! into odd- and even-numbered groups
do i=0,Neven - 1 ! "nonmembers" are even-numbered procs

nonmembers(i) = 2*i
enddo

call MPI_Group_excl(group_world, Neven, nonmembers, odd_group, ierr)

In the above example, a new group is created whose members are the odd-
numbered processes of the communicator MPI_COMM_WORLD. Contrary to 
MPI_GROUP_INCL, this routine takes the complement of nonmembers (from 
MPI_COMM_WORLD) as group members. The new group's members are ranked in 
ascending order (0, 1, 2, ..., Nodd-1). In this example, these correspond to the 
process ranks (1, 3, 5, ...) in the old group. Count is the size of the exclusion list, 
i.e., size of nonmembers.  

 

Figure 7.2. Graphical representation of MPI_Group_excl example 

Note:  

! The position of the calling process in the new group is in accordance with its 
relative ranking in the old group - skipping over the ones to be excluded. 
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Unlike MPI_GROUP_INCL, the order of nonmembers has no effect on the 
ranking order of the NEW_GROUP. 

! The same task could also be accomplished by a similar routine, 
MPI_GROUP_INCL.  

! If count = 0, i.e., no process is excluded, NEW_GROUP is identical to 
OLD_GROUP.  

! Ranks to be excluded (as defined by nonmembers) must be valid rank 
numbers in the OLD_GROUP. Otherwise, error will result.  

! Nonmembers array must contain only distinct ranks in OLD_GROUP. 
Otherwise, error will result.  

 
7.4. MPI_GROUP_RANK  

MPI_GROUP_RANK 

The MPI_GROUP_RANK routine queries the group rank of the calling process.  

C:  

int MPI_Group_rank( MPI_Group group, int *rank )

Fortran:  

MPI_Group_rank( GROUP, RANK, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

group  MPI_Group  INTEGER  Input  Group handle  

rank  int *  INTEGER  Output  Calling process rank  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag. 

C Example:  

#include "mpi.h"
MPI_Group group_world, worker_group;
int i, p, ierr, group_rank;

MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_group(MPI_COMM_WORLD, &group_world);
MPI_Group_excl(group_world, 1, 0, &worker_group);
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MPI_Group_rank(worker_group, &group_rank);

Fortran Example:  

include "mpif.h"
implicit none
integer group_world, worker_group
integer i, p, ierr, group_rank

call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)
call MPI_Comm_group(MPI_COMM_WORLD, group_world, ierr)
call MPI_Group_excl(group_world, 1, 0, worker_group, ierr)

call MPI_Group_rank(worker_group, group_rank, ierr)

In the above example, first a new worker group is created whose members are all 
but process 0 of the group MPI_COMM_WORLD. Then a query is made for the group 
rank. The ranks of MPI_COMM_WORLD have the range (0, 1, 2, ..., p-1). For this 
simple example, the rank range of the new group, worker_group, is (0, 1, 2, ..., p-2) 
as it has one less member (i.e., process 0) than MPI_COMM_WORLD. Consequently, 
the calling process' corresponding rank number in the new group would be 1 smaller. 
For instance, if the calling process is "i" (which is the rank number in the 
MPI_COMM_WORLD group), the corresponding rank number in the new group would 
be "i-1". Note, however, that if the calling process is process 0 which does not 
belong to worker_group, MPI_GROUP_RANK would return the value of 
MPI_UNDEFINED for group_rank, indicating that it is not a member of the 
worker_group. For other arrangements, the rank number of the calling process in the 
new group may be less straightforward. The use of MPI_GROUP_RANK eliminates the 
need to keep track of that.  

Note:  

! It returns MPI_UNDEFINED (a negative number) if current process does not 
belong to group. 

! MPI_UNDEFINED is implementation-dependent. For instance  

o MPI_UNDEFINED = -3 for SGI's MPI  
o MPI_UNDEFINED = -32766 for MPICH  

! To check if calling process belongs to group; use code something like this to 
ensure portability:  

if (group_rank .eq. MPI_UNDEFINED) then
c group_rank does not belong to group

...
else

c group_rank belongs to group
...

endif
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7.5. MPI_GROUP_FREE  

MPI_GROUP_FREE 

The MPI_GROUP_FREE routine returns a group to the system when it is no longer 
needed.  

C: 

int MPI_Group_free( MPI_Group *group )

Fortran: 

MPI_GROUP_FREE( GROUP, IERR )

Variable 
Name C Type Fortran 

Type  In/Out Description  

group  MPI_Group 
*  INTEGER  Output  Group handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag. 

C Example: 

#include "mpi.h"
MPI_Group group_world, worker_group;
int i, p, ierr, group_rank;

MPI_Comm_size(MPI_COMM_WORLD, &p);
MPI_Comm_group(MPI_COMM_WORLD, &group_world);
MPI_Group_excl(group_world, 1, 0, &worker_group);
MPI_Group_rank(worker_group, &group_rank);

MPI_Group_free(worker_group);

Fortran Example: 

include "mpif.h"
implicit none
integer group_world, worker_group
integer i, p, ierr, group_rank
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call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)
call MPI_Comm_group(MPI_COMM_WORLD, group_world, ierr)
call MPI_Group_excl(group_world, 1, 0, worker_group, ierr)
call MPI_Group_rank(worker_group, group_rank, ierr)

call MPI_Group_free(worker_group, ierr)

In the above example, first a new worker group is created whose members are all 
but process 0 of the original group (MPI_COMM_WORLD). Then a query is made for 
the group rank. Finally, MPI_GROUP_FREE is called to return worker_group to the 
system.  

Note:  

• Freeing a group does not free the communicator to which it belongs. 
• An MPI_COMM_FREE routine exists to free a communicator. 

 
7.6. MPI_COMM_CREATE  

MPI_COMM_CREATE 

The MPI_COMM_CREATE routine creates a new communicator to include specific 
processes from an existing communicator.  

C: 

int MPI_Cart_create( MPI_Comm old_comm, MPI_Group group, MPI_Comm
*new_comm )

Fortran: 

MPI_COMM_CREATE( OLD_COMM, GROUP, NEW_COMM, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

old_comm  MPI_Comm  INTEGER  Input  Communicator handle  

group  MPI_Group  INTEGER  Input  Group handle  

new_comm  MPI_Comm 
* INTEGER  Output  Communicator handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  
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C Example: 

#include "mpi.h"
MPI_Comm comm_world, comm_worker;
MPI_Group group_world, group_worker;
int ierr;

comm_world = MPI_COMM_WORLD;
MPI_Comm_group(comm_world, &group_world);
MPI_Group_excl(group_world, 1, 0, &group_worker); /* process 0 not

member */

MPI_Comm_create(comm_world, group_worker, &comm_worker);

Fortran Example:  

include "mpif.h"
integer comm_world, group_world, comm_worker, group_worker, ierr

comm_world = MPI_COMM_WORLD
call MPI_Comm_group(comm_world, group_world, ierr)
call MPI_Group_excl(group_world, 1, 0, group_worker, ierr) ! process

0 not member

call MPI_Comm_create(comm_world, group_worker, comm_worker, ierr)

In the above example, first the MPI_COMM_WORLD communicator's group handle is 
identified. Then a new group, group_worker, is created. This group is defined to 
include all but process 0 of MPI_COMM_WORLD as members by way of 
MPI_GROUP_EXCL. Finally, MPI_COMM_CREATE is used to create a new 
communicator whose member processes are those of the new group just created. 
With this new communicator, message passing can now proceed among its member 
processes.  

Note:  

• MPI_COMM_CREATE is a collective communication routine; it must be called 
by all processes of old_comm and all arguments in the call must be the same 
for all processes. Otherwise, error results.  

• MPI_COMM_CREATE returns MPI_COMM_NULL to processes that are not in 
group.  

• Upon completion of its task, the created communicator may be released by 
calling MPI_COMM_FREE.  

 
7.7. MPI_COMM_SPLIT  
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MPI_COMM_SPLIT 

The MPI_COMM_SPLIT routine forms new communicators from an existing one.  

Many scientific and engineering computations deal with matrices or grids - especially 
Cartesian grids - consisting of rows and columns. This, in turn, precipitates a need to 
map processes logically into similar grid geometries. Furthermore, they may need to 
be dealt with in less traditional ways. For example, instead of dealing with individual 
rows, it may be advantageous or even necessary to deal with groups of rows or even 
more generally, other arbitrary configurations. MPI_COMM_SPLIT permits the 
creation of new communicators with such flexibilities.  

The input variable color identifies the group while the key variable specifies a group 
member.  

C: 

int MPI_Comm_split( MPI_Comm old_comm, int color, int key, MPI_Comm
*new_comm )

Fortran: 

MPI_COMM_SPLIT( OLD_COMM, COLOR, KEY, NEW_COMM, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

old_comm  MPI_Comm  INTEGER  Input  Communicator handle  

color  int  INTEGER  Input  
Provides process grouping 
classification; processes with same 
color in same group  

key  int  INTEGER  Input  
Within each group (color), "key" 
provides control for rank designation 
within group  

new_comm  MPI_Comm 
* INTEGER  Output  Communicator handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

Example: For a 2D logical grid, create subgrids of rows and 
columns 

C :  
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/* logical 2D topology with nrow rows and mcol columns */
irow = Iam/mcol; /* logical row number */
jcol = mod(Iam, mcol); /* logical column number */
comm2D = MPI_COMM_WORLD;

MPI_Comm_split(comm2D, irow, jcol, row_comm);
MPI_Comm_split(comm2D, jcol, irow, col_comm);

Fortran :  

c**logical 2D topology with nrow rows and mcol columns
irow = Iam/mcol !! logical row number
jcol = mod(Iam, mcol) !! logical column number
comm2D = MPI_COMM_WORLD

call MPI_Comm_split(comm2D, irow, jcol, row_comm, ierr)
call MPI_Comm_split(comm2D, jcol, irow, col_comm, ierr)

To demonstrate the results of this example, say that we have 6 processes (0, 1, ..., 
5) at our disposal. Mathematically (and topologically), it may be desirable to think of 
these processes being arranged in a 3-by-2 logical grid, as shown in Figure 7.3(a) 
below. The number in parentheses represents the rank number associated with the 
logical grid. Irow and jcol, both functions of the calling process number, Iam, are 
defined as the row and column numbers, respectively. A tabulation of irow and jcol 
versus Iam is shown below:  

   

Iam 0 1 2 3 4 5 

irow 0 0 1 1 2 2 

jcol 0 1 0 1 0 1 

The first MPI_COMM_SPLIT call specifies irow as the "color" (or group) with jcol as 
the "key" (or distinct member identity within group). This results in processes on 
each row classified as a separate group, as shown in Figure 7.3(b). The second 
MPI_COMM_SPLIT call, on the other hand, defines jcol as the color and irow as the 
key. This joins all processes in a column as belonging to a group, as shown in Figure 
7.3(c).  
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Figure 7.3(a). 2D 
logical Grid 

Figure 7.3(b). 3 Row 
Subgrids 

Figure 7.3(c). 2 
Column Subgrids 

In this example, the rank numbers (shown above in parentheses) are assigned using 
C's "row-major" rule. In Figure 7.3 (a), the numbers in black represent the "old" 
rank numbers (see ) while those in green denote the rank numbers within individual 
row groups, Figure 7.3 (b), and column groups, Figure 7.3 (c). 

Note that in the above, we chose to think of the logical grids as two-dimensional; 
they could very well be thought of as shown in Figures 7.3 (d) - (f). 
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Figure 7.3 (d). 1D logical Grid 
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Figure 7.3 (e). 3 Subgrids  
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Figure 7.3 (f). 2 Subgrids 
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The following example of MPI_COMM_SPLIT splits the rows into two groups of rows: 
the first consists of rows 1 and 2 while the second represents row 3. The code 
fragment that does that is  

C**MPI_Comm_split is more general than MPI_Cart_sub
C**simple example of 6 processes divided into 2 groups;
C**1st 4 belongs to group 0 and remaining two to group 1

group = Iam/4 ! group0:0,1,2,3;
group1:4,5

index = Iam - row_group*4 ! group0:0,1,2,3;
group1:0,1

call MPI_Comm_split(comm2D, group, index,
& row_comm, ierr)

The above table is illustrated in the figure below and the output of the example code 
for this particular arrangement is shown in Figure 7.3 (g). 
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Figure 7.3 (g). Output for the MPI_COMM_SPLIT example. 

Note:  

! This routine is similar to MPI_CART_SUB. However, MPI_COMM_SPLIT is more 
general than MPI_CART_SUB. MPI_COMM_SPLIT creates a logical grid and is 
referred to by its linear rank number; MPI_CART_SUB creates a Cartesian grid 
and rank is referred to by Cartesian coordinates. For instance, in a 2D 
Cartesian grid, a grid cell is known by its (irow,jcol) index pair.  

! MPI_COMM_SPLIT is a collective communication routine and hence all 
processes of old_comm must call routine. Unlike many collective 
communication routines, however, key and color are allowed to differ among 
all processes of old_comm.  

! Processes in old_comm not part of any new group must have color defined as 
MPI_UNDEFINED. The corresponding returned NEW_COMM for these 
processes have value MPI_COMM_NULL.  
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! If two or more processes have the same key, the resulting rank numbers of 
these processes in the new communicator are ordered relative to their 
respective ranks in the old communicator. Recall that ranks in a 
communicator are by definition unique and ordered as (0, 1, 2, ..., p-1). An 
example of this is given in the upcoming Section 7.8.2. A corollary to this is 
that if no specific ordering is required of the new communicator, setting key 
to a constant results in MPI to order their new ranks following their relative 
rank order in the old communicator.  

 
7.8. Communicators Examples  

Communicators Examples 

This section provides examples showing the application of the MPI communicators 
routines. The first example covers the routines MPI_GROUP_INCL, 
MPI_GROUP_EXCL, MPI_GROUP_RANK and MPI_GROUP_FREE. The second example 
demonstrates two different applications of MPI_COMM_SPLIT.  

A zip file containing the C and Fortran code for the examples given in this 
chapter is available for download.  

 
7.8.1. Example on Usages of Group Routines  

Example on Usages of Group Routines 

The objective of this example is to divide the member processes of 
MPI_COMM_WORLD into two new groups. One group consists of all odd-numbered 
processes and the other all even-numbered processes. A table is then printed to 
show whether a process belongs to the odd or even group.  

Fortran Code 

PROGRAM Group_example
implicit none
integer i, j, Iam, p, ierr, group_world
integer Neven, Nodd, members(0:7)
integer even_group, even_rank, odd_group, odd_rank
include "mpif.h" !! This brings in pre-defined MPI constants, ...

!**Starts MPI processes ...
call MPI_Init(ierr) !! starts MPI
call MPI_Comm_rank(MPI_COMM_WORLD, Iam, ierr) !! get current

process id
call MPI_Comm_size(MPI_COMM_WORLD, p, ierr) !! get number of

processes
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if( p .ne. 6 ) then
if (Iam .eq. 0) then

write(*,*)'****************************************'
write(*,*)'*** THIS SAMPLE PROGRAM IS VALID FOR ***'
write(*,*)'*** SIX (6) PROCESSES ONLY ***'
write(*,*)'****************************************'

endif
call MPI_Abort(MPI_COMM_WORLD, ierr)

endif
Neven = (p + 1)/2 ! processes of MPI_COMM_WORLD are divided
Nodd = p - Neven ! into odd- and even-numbered groups
members(0) = 2 ! proc 2 mapped to rank 0 in even_group
members(1) = 0 ! proc 0 mapped to rank 1 in even_group
members(2) = 4 ! proc 4 mapped to rank 2 in even_group

!
call MPI_Comm_group(MPI_COMM_WORLD, group_world, ierr)
call MPI_Group_incl(group_world, Neven, members, even_group, ierr)
call MPI_Group_excl(group_world, Neven, members, odd_group, ierr)

!
call MPI_Barrier(MPI_COMM_WORLD, ierr)
if(Iam .eq. 0) then

write(*,*)
write(*,*)'MPI_Group_incl/excl Usage Example'
write(*,*)
write(*,*)'Number of processes is ', p
write(*,*)'Number of odd processes is', Nodd
write(*,*)'Number of even processes is', Neven
write(*,*)'members(0) is assigned rank',members(0)
write(*,*)'members(1) is assigned rank',members(1)
write(*,*)'members(2) is assigned rank',members(2)
write(*,*)
write(*,*)'MPI_UNDEFINED is set to ', MPI_UNDEFINED
write(*,*)
write(*,*)' Current even odd'
write(*,*)' rank rank rank'

endif
call MPI_Barrier(MPI_COMM_WORLD, ierr)

!
call MPI_Group_rank(even_group, even_rank, ierr)
call MPI_Group_rank( odd_group, odd_rank, ierr)

!
write(*,'(3i9)')Iam, even_rank, odd_rank

!
call MPI_Group_free( odd_group, ierr)
call MPI_Group_free(even_group, ierr)

!
call MPI_Finalize(ierr) !! let MPI finish up ...

end

C Code 
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#include "mpi.h"
void main(int argc, char *argv[])
{

int Iam, p;
int Neven, Nodd, members[6], even_rank, odd_rank;
MPI_Group group_world, even_group, odd_group;

/* Starts MPI processes ... */
MPI_Init(&argc, &argv); /* starts MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current process id

*/
MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of processes

*/
Neven = (p + 1)/2; /* All processes of MPI_COMM_WORLD are

divided */
Nodd = p - Neven; /* into 2 groups, odd- and even-numbered

groups */
members[0] = 2;
members[1] = 0;
members[2] = 4;
MPI_Comm_group(MPI_COMM_WORLD, &group_world);
MPI_Group_incl(group_world, Neven, members, &even_group);
MPI_Group_excl(group_world, Neven, members, &odd_group);

MPI_Barrier(MPI_COMM_WORLD);
if(Iam == 0) {

printf("MPI_Group_incl/excl Usage Example\n");
printf("\n");
printf("Number of processes is %d\n", p);
printf("Number of odd processes is %d\n", Nodd);
printf("Number of even processes is %d\n", Neven);
printf("\n");
printf(" Iam even odd\n");

}
MPI_Barrier(MPI_COMM_WORLD);

MPI_Group_rank(even_group, &even_rank);
MPI_Group_rank( odd_group, &odd_rank);
printf("%8d %8d %8d\n",Iam, even_rank, odd_rank);

MPI_Finalize(); /* let MPI finish up ... */
}

Output 

A negative number indicates that the calling process does not belong to the group. 
As a matter of fact, in that case the rank number would be set to MPI_UNDEFINED, 
which is implementation dependent and has a value of "-3" for SGI's MPI and "-
32766" for MPICH. It is important to emphasize here that  

! The even-numbered group is generated with MPI_GROUP_INCL. The rank of 
the calling process in the even group is defined by the members array. In 
other words, calling process number "members(i)" is rank "i" in even_group. 
Note also that "i" starts from "0".  
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! The odd-numbered group is generated with MPI_GROUP_EXCL. The position 
of the calling process in the odd group, however, is in accordance with the 
relative ranking of the calling process in the old group - skipping over the 
ones to be excluded.  

tonka:communicators/codes % mpirun -np 6 group_example

MPI_Group_incl/excl Usage Example

Number of processes is 6
Number of odd processes is 3
Number of even processes is 3
members(0) is assigned rank 2
members(1) is assigned rank 0
members(2) is assigned rank 4

MPI_UNDEFINED is set to -3

Current even odd
rank rank rank

0 1 -3
3 -3 1
1 -3 0
2 0 -3
4 2 -3
5 -3 2

 
7.8.2. Example on Usages of MPI_COMM_SPLIT  

Example on Usages of MPI_COMM_SPLIT 

The objective of this example is to demonstrate the usage of MPI_COMM_SPLIT.  

Fortran Code 

implicit none
integer nrow, mcol, irow, jcol, i, j, ndim
parameter (nrow=3, mcol=2, ndim=2)
integer p, ierr, row_comm, col_comm, comm2D
integer Iam, me, row_id, col_id, ndim
integer row_group, row_key, map(0:5)
data map/2,1,2,1,0,1/
include "mpif.h" !! This brings in pre-defined MPI constants, ...

c**Starts MPI processes ...
call MPI_Init(ierr) !! starts MPI
call MPI_Comm_rank(MPI_COMM_WORLD, Iam, ierr) !! get current

process id
call MPI_Comm_size(MPI_COMM_WORLD, p, ierr) !! get number of

processes
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if(Iam .eq. 0) then
write(*,*)
write(*,*)'Example of MPI_Comm_split Usage'
write(*,*)'Split 3x2 grid into 2 different communicators'
write(*,*)'which correspond to 3 rows and 2 columns.'
write(*,*)
write(*,*)' Iam irow jcol row-id col-id'

endif
c**virtual topology with nrow rows and mcol columns

irow = Iam/mcol !! row number
jcol = mod(Iam, mcol) !! column number
comm2D = MPI_COMM_WORLD
call MPI_Comm_split(comm2D, irow, jcol, row_comm, ierr)
call MPI_Comm_split(comm2D, jcol, irow, col_comm, ierr)

call MPI_Comm_rank(row_comm, row_id, ierr)
call MPI_Comm_rank(col_comm, col_id, ierr)
call MPI_Barrier(MPI_COMM_WORLD, ierr)

write(*,'(9i8)')Iam,irow,jcol,row_id,col_id
call MPI_Barrier(MPI_COMM_WORLD, ierr)

if(Iam .eq. 0) then
write(*,*)
write(*,*)'Next, create more general communicator'
write(*,*)'which consists of two groups :'
write(*,*)'Rows 1 and 2 belongs to group 1 and row 3 is group 2'
write(*,*)

endif
C**MPI_Comm_split is more general than MPI_Cart_sub
C**simple example of 6 processes divided into 2 groups;
C**1st 4 belongs to group 1 and remaining two to group 2

row_group = Iam/4 ! this expression by no means general
row_key = Iam - row_group*4 ! group1:0,1,2,3; group2:0,1
call MPI_Comm_split(comm2D, row_group, row_key,

& row_comm, ierr)
call MPI_Comm_rank(row_comm, row_id, ierr)
write(*,'(9i8)')Iam,row_id
call MPI_Barrier(MPI_COMM_WORLD, ierr)

if(Iam .eq. 0) then
write(*,*)
write(*,*)'If two processes have same key, the ranks'
write(*,*)'of these two processes in the new'
write(*,*)'communicator will be ordered according'
write(*,*)'to their order in the old communicator'
write(*,*)' key = map(Iam); map = (2,1,2,1,0,1)'
write(*,*)

endif
C**MPI_Comm_split is more general than MPI_Cart_sub
C**simple example of 6 processes dirowided into 2 groups;
C**1st 4 belongs to group 1 and remaining two to group 2

row_group = Iam/4 ! this expression by no means general
row_key = map(Iam)
call MPI_Comm_split(comm2D, row_group, row_key,
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& row_comm, ierr)
call MPI_Comm_rank(row_comm, row_id, ierr)
call MPI_Barrier(MPI_COMM_WORLD, ierr)
write(*,'(9i8)')Iam,row_id

call MPI_Finalize(ierr) !! let MPI finish up
...

end

C code 

#include "mpi.h"
void main(int argc, char *argv[])
{

int mcol, irow, jcol, p;
MPI_Comm row_comm, col_comm, comm2D;
int Iam, row_id, col_id;
int row_group, row_key, map[6];

/* Starts MPI processes ... */
MPI_Init(&argc, &argv); /* starts MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &Iam); /* get current process id

*/
MPI_Comm_size(MPI_COMM_WORLD, &p); /* get number of processes

*/

map[0]=2; map[1]=1; map[2]=2; map[3]=1; map[4]=0; map[5]=1;
mcol=2; /* nrow = 3 */
if(Iam == 0) {

printf("\n");
printf("Example of MPI_Comm_split Usage\n");
printf("Split 3x2 grid into 2 different communicators\n");
printf("which correspond to 3 rows and 2 columns.");
printf("\n");
printf(" Iam irow jcol row-id col-id\n");

}
/* virtual topology with nrow rows and mcol columns */

irow = Iam/mcol; /* row number */
jcol = Iam%mcol; /* column number */
comm2D = MPI_COMM_WORLD;
MPI_Comm_split(comm2D, irow, jcol, &row_comm);
MPI_Comm_split(comm2D, jcol, irow, &col_comm);

MPI_Comm_rank(row_comm, &row_id);
MPI_Comm_rank(col_comm, &col_id);
MPI_Barrier(MPI_COMM_WORLD);

printf("%8d %8d %8d %8d %8d\n",Iam,irow,jcol,row_id,col_id);
MPI_Barrier(MPI_COMM_WORLD);

if(Iam == 0) {



101 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

printf("\n");
printf("Next, create more general communicator\n");
printf("which consists of two groups :\n");
printf("Rows 1 and 2 belongs to group 1 and row 3 is group

2\n");
printf("\n");

}
/* MPI_Comm_split is more general than MPI_Cart_sub

simple example of 6 processes divided into 2 groups;
1st 4 belongs to group 1 and remaining two to group 2 */

row_group = Iam/4; /* this expression by no means general */
row_key = Iam - row_group*4; /* group1:0,1,2,3; group2:0,1 */
MPI_Comm_split(comm2D, row_group, row_key, &row_comm);
MPI_Comm_rank(row_comm, &row_id);
printf("%8d %8d\n",Iam,row_id);
MPI_Barrier(MPI_COMM_WORLD);

if(Iam == 0) {
printf("\n");
printf("If two processes have same key, the ranks\n");
printf("of these two processes in the new\n");
printf("communicator will be ordered according'\n");
printf("to their order in the old communicator\n");
printf(" key = map[Iam]; map = (2,1,2,1,0,1)\n");
printf("\n");

}
/* MPI_Comm_split is more general than MPI_Cart_sub

simple example of 6 processes dirowided into 2 groups;
1st 4 belongs to group 1 and remaining two to group 2 */

row_group = Iam/4; /* this expression by no means general */
row_key = map[Iam];
MPI_Comm_split(comm2D, row_group, row_key, &row_comm);
MPI_Comm_rank(row_comm, &row_id);
MPI_Barrier(MPI_COMM_WORLD);
printf("%8d %8d\n",Iam,row_id);

MPI_Finalize(); /* let MPI finish up ... */
}

Output 

Example of MPI_Comm_split Usage
Split 3x2 grid into 2 different communicators
which correspond to 3 rows and 2 columns.

Iam irow jcol group rank
0 0 0 0 0
2 1 0 0 1
3 1 1 1 1
5 2 1 1 2
1 0 1 1 0
4 2 0 0 2
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Next, create more general communicator
which consists of two groups :
Rows 1 and 2 belongs to group 1 and row 3 is group 2

new
Iam rank

0 0
3 3
2 2
1 1
5 1
4 0

If two processes have same key, the ranks
of these two processes in the new
communicator will be ordered according
to their order in the old communicator
key = map(Iam); map = (2,1,2,1,0,1)

new
Iam rank

1 0
0 2
4 0
5 1
3 1
2 3

Graphically, the last two examples yield the following results where the numbers in 
black denote MPI_COMM_WORLD rank number and the numbers in green represent 
the rank number of the two respective new groups.  

(0) 
(0) 

(1) 
(1) 

(2) 
(2) 

(3) 
(3) 

(4) 
(0) 

(5) 
(1) 

(0) 
(2) 

(1) 
(0) 

(2) 
(3) 

(3) 
(1) 

(4) 
(0) 

(5) 
(1) 

   

 
7.9. Self Test  

Communicators Self Test 
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Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
7.10. Course Problem  

Chapter 7 Course Problem  

This chapter explained that it is possible to create and use different groups of 
processors and communicators. We will create and use a communicator other than 
MPI_COMM_WORLD in the next chapter.  

For this chapter, a new version of the Course Problem is presented in which the 
average value each processor calculates when a target location is found, is calculated 
in a different manner. Specifically, the average will be calculated from the "neighbor" 
values of the target. This is a classic style of programming (called calculations with a 
stencil) used at important array locations. Stencil calculations are used in many 
applications including numerical solutions of differential equations and image 
processesing to name two. This new Course Problem will also entail more message 
passing between the searching processors because in order to calculate the average 
they will have to get values of the global array they do not have in their subarray.  

Description 

Our new problem still implements a parallel search of an integer array. The program 
should find all occurences of a certain integer which will be called the target. When a 
processor of a certain rank finds a target location, it should then calculate the 
average of  

! The target value  
! An element from the processor with rank one higher (the "right" processor). 

The right processor should send the first element from its local array.  
! An element from the processor with rank one less (the "left" processor). The 

left processor should send the first element from its local array.  

For example, if processor 1 finds the target at index 33 in its local array, it should 
get from processors 0 (left) and 2 (right) the first element of their local arrays. 
These three numbers should then be averaged.  

In terms of right and left neighbors, you should visualize the four processors 
connected in a ring. That is, the left neighbor for P0 should be P3, and the right 
neighbor for P3 should be P0.  

Both the target location and the average should be written to an output file. As 
usual, the program should read both the target value and all the array elements 
from an input file.  
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Exercise 

Solve this new version of the Course Problem by modifying your code from Chapter 
6. Specifically, change the code to perform the new method of calculating the 
average value at each target location. 

Solution 

When you have finished writing the code for this exercise, view our version of the 
Stencil Code.  

 
8. Virtual Topologies  

Virtual Topologies 
Many computational science and engineering problems reduce at the end to either a 
series of matrix or some form of grid operations, be it through differential, integral or 
other methods. The dimensions of the matrices or grids are often determined by the 
physical problems. Frequently in multiprocessing, these matrices or grids are 
partitioned, or domain-decomposed, so that each partition (or subdomain) is 
assigned to a process. One such example is an m x n matrix decomposed into p q x n 
submatrices with each assigned to be worked on by one of the p processes. In this 
case, each process represents one distinct submatrix in a straightforward manner. 
However, an algorithm might dictate that the matrix be decomposed into a pxq 
logical grid, whose elements are themselves each an r x s matrix. This requirement 
might be due to a number of reasons: efficiency considerations, ease in code 
implementation, code clarity, to name a few. Although it is still possible to refer to 
each of these pxq subdomains by a linear rank number, it is obvious that a mapping 
of the linear process rank to a 2D virtual rank numbering would facilitate a much 
clearer and natural computational representation. To address the needs of this and 
other topological layouts, the MPI library provides two types of topology routines: 
Cartesian and graph topologies. Only Cartesian topology and the associated routines 
will be discussed in this chapter.  

   

A zip file containing the C and Fortran examples given in this chapter is 
available for download.  

 
8.1. MPI Topology Routines  

Virtual Topology MPI Routines 
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Some of the MPI topology routines are 

• MPI_CART_CREATE  
• MPI_CART_COORDS  
• MPI_CART_RANK  
• MPI_CART_SHIFT  
• MPI_CART_SUB  
• MPI_CARTDIM_GET  
• MPI_CART_GET  
• MPI_CART_SHIFT  

These routines are discussed in the following sections. 

 
8.1.1. MPI_CART_CREATE  

MPI_CART_CREATE 

The MPI_CART_CREATE routine creates a new communicator using a Cartesian 
topology. 

C: 

int MPI_Cart_create(MPI_Comm old_comm, int ndims, int *dim_size,
int *periods, int reorder, MPI_Comm *new_comm)

Fortran: 

MPI_CART_CREATE(OLD_COMM, NDIMS, DIM_SIZE, PERIODS, REORDER,
NEW_COMM, IERR)

Variable 
Name C Type Fortran 

Type  In/Out  Description  

old_comm  MPI_Comm  INTEGER  Input  Communicator handle  

ndims  int  INTEGER  Input  Number of dimensions  

dim_size  int *  INTEGER  Output  Array of size ndims providing length 
in each dimension  

periods  int *  LOGICAL  Input  Array of size ndims specifying 
periodicity status of each dimension  

reorder  int  LOGICAL  Input  whether process rank reordering by 
MPI is permitted  

new_comm  MPI_Comm 
* INTEGER  Output  Communicator handle  
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ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example:  

#include "mpi.h"
MPI_Comm old_comm, new_comm;
int ndims, reorder, periods[2], dim_size[2];

old_comm = MPI_COMM_WORLD;
ndims = 2; /* 2D matrx/grid */
dim_size[0] = 3; /* rows */
dim_size[1] = 2; /* columns */
periods[0] = 1; /* row periodic (each column forms a ring) */
periods[1] = 0; /* columns nonperiodic */
reorder = 1; /* allows processes reordered for efficiency */

MPI_Cart_create(old_comm, ndims, dim_size,
periods, reorder, &new_comm);

Fortran Example:  

include "mpif.h"
integer old_comm, new_comm, ndims, ierr
integer dim_size(0:1)
logical periods(0:1), reorder

old_comm = MPI_COMM_WORLD
ndims = 2 ! 2D grid
dim_size(0) = 3 ! rows
dim_size(1) = 2 ! columns
periods(0) = .true. ! row periodic (each column forms a ring)
periods(1) = .false. ! columns nonperiodic
reorder = .true. ! allows processes reordered for efficiency

call MPI_Cart_create(old_comm, ndims, dim_size,
& periods, reorder, new_comm, ierr)

In the above example we use MPI_CART_CREATE to map (or rename) 6 processes 
from a linear ordering (/i> 0,1,2,3,4,5) into a two-dimensional matrix ordering of 3 
rows by 2 columns ( i.e., (0,0), (0,1), ..., (2,1) ). Figure 8.1 (a) below depicts the 
resulting Cartesian grid representation for the processes. The index pair "i,j" 
represent row "i" and column "j". The corresponding (linear) rank number is enclosed 
in parentheses. 
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0,0 
(0) 

0,1 
(1) 

1,0 
(2) 

1,1 
(3) 

2,0 
(4) 

2,1 
(5) 

 

Figure 8.1 (a). Cartesian Grid 

With processes renamed in a 2D grid topology, we are able to assign or distribute 
work, or distinguish among the processes by their grid topology rather than by their 
linear process ranks. Additionally, we have imposed periodicity along the first 
dimension ( periods(0)=.true. ), which means that any reference beyond the first or 
last entry of any column will be wrapped around cyclically. For example, row index i 
= -1, due to periodicity, corresponds to i = 2. Similarly, i = -2 maps onto i = 1. 
Likewise, i = 3 is the same as i = 0. No periodicity is imposed on the second 
dimension ( periods(1)=.false. ). Any reference to the column index outside of its 
defined range (in this case 0 to 1) will result in a negative process rank (equal to 
MPI_PROC_NULL which is -1), which signifies that it is out of range.  

Similarly, if periodicity was defined only for the column index (i.e., 
periods(0)=.false.; periods(1)=.true.), each row would wrap around itself. Each of 
the above two 2D cases may be viewed graphically as a cylinder; the periodic 
dimension forms the circumferential surface while the nonperiodic dimension runs 
parallel to the cylindrical axis. If both dimensions are periodic, the grid resembles a 
torus. The effects of periodic columns and periodic rows are depicted in Figures 8.1 
(b) and (c), respectively. The tan-colored cells indicate cyclic boundary condition in 
effect.  

 -1,0 (4) -1,1 (5)  

0,-1(-1) 0,0 (0) 0,1 (1) 0,2(-1)  

1,-1(-1) 1,0 ( 2) 1,1 ( 3) 1,2 (-1) 

2,-1(-1) 2,0 (4) 2,1 (5) 2,2 (-1) 

 3,0 (0) 3,1 (1)  

 

Figure 8.1 (b). periods(0)=.true.;periods(1)=.false. 
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  -1,0 (-1) -1,1 (-1)   

0,-1 (1) 0, 0 (0) 0, 1 (1) 0, 2 (0) 

1,-1 (3) 1, 0 (2) 1, 1 (3) 1, 2 (2) 

2,-1 (5) 2, 0 (4) 2, 1 (5) 2, 2 (4) 

  3,0 (-1) 3,1 (-1)   

 

Figure 8.1 (c). periods(0)=.false.;periods(1)=.true. 

Finally, note that while the processes are arranged logically as a cartesian topology, 
the processors corresponding to these processes may in fact be scattered physically - 
even within a shared-memory machine. If reorder

is set to ".true." in Fortran (or "1" in C), MPI may reorder the process ranks in the 
new communicator (for potential gain in performance due to, say, the physical 
proximities of the processes assigned). If reorder

is ".false." (or "0" in C), the process rank in the new communicator is identical to its 
rank in the old communicator.  

While having the processes laid out in the Cartesian topology help you write code 
that's conceivably more readable, many MPI routines recognize only rank number 
and hence knowing the relationship between ranks and Cartesian coordinates (as 
shown in the figures above) is the key to exploit the topology for computational 
expediency. In the following sections, we will discuss two subroutines that provide 
this information. They are  

! MPI_CART_COORDS 
! MPI_CART_RANK 

Note:  

! MPI_CART_CREATE is a collective communication function (see Chapter 6 - 
Collective Communications). It must be called by all processes in the group. 
Like other collective communication routines, MPI_CART_CREATE uses 
blocking communication. However, it is not required to be synchronized 
among processes in the group and hence is implementation dependent.  

! If the total size of the Cartesian grid is smaller than available processes, 
those processes not included in the new communicator will return 
MPI_COMM_NULL.  
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! If the total size of the Cartesian grid is larger than available processes, the 
call results in error.  

 
8.1.2. MPI_CART_COORDS  

MPI_CART_COORDS 

The MPI_CART_COORDS routine returns the corresponding Cartesian coordinates of 
a (linear) rank in a Cartesian communicator.  

C: 

int MPI_Cart_coords( MPI_Comm comm, int rank, int maxdims, int
*coords )

Fortran: 

MPI_CART_COORDS( COMM, RANK, MAXDIMS, COORDS, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

comm  MPI_Comm  INTEGER  Input  Communicator handle  

rank  int  INTEGER  Input  Calling process rank  

maxdims  int  INTEGER  Input  Number of dimensions in cartesian 
topology  

coords  int *  INTEGER  Output  Corresponding cartesian coordinates 
of rank  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

MPI_Cart_create(old_comm, ndims, dim_size,
periods, reorder, &new_comm); /* creates communicator */

if(Iam == root) { /* only want to do this on one process */
for (rank=0; rank‹p; rank++) {

MPI_Cart_coords(new_comm, rank, coords);
printf("%d, %d\n ",rank, coords);

}
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}

Fortran Example: 

call MPI_Cart_create(old_comm,ndims,dim_size,
& periods,reorder,new_comm,ierr) ! creates communicator

if(Iam .eq. root) then !! only want to do this on one process
do rank=0,p-1

call MPI_Cart_coords(new_comm, rank, coords, ierr)
write(*,*)rank, coords

enddo
endif

In the above example, a Cartesian communicator is created first. Repeated 
applications of MPI_CART_COORDS for all process ranks (input) produce the 
mapping table, shown in Figure 8.2, of process ranks and their corresponding 
Cartesian coordinates (output).  

0,0 
(0) 

0,1 
(1) 

1,0 
(2) 

1,1 
(3) 

2,0 
(4) 

2,1 
(5) 

 

Figure 8.2. Cartesian Grid 

Note:  

! This routine is the reciprocal of MPI_CART_RANK.  
! Querying for coordinates of ranks in new_comm is not robust; querying for an 

out-of-range rank results in error.  

 
8.1.3. MPI_CART_RANK  

MPI_CART_RANK 

The MPI_CART_RANK routine returns the corresponding process rank of the 
Cartesian coordinates of a Cartesian communicator.  

C: 
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int MPI_Cart_rank( MPI_Comm comm, int *coords, int *rank )

Fortran: 

MPI_CART_RANK( COMM, COORDS, RANK, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

comm  MPI_Comm  INTEGER  Input  Cartesian communicator handle  

coords  int *  INTEGER  Input  Array of size ndims specifying 
Cartesian coordinates  

rank  int *  INTEGER  Output  Process rank of process specified by 
its Cartesian coordinates, coords  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag. 

C Example: 

MPI_Cart_create(old_comm, ndims, dim_size,
periods, reorder, &new_comm);

if(Iam == root) { /* only want to do this on one process */
for (i=0; i‹nv; i++) {

for (j=0; j‹mv; j++) {
coords[0] = i;
coords[1] = j;
MPI_Cart_rank(new_comm, coords, &rank);
printf("%d, %d, %d\n",coords[0],coords[1],rank);

}
}

}

Fortran Example: 

call MPI_Cart_create(old_comm,ndims,dim_size,
& periods,reorder,new_comm,ierr)

if(Iam .eq. root) then !! only want to do this on one process
do i=0,nv-1

do j=0,mv-1
coords(0) = i
coords(1) = j
call MPI_Cart_rank(new_comm,coords,rank,ierr)
write(*,*)coords,rank

enddo
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enddo
endif

Once a Cartesian communicator has been established, repeated applications of 
MPI_CART_RANK for all possible values of the cartesian coordinates produce a 
correlation table of the Cartesian coordinates and their corresponding process ranks.  

Shown in Figure 8.3 below is the resulting Cartesian topology (grid) where the index 
pair "i,j" represent row "i" and column "j". The number in parentheses represents the 
rank number associated with the Cartesian coordinates.  

0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 
 

Figure 8.3. Cartesian Grid 

Note:  

! This routine is the reciprocal of MPI_CART_COORDS.  
! Querying for rank number of out-of-range coordinates along the dimension in 

which periodicity is not enabled is not safe (i.e., results in error).  

 
8.1.4. MPI_CART_SUB  

MPI_CART_SUB 

The MPI_CART_SUB routine creates new communicators for subgrids of up to (N-1) 
dimensions from an N-dimensional Cartesian grid.  

Often, after we have created a Cartesian grid, we wish to further group elements of 
this grid into subgrids of lower dimensions. Typical operations requiring subgrids 
include reduction operations such as the computation of row sums, column 
extremums. For instance, the subgrids of a 2D Cartesian grid are 1D grids of the 
individual rows or columns. Similarly, for a 3D Cartesian grid, the subgrids can either 
be 2D or 1D.  

C: 

int MPI_Cart_sub( MPI_Comm old_comm, int *belongs, MPI_Comm
*new_comm )

Fortran: 
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MPI_CART_SUB( OLD_COMM, BELONGS, NEW_COMM, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

old_comm  MPI_Comm  INTEGER  Input  Cartesian communicator handle  

belongs  int *  INTEGER  Input  
Array of size ndims specifying 
whether a dimension belongs to 
new_comm  

new_comm  MPI_Comm 
* INTEGER  Output  Cartesian communicator handle  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

For a 2D Cartesian grid, create subgrids of rows and columns. Create Cartesian 
topology for processes. 

/* Create 2D Cartesian topology for processes */
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims,

period, reorder, &comm2D);
MPI_Comm_rank(comm2D, &id2D);
MPI_Cart_coords(comm2D, id2D, ndim, coords2D);

/* Create 1D row subgrids */
belongs[0] = 0;
belongs[1] = 1; ! this dimension belongs to subgrid
MPI_Cart_sub(comm2D, belongs, &commrow);

/* Create 1D column subgrids */
belongs[0] = 1; /* this dimension belongs to subgrid */
belongs[1] = 0;
MPI_Cart_sub(comm2D, belongs, &commcol);

Fortran Example: 

For a 2D Cartesian grid, create subgrids of rows and columns. Create Cartesian 
topology for processes. 

!Create 2D Cartesian topology for processes
call MPI_Cart_create(MPI_COMM_WORLD, ndim, dims,

& period, reorder, comm2D, ierr)
call MPI_Comm_rank(comm2D, id2D, ierr)
call MPI_Cart_coords(comm2D, id2D, ndim, coords2D, ierr)

!Create 1D row subgrids
belongs(0) = .false.
belongs(1) = .true. ! this dimension belongs to subgrid
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call MPI_Cart_sub(comm2D, belongs, commrow, ierr)
!Create 1D column subgrids

belongs(0) = .true. ! this dimension belongs to subgrid
belongs(1) = .false.
call MPI_Cart_sub(comm2D, belongs, commcol, ierr)

Shown in Figure 8.4 (a) below is a 3-by-2 Cartesian topology. Figure 8.4 (b) shows 
the resulting row subgrids, while Figure 8.4 (c) shows the corresponding column 
subgrids. In black, the first row of numbers in each cell lists the 2D Cartesian 
coordinate index pair "i,j" and the associated rank number. On the second row, and 
in green, are shown the 1D subgrid Cartesian coordinates and the subgrid rank 
number (in parentheses). Their order is counted relative to their respective subgrid 
communicator groups.  

0,0(0)) 0,1(1)  

1,0(2)) 1,1(3) 

2,0(4)  2,1(5)  

 

0,0(0) 
0(0) 

0,1(1) 
1(1) 

1,0(2) 
0(0) 

1,1(3) 
1(1) 

2,0(4) 
0(0) 

2,1(5) 
1(1) 

 

0,0(0) 
0(0) 

0,1(1) 
0(0) 

1,0(2) 
1(1) 

1,1(3) 
1(1) 

2,0(4) 
2(2) 

2,1(5) 
2(2) 

 

Figure 8.4 (a). 2D 
Cartesian Grid 

Figure 8.4 (b). 3 Row 
Subgrids 

Figure 8.4 (c). 2 Column 
Subgrids 

Here is a Fortran example demonstrating the column subgrid.  

Note:  

! MPI_CART_SUB is a collective routine. It must be called by all processes in 
old_comm.  

! MPI_CART_SUB-generated subgrid communicators are derived from Cartesian 
grid created with MPI_CART_CREATE.  

! Full length of each dimension of the original Cartesian grid is used in the 
subgrids.  

! Each subgrid has a corresponding communicator. It inherits properties of the 
parent Cartesian grid; it remains a Cartesian grid.  

! It returns the communicator to which the calling process belongs.  
! There is a comparable MPI_COMM_SPLIT to perform similar function.  
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! MPI_CARTDIM_GET and MPI_CART_GET can be used to acquire structural 
information of a grid (such as dimension, size, periodicity).  

 
8.1.5. MPI_CARTDIM_GET  

MPI_CARTDIM_GET 

The MPI_CARTDIM_GET routine determines the number of dimensions of a subgrid 
communicator.  

On occasions, a subgrid communicator may be created in one routine and 
subsequently used in another routine. If the dimension of the subgrid is not 
available, it can be determined by MPI_CARTDIM_GET.  

C: 

int MPI_Cartdim_get( MPI_Comm comm, int* ndims )

Fortran: 

MPI_CARTDIM_GET( COMM, NDIMS, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

comm  MPI_Comm  INTEGER  Input  Cartesian communicator handle  

ndims  int *  INTEGER  Output  Number of dimensions  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

/* create column subgrids */
belongs[0] = 1;
belongs[1] = 0;
MPI_Cart_sub(grid_comm, belongs, &col_comm);

/* queries number of dimensions of cartesan grid */
MPI_Cartdim_get(col_comm, &ndims);

Fortran Example: 
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!**create column subgrids
belongs(0) = .true.
belongs(1) = .false.
call MPI_Cart_sub(grid_comm, belongs, col_comm, ierr)

!**queries number of dimensions of cartesian grid
call MPI_Cartdim_get(col_comm, ndims, ierr)

On occasions, detailed information about a grid may not be available, as in the case 
where a communicator is created in one routine and is used in another. In such a 
situation, MPI_CARTDIM_GET may be used to find the dimension of the grid 
associated with the communicator. Armed with this value, additional information may 
be obtained by calling MPI_CART_GET, which is discussed in the next section.  

 
8.1.6. MPI_CART_GET  

MPI_CART_GET 

The MPI_CART_GET routine retrieves properties such as periodicity and size of a 
subgrid.  

On occasions, a subgrid communicator may be created in one routine and 
subsequently used in another routine. If only the communicator is available in the 
latter, this routine, along with MPI_CARTDIM_GET, may be used to determine the 
size and other pertinent information about the subgrid.  

C: 

int MPI_Cart_get( MPI_Comm subgrid_comm, int ndims, int *dims, int
*periods, int *coords )

Fortran: 

MPI_CART_GET( SUBGRID_COMM, NDIMS, DIMS, PERIOD, COORDS, IERR )

Variable 
Name C Type Fortran 

Type  In/Out  Description  

subgrid_comm  MPI_Comm  INTEGER  Input  Communicator handle  

ndims  int  INTEGER  Input  Number of dimensions  

dims  int *  INTEGER  Output  Array of size ndims providing length 
in each dimension  

periods  int *  LOGICAL  Output  Array of size ndims specifying 
periodicity status of each dimension  
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coords  int *  INTEGER  Output  
Array of size ndims providing 
Cartesian coordinates of calling 
process  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

/* create Cartesian topology for processes */
dims[0] = nrow;
dims[1] = mcol;
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims,

period, reorder, &grid_comm);
MPI_Comm_rank(grid_comm, &me);
MPI_Cart_coords(grid_comm, me, ndim, coords);

/* create row subgrids */
belongs[0] = 1;
belongs[1] = 0;
MPI_Cart_sub(grid_comm, remain, &row_comm);

/* Retrieve subgrid dimensions and other info */
MPI_Cartdim_get(row_comm, &mdims);
MPI_Cart_get(row_comm, mdims, dims, period,

row_coords);

Fortran Example: 

create Cartesian topology for processes
dims(1) = nrow
dims(2) = mcol
call MPI_Cart_create(MPI_COMM_WORLD, ndim, dims,

& period, reorder, grid_comm, ierr)
call MPI_Comm_rank(grid_comm, me, ierr)
call MPI_Cart_coords(grid_comm, me, ndim, coords, ierr)

create row subgrids
belongs(0) = 1
belongs(1) = 0
call MPI_Cart_sub(grid_comm, remain, row_comm, ierr)

c**Retrieve subgrid dimensions and other info
call MPI_Cartdim_get(row_comm, mdims, ierr)
call MPI_Cart_get(row_comm, mdims, dims, period,

& row_coords, ierr)

Shown in Figure 8.5 below is a 3-by-2 Cartesian topology (grid) where the index pair 
"i,j" represents row "i" and column "j". The number in parentheses represents the 
rank number associated with the Cartesian grid.  
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0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 

 

Figure 8.5. Cartesian Grid 

This example demonstrated the use of MPI_CART_GET to retrieve information on a 
subgrid communicator. Often, MPI_CARTDIM_GET needs to be called first since 
ndims, the dimensions of the subgrid, is needed as input to MPI_CART_GET.  

 
8.1.7. MPI_CART_SHIFT  

MPI_CART_SHIFT 

The MPI_CART_SHIFT routine finds the resulting source and destination ranks, given 
a shift direction and amount.  

C: 

int MPI_Cart_shift( MPI_Comm comm, int direction, int displ, int
*source, int *dest )

Fortran: 

MPI_CART_SHIFT( COMM, DIRECTION, DISPL, SOURCE, DEST, IERR )

Loosely speaking, MPI_CART_SHIFT is used to find two "nearby" neighbors of the 
calling process along a specific direction of an N-dimensional Cartesian topology. This 
direction is specified by the input argument, direction, to MPI_CART_SHIFT. The two 
neighbors are called "source" and "destination" ranks, and the proximity of these two 
neighbors to the calling process is determined by the input parameter displ. If displ 
= 1, the neighbors are the two adjoining processes along the specified direction and 
the source is the process with the lower rank number, while the destination rank is 
the process with the higher rank. On the other hand, if displ = -1, the reverse is 
true. A simple code fragment and a complete sample code are shown below to 
demonstrate the usage. A more practical example of an application is given in 
Section 8.2.2 - Iterative Solvers. 
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Variable 
Name C Type Fortran 

Type  In/Out  Description  

comm  MPI_Comm  INTEGER  Input  Communicator handle  

direction  int  INTEGER  Input  The dimension along which shift is to 
be in effect  

displ  int  INTEGER  Input  Amount and sense of shift (<0; >0; 
or 0)  

source  int *  INTEGER  Output  The source of shift (a rank number)  

dest  int *  INTEGER  Output  The destination of shift (a rank 
number)  

ierr  See (*)  INTEGER  Output  Error flag  

* For C, the function returns an int error flag.  

C Example: 

/* create Cartesian topology for processes */
dims[0] = nrow; /* number of rows */
dims[1] = mcol; /* number of columns */
period[0] = 1; /* cyclic in this direction */
period[1] = 0; /* no cyclic in this direction */
MPI_Cart_create(MPI_COMM_WORLD, ndim, dims, period, reorder,

&comm2D);
MPI_Comm_rank(comm2D, &me);
MPI_Cart_coords(comm2D, me, ndim, coords);

index = 0; /* shift along the 1st index (out of 2) */
displ = 1; /* shift by 1 */
MPI_Cart_shift(comm2D, index, displ, &source, &dest1);

Fortran Example: 

!**create Cartesian topology for processes
dims(1) = nrow ! number of rows
dims(2) = mcol ! number of columns
period(0) = .true. ! cyclic in this direction
period(1) = .false. ! no cyclic in this direction
call MPI_Cart_create(MPI_COMM_WORLD, ndim, dims,

& period, reorder, comm2D, ierr)
call MPI_Comm_rank(comm2D, me, ierr)
call MPI_Cart_coords(comm2D, me, ndim, coords, ierr)
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direction = 0 ! shift along the 1st index (0 or 1)
displ = 1 ! shift by 1

call MPI_Cart_shift(comm2D, direction, displ, source, dest, ierr)

In the above example, we demonstrate the application of MPI_CART_SHIFT to obtain 
the source and destination rank numbers of the calling process, me, resulting from 
shifting it along the first direction of the 2D Cartesian grid by one.  

Shown in Figure 8.6 below is a 3x2 Cartesian topology (grid) where the index pair 
"i,j" represent row "i" and column "j". The number in parentheses represents the 
rank number associated with the Cartesian coordinates.  

0,0 (0) 0,1 (1) 

1,0 (2) 1,1 (3) 

2,0 (4) 2,1 (5) 

 

Figure 8.6. Cartesian Grid 

With the input as specified above and 2 as the calling process, the source and 
destination rank would be 0 and 4, respectively, as a result of the shift. Similarly, if 
the calling process were 1, the source rank would be 5 and destination rank would be 
3. The source rank of 5 is the consequence of period(0) = .true. More examples are 
included in the sample code.  

Note:  

! Direction, the Cartesian grid dimension index, has range (0, 1, ..., ndim-1). 
For a 2D grid, the two choices for direction are 0 and 1.  

! MPI_CART_SHIFT is a query function. No action results from its call.  
! A negative returned value (MPI_UNDEFINED) of source or destination signifies 

the respective value is out of bound. It also implies that there is no periodicity 
along that direction.  

! If periodic condition is enabled along the shift direction, an out of bound does 
not result. (See sample code).  

 
8.2. Practical Applications  
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Practical Applications of Virtual Topologies 

The practical applications of virtual topologies listed below are discussed in the 
following sections. 

! Matrix Transposition  
! Iterative Solvers  

 
8.2.1. Matrix Transposition  

Matrix Transposition 

This section demonstrates the use of virtual topologies by way of a matrix 
transposition. The matrix algebra for a matrix transposition is demonstrated in the 
following example.  

Consider a 3 x 3 matrix A. This matrix is blocked into sub-matrices A11, A12, A21, and 
A22 as follows: 

 

(1) 

where 

;  

;  

(2) 

Next, let B represent the transpose of A. 

 

 

 

(3) 
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According to Equation (3) above, the element Bij is the blocked submatrix . For 
instance, 

  

 

(4) 

The parallel algorithm is  

1. Select p and q such that the total number of processes, nprocs = p x q.  
2. Partition the n x m matrix into a (blocked) p x q matrix whose elements are 

themselves matrices of size (n/p) x (m/q).  
3. Perform a transpose on each of these sub-matrices. These are performed 

serially because the entire sub-matrix resides locally on a process. No inter-
process communication is required.  

4. Formally, the p x q matrix needs to be transposed to obtain the final result. 
However, in reality this step is often not necessary. If you need to access the 
element (or sub-matrix) "p,q" of the transposed matrix, all you need to do is 
access the element "q,p", which has already been transposed locally. 
Depending on what comes next in the calculation, unnecessary message 
passing may be avoided.  

As an example (see Figure 8.8), a 9 x 4 matrix with 6 processes is defined. Next, 
that matrix is mapped into a 3 x 2 virtual Cartesian grid, i.e., p=3, q=2. 
Coincidentally, each element of this Cartesian grid is, in turn, a 3 x 2 matrix.  

i,j (p)  
aij  

For the physical grid, each square box represents one entry of the 
matrix. The pair of indices, "i,j", on the first row gives the global 
Cartesian coordinates, while "(p)" is the process associated with the 
virtual grid allocated by calling MPI_CART_CREATE or 
MPI_COMM_SPLIT. On the second row, aij, is the value of the matrix 
element.  

The 3 x 2 virtual grid is depicted on the right of Figure 8.8. Each box in this grid 
represents one process and contains one 3 x 2 submatrix. Finally, another 
communicator is created for the transposed virtual grid with dimensions of 2 x 3. For 
instance, the element at "1,0" of the transposed virtual grid stores the value sent by 
the element at "0,1" of the virtual grid.  
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Physical Grid          
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Figure 8.8. An example of the use of virtual topologies by way of a matrix 
transposition using a 9 x 4 matrix with 6 processes. 

Sample code is provided for this example.  
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8.2.2. Iterative Solvers (F90)  

Example : Iterative Solvers 

In this example, we demonstrate an application of the Cartesian topology by way of 
a simple elliptic (Laplace) equation.  

Fundamentals: The Laplace equation, along with prescribed boundary conditions, 
are introduced. Finite Difference Method is then applied to discretize the PDE to form 
an algebraic system of equations. 
 
Jacobi Scheme: A very simple iterative method, known as the Jacobi Scheme, is 
described. A single-process computer code is shown. This program is written in 
Fortran 90 for its concise but clear array representations. (Parallelism and other 
improvements will be added to this code as you progress through the example.) 
 
Parallel Jacobi Scheme: A parallel algorithm for this problem is discussed. Simple 
MPI routines, without the invocations of Cartesian topology, are inserted into the 
basic, single-process code to form the parallel code. 
 
SOR Scheme: The Jacobi scheme, while simple and hence desirable for 
demonstration purposes, is impractical for "real" applications because of its slow 
convergence. Enhancements to the basic technique are introduced leading to the 
Successive Over Relaxation (SOR) scheme. 
 
Parallel SOR Scheme: With the introduction of a "red-black" algorithm, the parallel 
algorithm used for Jacobi is employed to parallelize the SOR scheme. 
 
Scalability: The performance of the code for a number of processes is shown to 
demonstrate its scalability. 

Download a zipped file containing the F90 Jacobi and SOR codes (in f77, f90 and 
C), along with make files and a Matlab m-file for plotting the solution.  

 
8.2.2.1. Fundamentals  

Fundamentals 

First, some basics. 

 
(1) 

where u=u(x,y) is an unknown scalar potential subjected to the following boundary 
conditions: 
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(2) 

Discretize the equation numerically with centered difference results in the algebraic 
equation  

 
(3) 

where n and n+1 denote the current and the next time step, respectively, while 
represents 

(4) 

 
  

and for simplicity, we take . 

Note that the analytical solution for this boundary value problem can easily be 
verified to be 

 (5) 

and is shown below in a contour plot with x pointing from left to right and y going 
from bottom to top. 
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Figure 8.9. Contour plot showing the analytical solution for the boundary 
value problem. 

  

 
8.2.2.2. Jacobi Scheme  

Jacobi Scheme 

While numerical techniques abound to solve PDEs such as the Laplace equation, we 
will focus on the use of two iterative methods. These methods will be shown to be 
readily parallelizable, as well as lending themselves to the opportunity to apply MPI 
Cartesian topology introduced above. The simplest of iterative techniques is the 
Jacobi scheme, which may be stated as follows:  

1. Make initial guess for ui,j at all interior points (i,j) for all i=1:m and j=1:m.  
2. Use Equation 3 to compute un+1

i,j at all interior points (i,j).  
3. Stop if the prescribed convergence threshold is reached, otherwise continue 

on to the next step.  
4. un

i,j = un+1
i,j.  

5. Go to Step 2.  
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Single process Fortran 90 code for the Jacobi Scheme  

Single process Fortran 77 code for the Jacobi Scheme  

Single process C code for the Jacobi Scheme  

 
8.2.2.3. Parallel Jacobi Scheme  

Parallel Algorithm for the Jacobi Scheme 

First, to enable parallelism, the work must be divided among the individual 
processes; this is known commonly as domain decomposition. Because the 
governing equation is two-dimensional, typically the choice is to use a 1D or 2D 
decomposition. This section will focus on a 1D decomposition, deferring the 
discussion of a 2D decomposition for later. Assuming that p processes will be used, 
the computational domain is split into p horizontal strips, each assigned to one 
process, along the north-south or y-direction. This choice is made primarily to 
facilitate simpler boundary condition (code) implementations.  

For the obvious reason of better load-balancing, we will divide the amount of work, 
in this case proportional to the grid size, evenly among the processes (m x m / p). 
For convenience, m' = m/p is defined as the number of cells in the y-direction for 
each process. Next, Equation 3 is restated for a process k as follows:  

  

 

(6) 

where v denotes the local solution corresponding to the process k with m'=m/p. 

The figure below depicts the grid of a typical process k, as well as part of the 
adjoining grids of k-1, k+1.  
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Figure 8.10. The grid of a typical process k as well as part of adjoining grids of k-1, 
k+1 

! The red cells represent process k's grid cells for which the solution u is 
sought through Equation 6.  

! The blue cells on the top row represent cells belonging to the first row (j = 1) 
of cells of process k+1. The blue cells on the bottom row represent the last 
row (j = m') of cells of process k-1. It is important to note that the u at the 
blue cells of k belong to adjoining processes (k-1 and k+1) and hence must be 
"imported" via MPI message passing routines. Similarly, process k's first and 
last rows of cells must be "exported" to adjoining processes for the same 
reason.  

! For i = 1 and i = m, Equation 6 again requires an extra cell beyond these two 
locations. These cells contain the prescribed boundary conditions (u(0,y) = 
u(1,y) = 0) and are colored green to distinguish them from the red and blue 
cells. Note that no message passing operations are needed for these green 
cells as they are fixed boundary conditions and are known a priori.  

! From the standpoint of process k, the blue and green cells may be considered 
as additional "boundary" cells around it. As a result, the range of the strip 
becomes (0:m+1,0:m'+1). Physical boundary conditions are imposed on its 
green cells, while u is imported to its blue "boundary" cells from two adjoining 
processes. With the boundary conditions in place, Equation 6 can be applied 
to all of its interior points. Concurrently, all other processes proceed following 
the same procedure. It is interesting to note that the grid layout for a typical 
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process k is completely analogous to that of the original undivided grid. 
Whereas the orginal problem has fixed boundary conditions, the problem for a 
process k is subjected to variable boundary conditions.  

! These boundary conditions can be stated mathematically as  

 

(7)

! Note that the interior points of u and v are related by the relationship 

 
(8) 

Jacobi Parallel Implementation. Note that Cartesian topology is not employed in 
this implementation but will be used later in the parallel SOR example with the 
purpose of showing alternative ways to solve this type of problems.  

 
8.2.2.4. SOR Scheme  

Successive Over Relaxation (SOR) 

While the Jacobi iteration scheme is very simple and easily parallelizable, its slow 
convergent rate renders it impractical for any "real world" applications. One way to 
speed up the convergent rate would be to "over predict" the new solution by linear 
extrapolation. This leads to the Successive Over Relaxation (SOR) scheme shown 
below:  

1. Make initial guess for ui,j at all interior points (i,j).  
2. Define a scalar wn ( 0 < wn < 2).  
3. Apply Equation 3 to all interior points (i,j) and call it u'i,j.  
4. un+1

i,j = wn u'i,j + (1 - wn) un
i,j. 

5. Stop if the prescribed convergence threshold is reached, otherwise continue 
to the next step.  
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6. un
i,j = un+1

i,j.  
7. Go to Step 2.  

Note that in the above setting wn = 1 recovers the Jacobi scheme while wn< 1 
underrelaxes the solution. Ideally, the choice of wn should provide the optimal rate of 
convergence and is not restricted to a fixed constant. As a matter of fact, an 
effective choice of wn, known as the Chebyshev acceleration, is defined as  

 

For further detail, see Chapter 19.5 - Relaxation Methods for Boundary Value 
Problems in the online book Numerical Recipes.  

We can further speed up the rate of convergence by using u at time level n+1 for 
any or all terms on the right hand side of Equation 6 as soon as they become 
available. This is the essence of the Gauss-Seidel scheme. A conceptually similar red-
black scheme will be used here. This scheme is best understood visually by painting 
the interior cells alternately in red and black to yield a checkerboard-like pattern as 
shown in Figure 8.11. 
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Figure 8.11. Checkerboard-like pattern depicting a parallel SOR red-black scheme.  

By using this red- black group identification strategy and applying the five-point 
finite-difference stencil to a point (i,j) located at a red cell, it is immediately apparent 
that the solution at the red cell depends only on its four immediate black neighbors 
to the north, east, west, and south (by virtue of Equation 6). On the contrary, a 
point (i,j) located at a black cell depends only on its north, east, west, and south red 
neighbors. In other words, the finite-difference stencil in Equation 6 effects an 
uncoupling of the solution at interior cells such that the solution at the red cells 
depends only on the solution at the black cells and vice versa. In a typical iteration, 
if we first perform an update on all red (i,j) cells, then when we perform the 
remaining update on black (i,j) cells, the red cells that have just been updated could 
be used. Otherwise, everything that we described about the Jacobi scheme applies 
equally well here; i.e., the green cells represent the physical boundary conditions 
while the solutions from the first and last rows of the grid of each process are 
deposited into the blue cells of respective process grids to be used as the remaining 
boundary conditions.  

Single process Fortran 90 code for the Successive Over Relaxation Scheme  

Single process Fortran 77 code for the Successive Over Relaxation Scheme  
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Single process C code for the Successive Over Relaxation Scheme  

 
8.2.2.5. Parallel SOR Scheme  

A Parallel SOR Red-black Scheme 

The parallel aspect of the Jacobi scheme can be used verbatim for the SOR scheme. 
Figure 8.11, as introduced in the previous section on the single-thread SOR scheme, 
may be used to represent the layout for a typical thread "k" of the SOR scheme, i.e.,  

Figure 8.11. Checkerboard-like pattern depicting a parallel SOR red-black scheme.  

As before, the green boxes denote boundary cells that are prescribed while the blue 
boxes represent boundary cells whose values are updated at each iteration by way of 
message passing.  

The parallel SOR red-black scheme has been implemented in F90, F77 and C, 
respectively: 

Parallel F90 SOR code.  
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Parallel Fortran 77 SOR code.  

Parallel C SOR code.  

 
8.2.2.6. Scalability Plot of SOR  

Scalability Plot of SOR 

The plot in Figure 8.12 below shows the scalability of the MPI implementation of the 
Laplace equation using SOR on an SGI Origin 2000 shared-memory multiprocessor.  

 

Figure 8.12. Scalability plot using SOR on an SGI Origin 2000. 
 

8.3. Self Test  

Virtual Topologies Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
8.4. Course Problem  
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Chapter 8 Course Problem 

This chapter discussed the creation and use of virtual topologies. Virtual topologies 
are a powerful feature of MPI because they allow the programmer to create a new 
communicator that fits the manner in which they have "visualized" how the 
processors have been connected all along. Once the new communicator is made, 
utility routines simplify the message passing required among the processors.  

For this chapter, the exercise will solve the same problem as described in Chapter 7, 
but in a different manner. You will create and use a "ring" topology to perform the 
parallel search and the average the data obtained from neighbor processors.  

Description 

The new problem still implements a parallel search of an integer array. The program 
should find all occurrences of a certain integer which will be called the target. When 
a processor of a certain rank finds a target location, it should then calculate the 
average of  

! The target value  
! An element from the processor with rank one higher (the "right" processor). 

The right processor should send the first element from its local array.  
! An element from the processor with rank one less (the "left" processor). The 

left processor should send the first element from its local array.  

For example, if processor 1 finds the target at index 33 in its local array, it should 
get from processors 0 (left) and 2 (right) the first element of their local arrays. 
These three numbers should then be averaged.  

In terms of right and left neighbors, you should visualize the four processors 
connected in a ring. That is, the left neighbor for P0 should be P3, and the right 
neighbor for P3 should be P0.  

Both the target location and the average should be written to an output file. As 
usual, the program should read both the target value and all the array elements 
from an input file.  

Exercise 

Modify your code from Chapter 7 to solve this latest version of the Course Problem 
using a virtual topology. First, create the topology (which should be called 
MPI_RING) in which the four processors are connected in a ring. Then, use the utility 
routines to determine which neighbors a given processor has. 

Solution 



135 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

When you have finished writing the code for this exercise, view our version of the 
Topology Code.  

 
9. Parallel I/O  

Parallel I/O - Objectives 
The material covered to this point discussed how multiple processes can share data 
stored in separate memory spaces (See Section 1.1 - Parallel Architectures). This is 
achieved by sending messages between processes.  

Parallel I/O covers the issue of how data are distributed among I/O devices. While 
the memory subsystem can be different from machine to machine, the logical 
methods of accessing memory are generally common, i.e., the same model should 
apply from machine to machine. Parallel I/O is complicated in that both the physical 
and logical configurations often differ from machine to machine.  

MPI-2 is the first version of MPI to include routines for handling parallel I/O. As such, 
much of the material in this chapter is applicable only if the system you are working 
on has an implementation of MPI that includes parallel I/O. Many MPI 
implementations are starting to include bits and pieces of MPI-2, but at the time 
these notes were written there is no known "full" implementation of MPI-2.  

This section proposes to introduce you to the general concepts of parallel I/O, with a 
focus on MPI-2 file I/O.  

The material is organized to meet the following three goals:  

1. Learn fundamental concepts that define parallel I/O 
2. Understand how parallel I/O is different from traditional, serial I/O 
3. Gain experience with the basic MPI-2 I/O function calls 

The topics to be covered are 

! Introduction 
! Applications 
! Characteristics of Serial I/O 
! Characteristics of Parallel I/O 
! Introduction to MPI-2 Parallel I/O 
! MPI-2 File Structure 
! Initializing MPI-2 File I/O 
! Defining A View 
! Data Access - Reading Data 
! Data Access - Writing Data 
! Closing MPI-2 File I/O 
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9.1. Introduction  

Introduction 

A traditional programming style teaches that computer programs can be broken 
down by function into three main sections:  

1. input 
2. computation 
3. output 

For science applications, much of what has been learned about MPI in this course 
addresses the computation phase. With parallel systems allowing larger 
computational models, these applications often produce large amounts of output.  

Serial I/O on a parallel machine can have large time penalties for many reasons.  

! Larger datasets generated from parallel applications have a serial bottleneck 
if I/O is only done on one node 

! Many MPP machines are built from large numbers of slower processors, which 
increase the time penalty as the serial I/O gets funneled through a single, 
slower processor 

! Some parallel datasets are too large to be sent back to one node for file I/O 

Decomposing the computation phase while leaving the I/O channeled through one 
processor to one file can cause the time required for I/O to be of the same order or 
exceed the time required for parallel computation.  

There are also non-science applications in which input and output are the dominant 
processes and significant performance improvement can be obtained with parallel 
I/O.  

 
9.2. Applications  

Applications 

The ability to parallelize I/O can offer significant performance improvements. Several 
applications are given here to show examples.  

Large Computational Grids/Meshes 

Many new applications are utilizing finer resolution meshes and grids. Computed 
properties at each node and/or element often need to be written to storage for data 
analysis at a later time. These large computational grid/meshes 
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! Increase I/O requirements because of the larger number of data points to be 
saved. 

! Increase I/O time because data is being funneled through slower commodity 
processors in MPP. 

User-Level Checkpointing 

User-level checkpointing is contained within the program itself. Like OS 
checkpointing, user-level checkpointing saves a program's state for a later restart. 
Below are some reasons you should incorporate checkpointing at the user level in 
your code.  

! Even with massively parallel systems, runtime for large models is often 
measured in days. 

! As the number of processors increases, there is a higher probability that one 
of the nodes your job is running on will suffer a hardware failure. 

! Not all operating systems support OS level checkpointing. 
! Larger parallel models require more I/O to save the state of a program. 

Out-Of-Core Solvers 

In an out-of-core problem the entire amount of data does not fit in the local main 
memory of a processor and must be stored on disk.  

! Needed only if the OS does not support virtual memory. 

Data Mining 

Applications that have minimal computations, but many references to online 
databases are excellent candidates for parallel I/O.  

! A phone book directory could be broken down to have chunks of the database 
distributed on each node. 

 
9.3. Characteristics of Serial I/O  

Characteristics of Serial I/O 

To help understand what parallel I/O entails, it is beneficial to review some of the 
defining features of serial I/O and then compare the differences.  

Physical Structure 

! Generally there is one processor connected to one physical disk  
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Logical Structure 

! Traditional view of I/O from high level languages 
! Single file pointer 
! Access to files can be sequential or random 
! File parameters (read/write only, etc.) 
! Data can be written raw or formatted, binary or ascii 
! Built-in function calls 

o Fortran (READ, WRITE)
o C (fprintf, fscanf) 

 
9.4. Characteristics of Parallel I/O  

Characteristics of Parallel I/O 

Parallel I/O falls into one of two main categories:  

1. Physical decomposition  
2. Logical decomposition  

Physical Decomposition 

! Multiple processors writing data to multiple disks 
! Local disk at each node 

o All I/O is local - best performance 
o Each process opens a unique file on the local system 
o Implemented with standard C or Fortran I/O calls 
o Excellent method for storing temporary data that do not need to be 

kept after the program executes 
o Data from multiple processes can be combined at the end of the run, if 

desired 
o Beowulf clusters support this type of parallel I/O 
o IBM SPs (in some configurations) support this type of I/O 

! I/O nodes 
o Certain number of nodes are reserved for performing I/O 
o I/O performance will increase with the numbers of nodes allocated to 

I/O 
o Can be implemented with standard C/Fortran I/O calls or parallel I/O 

library calls 
o IBM SP (in some configurations) support this type of I/O 

Logical Decomposition 

! Multiple processors write data to a single disk 
! Data written to a single file 
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o Direct-access I/O in high level language terminology 
o Data from various processes will be interleaved in the file 
o MPI-2 implements its parallel I/O in this method 

! Data written to multiple files 
o Data from various processes are written to a file appended with the 

process rank 
o At the end of the run the files are combined into one data file 

Parallel machines can have I/O systems that fall in either category. It is possible to 
have a hybrid system that has characteristics from both categories, but these will not 
be discussed in this chapter.  

 
9.5. Introduction to MPI-2 Parallel I/O  

Introduction to MPI-2 Parallel I/O 

One of the significant changes from MPI-1 to MPI-2 was the addition of parallel I/O.  
This is covered in chapter 9 of the MPI-2 standards document.  This document, along 
with other useful information, can be found at the MPI Forum web page.  

Before MPI-2, some parallel I/O could be achieved without MPI calls:  

Parallel File System 

! UNIX-like read/write and logical partitioning of files 
! Example: PIOFS (IBM) 

If each node had a local disk and data was written using standard I/O routines 

! All files independent 
! Examples: IBM SP thick nodes, workstation clusters 

MPI-2 parallel I/O provides a high-level interface supporting partitioning of file data 
among processes and a collective interface supporting complete transfers of global 
data structures between process memories and files. Reading and writing data is now 
handled much like sending messages to the disk and receiving messages from 
storage. The standard I/O routines in Fortran, C, and C++ are not used.  

Several key features of MPI-2 parallel I/O are  

! MPI-2 allows you to perform parallel I/O similar to the way messages are sent 
from one process to another 

! Not all implementations at present implement the full MPI-2 I/O 
! Physical decomposition with a certain number of I/O nodes, as discussed on 

the previous slide, can be configured 
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! MPI-2 supports both blocking and nonblocking I/O (See Section 2.9 - Blocking 
and Nonblocking Communication) 

! MPI-2 supports both collective and non-collective I/O (See Section 2.10 - 
Collective Communications) 

This section will consider the case in which one node performs the I/O to one file. 
MPI-2 also offers several features for improving parallel I/O efficiency:  

! Support for asynchronous I/O 
! Strided accesses 
! Control over physical file layout on storage devices (disks) 

 
9.6. MPI-2 File Structure  

MPI-2 File Structure 

Parallel I/O in MPI-2 defines how multiple processes access and modify data in a 
shared file. This requires you to think about how data will be partitioned within this 
file.  

MPI-2 partitions data within files similar to the way that derived datatypes define 
data partitions within memory (see Chapter 5 - Derived Datatypes). While simple 
datatypes can be used with MPI parallel I/O routines, the concepts of blocksize, 
memory striding, and offsets are fundamental to understanding the file structure. 
Also, performance benefits have been seen when parallel I/O is performed with 
derived datatypes as compared to parallel I/O performed with basic datatypes.  

MPI-2 I/O has some of the following characteristics:  

! MPI datatypes are written and read 
! Concepts to those used to define derived datatypes are used to define how 

data is partitioned in the file 
! Sequential as well as random access to files is supported 
! Each process has its own "view" of the file 

A view defines the current set of data visible and accessible by a process from an 
open file. Each process has its own view of the file, defined by three quantities:  

1. a displacement - describing where in the file to start 
2. an etype - the type of data that is to be written or read 
3. a filetype - pattern of how the data is partitioned in the file 

The pattern described by a filetype is repeated, beginning at the displacement, to 
define the view. The pattern of repetition is defined to be the same pattern that 
MPI_TYPE_CONTIGUOUS would produce if it were passed the filetype and an 
arbitrarily large count. Views can be changed by the user during program execution. 
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The default view is a linear byte stream (displacement is zero, etype and filetype 
equal to MPI_BYTE).  

 
9.6.1. Displacement  

Displacement 

To better understand the file view, each component will be explained in more detail. 
The first of the parameters that define a view is displacement.  

A file displacement is an absolute byte position relative to the beginning of a file. The 
displacement defines the location where a view begins.  

Any data before the position indicated by the displacement will not be accessible 
from that process.  

 
9.6.2. Elementary Datatype  

Elementary Datatype - etype 

The second parameter that defines a view is etype.  

An etype (elementary datatype) is the unit of data access and positioning. It can be 
any MPI predefined or derived datatype. Derived etypes can be constructed using 
any of the MPI datatype constructor routines, provided all resulting typemap 
displacements are nonnegative and monotonically nondecreasing. Data access is 
performed in etype units, reading or writing whole data items of type etype. Offsets 
are expressed as a count of etypes; file pointers point to the beginning of etypes.  

An etype 

! Is the unit of data access and positioning 
! Can be any MPI predefined datatype or derived datatype 
! Is similar to the datatype argument in the MPI_SEND call 

 

Figure 9.1. Elementary Datatype 
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9.6.3. Filetype  

Filetype 

With displacement and etype defined, the last item needed to define a view is a 
filetype. 

A filetype is the basis for partitioning a file and defines a template for accessing the 
file. A filetype is either a single etype or a derived MPI datatype constructed from 
multiple instances of the same etype. In addition, the extent of any hole in the 
filetype must be a multiple of the etype's extent. The displacements in the typemap 
of the filetype are not required to be distinct, but they must be nonnegative and 
monotonically nondecreasing.  

A filetype  

! Is the basis for partitioning a file among processes 
! Defines a template for accessing the file 
! Is a defined sequence of etypes, which can have data or be considered blank 
! Is similar to a vector derived datatype (See Section 5.7 - Other Ways of 

Defining MPI Derived Types) 
! A filetype is repeated to fill the view of the file 

 
Figure 9.2. Filetype 

 
When a parallel write or read is executed, some number of "filetypes" are passed.  

 
9.6.4. View  

View 

Each process has its own view of the shared file that defines what data it can 
access.  

! A view defines the current set of data, visible and accessible, from an open 
file 

! Each process has its own view of the file 
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! A view can be changed by the user during program execution 
! Starting at the position defined by the displacement, the filetype is repeated 

to form the view 
! A default view is defined with the following values: 

o displacement = 0 
o etype = MPI_BYTE 
o filetype = MPI_BYTE 

 
Figure 9.3. Displacement 

 
 

9.6.5. Combining Views of Multiple Processes  

Combining Views of Multiple Processes 

A group of processes can use complementary views to achieve a global data 
distribution. 

 

Figure 9.4. Combining Views of Multiple Processes 

 

 
9.7. Initializing MPI-2 File I/O  

Initializing MPI-2 File I/O 
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File I/O is initialized in MPI-2 with the MPI_FILE_OPEN call. This is a collective 
routine, and all processes within the specified communicator must provide filenames 
that reference the same file.  

C:  

int MPI_File_open(MPI_Comm comm, char *filename, int amode,
MPI_Info info, MPI_File *fh)

Fortran:  

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)
CHARACTER*(*) FILENAME
INTEGER COMM, AMODE, INFO, FH, IERROR

The arguments for this routine are  

COMM process communicator
FILENAME name of the file to open
AMODE file access mode
INFO information handle that varies with implementation
FH new file handle by which the file can be accessed

The file access mode is set from the list of following options:  

! MPI_MODE_RONLY - read only 
! MPI_MODE_RDWR - reading and writing 
! MPI_MODE_WRONLY - write only 
! MPI_MODE_CREATE - create the file if it does not exist 
! MPI_MODE_EXCL - error if creating file that already exists 
! MPI_MODE_DELETE_ON_CLOSE - delete file on close 
! MPI_MODE_UNIQUE_OPEN - file will not be concurrently opened elsewhere 
! MPI_MODE_SEQUENTIAL - file will only be accessed sequentially 
! MPI_MODE_APPEND - set initial position of all file pointers to end of file 

These are all MPI-2 integer constants.  AMODE is a bitwise "OR" of all of the above 
features desired.  

! C/C++ - you can use bitwise OR (|) to combine the constants desired 
! Fortran 90 - you can use the bitwise IOR intrinsic 
! Fortran 77 - you can use the bitwise IOR on system that support it, but it is 

not portable 

 
9.8. Defining a View  

Defining a View 
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We learned earlier that each process has its own view of a shared file. The view is 
defined by three parameters: displacement, etype, and filetype. 

The MPI_FILE_SET_VIEW routine is used to define a view.  

C: 

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype
etype, MPI_Datatype filetype, char *datarep, MPI_Info info)

Fortran: 

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)
INTEGER FH, ETYPE, FILETYPE, INFO, IERROR
CHARACTER*(*) DATAREP
INTEGER(KIND=MPI_OFFSET_KIND) DISP

The arguments for this routine are 

FH file handle specified in MPI_FILE_OPEN
DISP absolute displacement from the beginning of the file
ETYPE unit of data access and positioning
FILETYPE sequence of etypes, which is repeated to define the

view of a file
DATAREP data representation (see explanation below)
INFO information handle that varies with implementation

MPI_FILE and MPI_OFFSET are MPI types defined in the header file.  

The DATAREP argument refers to the representation of the data within the file. This 
is important when considering the interoperability of a file, which is the ability to 
read the information previously written to a file. MPI guarantees full interoperability 
within a single MPI environment, and supports increased interoperability outside that 
environment through the external data representation.  

While custom data representations can be defined, by default DATAREP can be one 
of the following values:  

Native 

! Data in this representation are stored in a file exactly as it is in memory 
! Advantages: data precision and I/O performance are not lost in type 

conversions with a purely homogeneous environment 
! Disadvantages: the loss of transparent interoperability within a 

heterogeneous MPI environment 
! MPI implementation dependent  

Internal 



146 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

! Data in this representation can be used for I/O operations in a homogeneous 
or heterogeneous environment 

! The implementation will perform type conversions if necessary 
! The implementation is free to store data in any format of its choice, with the 

restriction that it will maintain constant extents for all predefined datatypes in 
any one file 

! MPI implementation dependent  

External32 

! This data representation states that read and write operations convert all data 
from and to the "external32" representation 

! All processes reading the file in a heterogeneous MPI environment will 
automatically have the data converted to their respective native 
representations 

! The file can be exported from one MPI environment and imported into any 
other MPI environment with the guarantee that the second environment will 
be able to read all the data in the file 

! Disadvantage: data precision and I/O performance may be lost in data type 
conversions 

! external32 is common to all MPI implementations 

MPI_FILE_SET_VIEW is a collective call and must be called by all processes within 
the communicator.  

 
9.9. Data Access - Reading Data  

Data Access - Reading Data 

There are three aspects to data access - positioning, synchronism, and coordination. 

Positioning  

! explicit offset 
! individual file pointers 
! shared file pointers  

Synchronism 

! blocking communication 
! nonblocking communication 
! split collective  

Coordination 

! collective communication 
! non-collective I/O 
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As an introduction to parallel data access, this section will look only at the blocking, 
non-collective calls. The subset of read routines that will be examined are  

Positioning Blocking, Non-
collective Routine 

Explicit offsets MPI_FILE_READ_AT 

Individual file 
pointer 

MPI_FILE_READ 

Shared file 
pointer 

MPI_FILE_READ_SHARED 

 
9.9.1. MPI_FILE_READ_AT  

MPI_FILE_READ_AT 

MPI_FILE_READ_AT reads a file beginning at the position specified by an explicit 
offset. 

Explicit offset operations perform data access at the file position given directly as an 
argument.  No file pointer is used or updated. 

C: 

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

The arguments for this routine are:  

FH file handle
OFFSET file offset
BUF initial address of buffer
COUNT number of elements in buffer
DATATYPE datatype of each buffer element (handle)
STATUS status object (Status)

 
9.9.2. MPI_FILE_READ  
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MPI_FILE_READ 

MPI_FILE_READ reads a file using individual file pointers.  

C: 

int MPI_File_read(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

The arguments for this routine are: 

FH file handle
BUF initial address of buffer
COUNT number of elements in buffer
DATATYPE datatype of each buffer element (handle)
STATUS status object (Status)

 
9.9.3. MPI_FILE_READ_SHARED  

MPI_FILE_READ_SHARED 

MPI_FILE_READ_SHARED reads a file using a shared file pointer.  

C: 

int MPI_File_read_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

The arguments for this routine are: 

FH file handle
BUF initial address of buffer
COUNT number of elements in buffer
DATATYPE datatype of each buffer element (handle)
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STATUS status object (status)
 

9.10. Data Access - Writing Data  

Data Access - Writing Data 

As an introduction to parallel data access, this section will look only at the blocking, 
non-collective I/O calls. The subset of write routines that will be examined are  

Positioning Blocking, Non-
collective Routine 

Explicit offsets MPI_FILE_WRITE_AT 

Individual file 
pointer MPI_FILE_WRITE 

Shared file 
pointer MPI_FILE_WRITE_SHARED

 
9.10.1. MPI_FILE_WRITE_AT  

MPI_FILE_WRITE_AT 

MPI_FILE_WRITE_AT writes a file beginning at the position specified by an offset. 

Explicit offset operations perform data access at the file position given directly as an 
argument. No file pointer is used or updated. 

C: 

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, void *buf, int
count, MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

The arguments for this routine are: 

FH file handle
OFFSET file offset
BUF initial address of buffer
COUNT number of elements in buffer
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DATATYPE datatype of each buffer element (handle)
STATUS status object (status)

 
9.10.2. MPI_FILE_WRITE  

MPI_FILE_WRITE 

MPI_FILE_WRITE writes a file using individual file pointers. 

C: 

int MPI_File_write(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

The arguments for this routine are: 

FH file handle
OFFSET file offset
BUF initial address of buffer
COUNT number of elements in buffer
DATATYPE datatype of each buffer element (handle)
STATUS status object (status)

 
9.10.3. MPI_FILE_WRITE_SHARED  

MPI_FILE_WRITE_SHARED 

MPI_FILE_WRITE_SHARED writes a file using a shared file pointer. 

C: 

int MPI_File_write_shared(MPI_File fh, void *buf, int count,
MPI_Datatype datatype, MPI_Status *status)

Fortran: 

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)
INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR
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The arguments for this routine are: 

FH file handle
BUF initial address of buffer
COUNT number of elements in buffer
DATATYPE datatype of each buffer element (handle)
STATUS status object (status)

 
9.11. Closing MPI-2 File I/O  

Closing MPI-2 File I/O 

MPI_FILE_CLOSE is a collective routine.  It first synchronizes the state of the file 
associated with the file handle and then closes the file. 

C: 

int MPI_File_close(MPI_File *fh)

Fortran: 

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

The user is responsible for ensuring that all outstanding nonblocking requests by a 
process have completed before that process calls MPI_FILE_CLOSE. 

If the file is deleted on close due to the AMODE setting, and there are other 
processes currently accessing the file, the status of the file and the behavior of 
future accesses by these processes are implementation dependent. 

 
9.12. MPI-2 File I/O - Example Problem 1, Individual File Pointers  

MPI-2 File I/O - Example Problem 1, Individual File 
Pointers 

In serial I/O operations, a single file pointer points to the next location in the file that 
will be read from or written to, depending on the I/O operation being performed. 
With parallel I/O, two types of file pointers were discussed: individual and shared. 
Access to data using an individual file pointer means that each MPI process has its 
own pointer to the file that is updated only when that process performs an I/O 
operation. Access using a shared file pointer means that each MPI process uses a 
single file pointer that is updated when any of the processes performs an I/O 
operation.  
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A third method, explicit offset, was discussed in Section 9.9.1. - MPI_FILE_READ_AT. 
With this method, there is no file pointer and you give the exact location in the file 
from which to read or write a data value.  

Below are two sample codes.  Both use individual file pointers and one writes out 
data to a file using MPI parallel I/O calls, while the second reads in these values and 
outputs them to the screen.  

Fortran: 

PROGRAM WRITE_INDIVIDUAL_POINTER

INCLUDE 'MPIF.H'

INTEGER COMM_SIZE,COMM_RANK,STATUS(MPI_STATUS_SIZE)
INTEGER AMODE,INFO,FH,IERROR,ETYPE,FILETYPE,SIZE_INT
INTEGER (KIND=MPI_OFFSET_KIND) DISP

CALL MPI_INIT(IERROR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,COMM_SIZE,IERROR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,COMM_RANK,IERROR)

AMODE=IOR(MPI_MODE_CREATE,MPI_MODE_WRONLY)
INFO=0

CALL MPI_TYPE_EXTENT(MPI_INTEGER,SIZE_INT,IERROR)

CALL MPI_FILE_OPEN(MPI_COMM_WORLD,'DATA.DAT',AMODE,INFO,FH,IERROR)

DISP=COMM_RANK*SIZE_INT
ETYPE=MPI_INTEGER
FILETYPE=MPI_INTEGER

CALL MPI_FILE_SET_VIEW(FH,DISP,ETYPE,FILETYPE,'NATIVE',
& INFO,IERROR)

CALL MPI_FILE_WRITE(FH,COMM_RANK,1,MPI_INTEGER,STATUS,IERROR)

WRITE(6,*) 'HELLO FROM RANK',COMM_RANK,'I WROTE:',COMM_RANK,'.'

CALL MPI_FILE_CLOSE(FH,IERROR)
CALL MPI_FINALIZE(IERROR)

STOP
END

Some important items to note:  

! With individual file pointers, you must call MPI_FILE_SET_VIEW. 
! Recall that the displacement argument in MPI_FILE_SET_VIEW wants a 

displacement in bytes. Because you want to write out integer values, a call is 
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made to MPI_TYPE_EXTENT to get the size, in bytes, of the MPI_INTEGER 
datatype. 

! Each individual file pointer will initially be set to the position specified by 
DISP. In this sample problem, only one data value is written. If multiple data 
values were written, each file pointer would be updated only when that 
process performed an I/O operation. 

Example output from this code might look like  

mpirun -np 8 write.ex
Hello from rank 4 I wrote: 4 .
Hello from rank 3 I wrote: 3 .
Hello from rank 5 I wrote: 5 .
Hello from rank 1 I wrote: 1 .
Hello from rank 0 I wrote: 0 .
Hello from rank 2 I wrote: 2 .
Hello from rank 6 I wrote: 6 .
Hello from rank 7 I wrote: 7 .

Looking at the contents of the file does not provide any insight, so we need to create 
a second program to read in the data and show that everything was written 
correctly.  

C Code Example  

Fortran: 

PROGRAM READ_INDIVIDUAL_POINTER
INCLUDE 'MPIF.H'
INTEGER COMM_SIZE,COMM_RANK,STATUS(MPI_STATUS_SIZE)
INTEGER AMODE,INFO,FH,IERROR,ETYPE,FILETYPE,SIZE_INT
INTEGER (KIND=MPI_OFFSET_KIND) DISP

CALL MPI_INIT(IERROR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,COMM_SIZE,IERROR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,COMM_RANK,IERROR)

AMODE=MPI_MODE_RDONLY
INFO=0

CALL MPI_TYPE_EXTENT(MPI_INTEGER,SIZE_INT,IERROR)

CALL MPI_FILE_OPEN(MPI_COMM_WORLD,'DATA.DAT',AMODE,INFO,FH,IERROR)

DISP=COMM_RANK*SIZE_INT
ETYPE=MPI_INTEGER
FILETYPE=MPI_INTEGER

CALL MPI_FILE_SET_VIEW(FH,DISP,ETYPE,FILETYPE,'NATIVE',
& INFO,IERROR)

CALL MPI_FILE_READ(FH,ITEST,1,MPI_INTEGER,STATUS,IERROR)
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WRITE(6,*) 'HELLO FROM RANK',COMM_RANK,'I READ:',ITEST,'.'

CALL MPI_FILE_CLOSE(FH,IERROR)
CALL MPI_FINALIZE(IERROR)

STOP
END

Since in the first program each process set its pointer based on its rank, we can have 
each rank point to the same location. This should allow the process with rank 5 in 
this program to read in the value that was written by the process of the write 
program that had a rank of 5.  

Example output from this code might look like  

mpirun -np 8 read.ex
Hello from rank 6 I read: 6 .
Hello from rank 4 I read: 4 .
Hello from rank 0 I read: 0 .
Hello from rank 1 I read: 1 .
Hello from rank 2 I read: 2 .
Hello from rank 3 I read: 3 .
Hello from rank 5 I read: 5 .
Hello from rank 7 I read: 7 .

Notice that even though the processes performed their I/O in a different order than 
the write program, the correct values were read in because the displacement was 
calculated by the same formula in each program.  

C Code Example  

 
9.13. MPI-2 File I/O - Example Problem 2, Explicit Offset  

MPI-2 File I/O - Example Problem 2, Explicit Offset 

With individual file pointers, each process maintained its own file pointer that gets 
updated only when that process performed an I/O operation. Data access via a 
shared file pointer means that each process references a single file pointer that gets 
updated when any of the processes performs an I/O operation. 

Data do not need to be accessed by file pointers, however. Programs can specify at 
what location in a file to read or write a value. This is done through explicit offsets. 
Rather than create and define a file pointer and then have the MPI_READ or 
MPI_WRITE reference the file pointer for the location at which to actually place the 
data, no pointer is created and the MPI calls include an additional argument, which is 
the position from the start of the file to perform the given I/O operation. 



155 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

Below are two sample codes. Both use explicit offset. One writes out data to a file 
using MPI parallel I/O calls, while the second reads in these values and outputs them 
to the screen. 

Fortran: 

PROGRAM EXPLICIT_WRITE

INCLUDE 'MPIF.H'

INTEGER COMM_SIZE,COMM_RANK,STATUS(MPI_STATUS_SIZE)
INTEGER AMODE,INFO,FH,IERROR,SIZE_INT
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

CALL MPI_INIT(IERROR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,COMM_SIZE,IERROR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,COMM_RANK,IERROR)

AMODE=IOR(MPI_MODE_CREATE,MPI_MODE_WRONLY)
INFO=0

CALL MPI_TYPE_EXTENT(MPI_INTEGER,SIZE_INT,IERROR)

CALL MPI_FILE_OPEN(MPI_COMM_WORLD,'DATA.DAT',AMODE,INFO,FH,IERROR)

OFFSET=COMM_RANK*SIZE_INT

CALL MPI_FILE_WRITE_AT(FH,OFFSET,COMM_RANK,1,MPI_INTEGER,
& STATUS,IERROR)

WRITE(6,*) 'HELLO FROM RANK',COMM_RANK,'I WROTE:',COMM_RANK,'.'

CALL MPI_FILE_CLOSE(FH,IERROR)
CALL MPI_FINALIZE(IERROR)

STOP
END

Some important items to note  

! With explicit offsets, you do not define a file pointer with 
MPI_FILE_SET_VIEW. 

! Each write operation has the additional argument OFFSET, which is the offset 
from the start of file, in bytes, where the data will be written. 

Example output from this code might look like  

mpirun -np 8 write_explicit.ex
Hello from rank 2 I wrote: 2 .
Hello from rank 5 I wrote: 5 .
Hello from rank 4 I wrote: 4 .
Hello from rank 7 I wrote: 7 .
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Hello from rank 3 I wrote: 3 .
Hello from rank 1 I wrote: 1 .
Hello from rank 0 I wrote: 0 .
Hello from rank 6 I wrote: 6 .

Looking at the contents of the file does not provide any insight, so you need to 
create a second program to read in the data and show that everything was written 
correctly. 

C Code Example 

Fortran: 

PROGRAM EXPLICIT_READ
INCLUDE 'MPIF.H'

INTEGER COMM_SIZE,COMM_RANK,STATUS(MPI_STATUS_SIZE)
INTEGER AMODE,INFO,FH,IERROR,SIZE_INT
INTEGER (KIND=MPI_OFFSET_KIND) OFFSET

INTEGER STATUS(MPI_STATUS_SIZE)

CALL MPI_INIT(IERROR)
CALL MPI_COMM_SIZE(MPI_COMM_WORLD,COMM_SIZE,IERROR)
CALL MPI_COMM_RANK(MPI_COMM_WORLD,COMM_RANK,IERROR)

AMODE=MPI_MODE_RDONLY
INFO=0

CALL MPI_TYPE_EXTENT(MPI_INTEGER,SIZE_INT,IERROR)

CALL MPI_FILE_OPEN(MPI_COMM_WORLD,'DATA.DAT',AMODE,INFO,FH,IERROR)

OFFSET=COMM_RANK*SIZE_INT

CALL MPI_FILE_READ_AT(FH,OFFSET,ITEST,1,MPI_INTEGER,STATUS,IERROR)

WRITE(6,*) 'HELLO FROM RANK',COMM_RANK, 'I READ:',ITEST,'.'

CALL MPI_FILE_CLOSE(FH,IERROR)
CALL MPI_FINALIZE(IERROR)

STOP
END

Because each process in the first program wrote the data at a position based on its 
rank, we can have each rank point to the same location to read in the data. This 
should allow the process with rank 2 in this program to read in the value that was 
written by the process of the write program that had a rank of 2. 

Example output from this code might look like  
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mpirun NP 8 read_explicit.ex
Hello from rank 0 I read: 0 .
Hello from rank 3 I read: 3 .
Hello from rank 5 I read: 5 .
Hello from rank 6 I read: 6 .
Hello from rank 1 I read: 1 .
Hello from rank 4 I read: 4 .
Hello from rank 2 I read: 2 .
Hello from rank 7 I read: 7 .

Notice that even though the processes performed their I/O in a different order than 
the write program, the correct values were read in because the offset was calculated 
by the same formula in each program.  

C Code Example  

 
9.14. Self Test  

Parallel I/O Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
9.15. Course Problem  

Chapter 9 Course Problem 

This chapter discussed the advanced topic of parallel I/O where all the processors 
can perform input and output simultaneously to the same file. Since most parallel 
programs (and serial for that matter) perform some sort of I/O, the concepts and 
routines in this chapter can prove quite useful.  

Our Course Problem is not exempt from the need for parallel I/O. So far, the master 
(P0) has done all the input and output. Your task for this chapter will be to have all 
the processors perfom the output to the same binary data file. Since this task is 
formidable enough, the simpler version of the Course Problem found in Chapter 4 will 
be used.  

Description 

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
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to an output file. In addition, the program reads both the target value and all the 
array elements from an input file. 

Exercise  

Modify your code from Chapter 4 to implement the parallel writing of the target 
global indices to a binary file called "found.dat". The master should still read in the 
target and broadcast the value to the other processors. The master should still read 
in the entire array b and then scatter its contents to all the processors (including 
itself). But in this version of the course program, when a processor finds a target 
location it should write the global index directly to "found.dat" instead of sending it 
to the master for output as was done in the previous exercise. 

Solution 

When you have finished writing the code for this exercise, view our version of the 
Parallel I/O Code.  

 
10. Parallel Mathematical Libraries  

Parallel Mathematical Libraries  
This chapter is a change of pace. In the preceding chapters, you have learned useful 
MPI routines that will allow you to write your own MPI programs to accomplish 
mathematical and scientific tasks in parallel. In this chapter, you will learn about 
existing (and popular and free) mathematical libraries that will implement common 
linear algebra algorithms for you in parallel.  

You will not have to write your own MPI code to perform the parallel linear 
algebra tasks; you will instead call a subroutine.  

Besides the obvious ease in just using a library call, it also keeps you from 
"reinventing the wheel." You will see that these libraries are complete, well written, 
well optimized (both serially and from a parallel point of view), and designed around 
excellent parallel algorithms.  

The topics to be covered in this chapter are  

! Introduction  
! Serial and Parallel Mathematical Libraries  
! How to Use a ScaLAPACK Routine: Step-by-Step  
! Processor Grid Creation  
! ScaLAPACK Data Distribution  
! Case Study: Matrix-Vector Multiplication  
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10.1. Introduction to ScaLAPACK  

Features of the ScaLAPACK Library  

This section focuses on the ScaLAPACK parallel library. You will see in later sections 
that the ScaLAPACK library is in fact built upon and contains several other major 
libraries, offering users access to over a hundred mathematical routines that run in 
parallel.  

ScaLAPACK has become the de-facto standard parallel numerical library primarily 
because of its portability and design. ScaLAPACK has been successfully installed on a 
variety of massively parallel processing (MPP) platforms, including the Cray T3E, SGI 
Origin 2000, IBM SP2, Intel Paragon, networks of workstations, and the recently 
developed Beowolf Clusters. But more than this portability, the real reason for the 
wide acceptance of ScaLAPACK is that it contains an extensive set of parallel routines 
for common Linear Algebra calculations that perform well and are scalable. If the 
number of processors used by a ScaLAPACK routine increases, the wall clock time for 
the calculations decreases, which is the entire point of parallel processing. 
ScaLAPACK's scalablity can also be viewed in a different manner - if the size of the 
problem (array dimensions) increases, with the same number of processors the 
parallel efficiency remains constant.  

ScaLAPACK's success can also be attributed to the fact that it is built on the reliable, 
well-developed, LAPACK library which has been of use to programmers for decades. 
The LAPACK library contains serial linear algebra routines optimized for a variety of 
processors. In addition, ScaLAPACK includes two new libraries: PBLAS and PBLACS. 
As will be detailed later, PBLAS routines perform optimized, parallel, low-level linear 
algebra tasks. Users are insulated from the particular machine characteristics that 
the PBLAS routines use for optimization. PBLACS routines are responsible for 
communication between the processors, replacing the MPI coding you would 
otherwise have to do.  

The ScaLAPACK developers made a helpful decision when they developed the syntax 
of the actual ScaLAPACK calls. This "user-friendly" idea was to make the parallel 
version of a serial LAPACK routine have the same name but just prefaced by a 'P'. 
Also, the names and meaning of the ScaLAPACK routine's arguments were made as 
similar as possible to the corresponding LAPACK routine arguments.  

The final, and by far the most desirable, feature of ScaLAPACK is that by using its 
routines you do not have to write your own parallel processing code and do not 
have to develop or research a good parallel algorithm for performing a particular 
linear algebra task. (The latter is often a difficult process and is the subject of 
current research in CIS journals.) Strictly speaking, you need no knowledge of MPI 
or any other message-passing libraries. However, some message-passing experience 
is useful as background in understanding the PBLACS routines designed to send 
entire arrays (or subsections) from one processor to another.  

ScaLAPACK Documentation  
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All the information you need to know about ScaLAPACK and its libraries is available 
from the documentation in the Netlib Repository.  

The Netlib Repository contains not only the FREE source code of dozens of 
mathematical libraires but also documentation in many forms: subroutine 
descriptions, manuals, man pages, quick-reference cards, etc. The particular 
manuscripts that would be of use for this section are  

! ScaLAPACK User's Guide  
! Parallel Basic Linear Algebra Subprograms (PBLAS)  
! A User's Guide to the BLACS  

Finally, no introduction to Parallel Numerical Libraries would be complete without an 
acknowledgement to the computer scientists who developed the libraries and support 
materials of the Netlib Repository. The primary institutions involved are  

! University of Tennessee, Knoxville  
! Oak Ridge National Laboratory  
! University of California, Berkeley  

 
10.2. Serial and Parallel Mathematical Libraries  

Serial and Parallel Mathematical Libraries  

The Acronyms  

First off, let's define some acronyms:  

! BLAS:Basic Linear Algebra Subprograms  
! PBLAS:Parallel Basic Linear Algebra Subprograms  
! BLACS:Basic Linear Algebra Communication Subprograms  
! LAPACK:Linear Algebra PACKage  
! ScaLAPACK:Scalable Linear Algebra PACKage  

The Mathematical Library Hierarchy  
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Figure 10.1. The Mathematical Library Hierarchy 

In the above figure, the libraries lying below the "Local" keyword are serial libraries. 
Note that LAPACK contains and is built on BLAS. Each is vendor optimized and works 
only on single processor systems: vector supercomputers, workstations, or one 
processor of an MPP system. Typically, the optimization is performed through 
blocking algorithms designed to keep and reuse critical data in the lowest levels of 
the memory heirarchy: registers -> primary cache -> secondary cache -> local 
memory.  

The libraries lying above the "Global" keyword are the new parallel libraries. In an 
analogous way to the serial libraries, ScaLAPACK contains and is built on PBLAS. 
These are the libaries that will be discussed and used in this section because they 
are used on MPP systems to perform linear algebra calculations in parallel.  

The figure also shows that ScaLAPACK is built on BLACS and it must be because the 
BLACS routines transfer local data from one processor's memory to another. In 
reality, the BLACS routines are wrapper routines that call a lower-level message-
passing library. Typically this is MPI itself! (The figure above is a bit confusing at this 
point, because BLACS and MPI are parallel libraries. They are drawn in the lower 
section to illustrate that the parallel libraries are built on top of them).  

BLAS/PBLAS  

These libraries contain serial and parallel versions of basic linear algebra procedures. 
Each contains routines that fall into three levels:  
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Level 1: Vector-Vector Operations  

! Examples: swap, copy, addition, dot product, ...  

Level 2: Matrix-Vector Operations  

! Examples: multiply, rank-updates, outer-product, ...  

Level 3: Matrix-Matrix Operations  

! Examples: multiply, transpose, rank-updates, ...  

All these levels of routines are designed to work with a variety of matrix types such 
as general, symmetric, complex, Hermetian, and triangular matrices. Note that 
sparse matrices are not supported.  

LAPACK/ScaLAPACK  

These libraries contain routines for more sophisticated linear algebra calculations. 
There are three types of advanced problems these libraries solve:  

! Solution to a set of simultaneous linear equations  
! Eigenvalue/Eigenvector problems  
! Linear Least squares fitting  

As with the basic libraries, many matrix types are supported as well as various 
algorithms for factorizing the matrices involved. These factorizations include LU, 
Cholesky, QR, LQ, Orthogonal, etc.  

BLACS  

As mentioned previously, the BLACS routines are used primarily to transfer data 
between processors. Specifically, the BLACS routines include point-to-point 
communication, broadcast routines, and "combination" routines for doing "global" 
calculations - summation, maximum, and minimum - with data residing on different 
processors. An attractive feature of the BLACS communication routines is that they 
are array-based: the data that is transferred is always an entire array or subarray.  

The BLACS library also contains important routines for creating and examining the 
processor grid, which is expected and used by all PBLAS and ScaLAPACK routines. 
The processor grid is 2-D with its size and shape controlled by the user. A processor 
is identified not by its traditional MPI rank, but rather by its row and column number 
in the processor grid.  

As can be seen in the processor grid diagram below (Figure 10.2), the 8 processors 
used by the program have been arranged in a 2x4 grid. Contained within each 
element of the grid is the MPI rank for a processor. For example, a processor with 
rank 6 has grid coordinates (p,q)=(1,2). Notice that both the row and column 
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numbering begin with zero. For the example we have chosen to insert the processors 
"by-row". This grid was created by a call to a simple BLACS routine, which will be 
described in detail later.  

Figure 10.2. A grid created by 
a simple BLACS routine. 

   

 
10.3. How to Use a ScaLAPACK Routine: Step-by-Step  

How to Use a ScaLAPACK Routine: Step-by-Step 

This section may be the shortest, but in some sense it is the most important. If you 
perform each step correctly, your ScaLAPACK routine should work!  

ScaLAPACK Checklist  

1. Write a scaled-down program using the equivalent serial LAPACK routine  
o Recommended, not required  
o Run using only one processor  
o Good for familiarizing the user with proper routine name and 

arguments. Parallel routine names and arguments will be similiar.  
o Good for syntax and logical debugging  

2. Initialize the BLACS library for its use in the program  
3. Create and use the BLACS processor grid  
4. Distribute pieces of each global array over the processors in the grid  

o User does this by creating an array descriptor vector for each global 
array  

o Global array elements mapped in a 2-D blocked-cyclic manner onto 
the the processor grid  

5. Have each processor initialize its local array with the correct values of the 
pieces of the global array it owns.  

6. Call the ScaLAPACK routine!  
7. Confirm/use the output of the ScaLAPACK routine  
8. Release the processor grid and exit the BLACS library  
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10.4. Processor Grid Creation  

Processor Grid Creation  

BLACS Intialization Routines  

The two routines described in this section will initialize the BLACS library by 
establishing a context within which data will be transferred. This is step 2 of the 
checklist outlined in Section 10.3. The following convention will be used for all 
routines in this section: if an argument is underlined, a value for it is returned by the 
routine; all others are input to the routine. In addition, all routines are subroutines 
unless their syntax shows a return type.  

BLACS_PINFO(rank,nprocs)

! Primary purpose of calling this routine is to get the number of processors that 
the program will use (as specified on the command line when the program is 
run).  

! Argument rank contains the normal MPI rank (first introduced in Section 3 - 
MPI Program Structure) of the processor that called the routine.  

! Argument nprocs contains the total number of processors used.  

BLACS_GET(-1,0,icontxt)

! BLACS_GET is actually a general-purpose, utility routine that will retrieve 
values for a set of BLACS internal parameters.  

! With the arguments shown above, the BLACS_GET call will get the context 
(argument icontxt) for ScaLAPACK use. (Note: the first argument is ignored in 
this form of the call).  

! The context of a parallel data communication library uniquely identifies all the 
BLACS data transfers as being connected with a particular ScaLAPACK 
routine. No other message-passing routines in the program can interfere with 
the BLACS communication. Context is completely equivalent to the MPI 
Communicator value explained earlier in this course.  

BLACS Grid Routines  

The first of these two BLACS routines actually creates the processor grid to specs. 
The second is a tool routine that confirms the grid was created successfully. 
Together, the calls to these routines make up step 3 of our checklist.  

BLACS_GRIDINIT(icontxt,order,nprow,npcol)

! This routine creates the virtual processor grid according to values to which 
the arguments are set.  
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! icontxt= BLACS context for its message passing (first argument of almost 
every BLACS routine).  

! order= determines how the processor ranks are mapped to the grid. If this 
argument is 'R', the mapping is done by rows; if it is 'C', the mapping is done 
by column.  

! nprow= sets the number of rows in the processor grid.  
! npcol= sets the number of clolumns in the processor grid.  

For example, the grid shown in the diagram at the end of Section 10.2 was made 
with this call:  

CALL BLACS_GRIDINIT(icontxt,'R',2,4)

This sample processor grid would be appropriate for a program using 8(2x4) 
processors. You can experiment with the size and shape of the process grid created 
in order to maximize the performance of the program.  

BLACS_GRIDINFO(icontxt,nprow,npcol,myrow,mycol)

! The primary uses of this utility routine are to confirm the shape of the 
processor grid and, more importantly, for each processor to obtain its 
coordinates (myrow, mycol) in the processor grid. GET IN THE HABIT OF 
USING GRID COORDINATES TO IDENTIFY A PROCESSOR!  

! Notice that nprow and npcol are returned to make sure the grid shape is what 
was desired.  

! myrow = calling processor's row number in the processor grid.  
! mycol = calling processor's column number in the processor grid.  

 
10.5. ScaLAPACK Data Distribution  

ScaLAPACK Data Distribution  

Data Distribution Method  

ScaLAPACK uses a two-dimensional block-cyclic distribution technique to parse out 
global array elements onto the processor grid. The block-cyclic technique was chosen 
because it gives the best load balance and maximum data locality for most of the 
ScaLAPACK algorithms. (See the "ScaLAPACK User's Guide" for a detailed 
justification of this choice and a comparison with other distribution methods.)  

The 2-D block-cyclic distribution is accomplished by following these steps:  

1. Divide up the global array into blocks with mb rows and nb columns. From 
now on, think of the global array as composed only of these blocks.  
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2. Give out the first row of array blocks across the first row of the processor grid 
in order. If you run out of processor grid columns, cycle back to the first 
column.  

3. Repeat with the second row of array blocks, with the second row of the 
processor grid.  

4. Continue for the remaining rows of array blocks.  
5. If you run out of processor grid rows, cycle back to the first processor row 

and repeat.  

The diagram below illustrates a 2-D, block-cyclic distribution of a 9x9 global array 
with 2x2 array blocks over a 2x3 processor grid. (The colors represent the ranks of 
the 6 different processors.)  

Figure 10.3. A 2-D, block-cyclic distribution of a 9x9 global array with 2x2 array 
blocks over a 2x3 processor grid 

Notice that each processor has a different sized local array it has to fill with the 
correct global elements (Step 5 on the checklist). 

  Processor(0,0): local array dimensions 5x4  

  Processor(0,1): local array dimensions 5x3 

  Processor(0,2): local array dimensions 5x2 

  Processor(1,0): local array dimensions 4x4  

  Processor(1,1): local array dimensions 4x3 

  Processor(1,2): local array dimensions 4x2 

Array Descriptor Vector  
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The array descriptor vector contains the information by which each ScaLAPACK 
routine determines the distribution of global array elements into local arrays owned 
by each processor. Below, each of the 9 elements of this vector is described. Two 
conventions are used in this description. First, for a global array A, it is traditional to 
name the array descriptor vector DESCA. Second, "_A" is read as "of the distributed 
global array A". The symbolic names and definitions of the elements of DESCA are 
given in the following table.  

Symbolic Name Description 

DESCA(1)=dtype_A 
type of matrix being distributed (1 for dense, 
general matrix) 

DESCA(2)=icontxt BLACS context 

DESCA(3)=m_A number of rows in the global array A 

DESCA(4)=n_A number of columns in the global array A  

DESCA(5)=mb_A  number of rows in a block of A 

DESCA(6)=nb_A number of columns in a block of A  

DESCA(7)=rsrc_A 
processor grid row that has the first block of A 
(typically 0)  

DESCA(8)=csrc_A 
processor grid column that has the first block of 
A (typically 0)  

DESCA(9)=lld 
number of rows of the local array that stores 
the blocks of A (local leading ddimension). This 
element is processor- dependent 

So for processor (0,2) in the preceding example, DESCA=(1,icontxt,9,9,2,2,0,0,5).  

DESCINIT Utility Routine  

Thankfully, you never have to explicitly fill up each element of DESCA. ScaLAPACK 
has provided a tool routine DESCINIT that will use its arguments to create the array 
descriptor vector DESCA for you. Once DESCINIT has been called (by each 
processor), step 4 of the checklist is completed.  

DESCINIT(desc, m, n, mb, nb, rsrc, csrc, icontxt, lld, info)

! desc = the "filled-in" descriptor vector returned by the routine.  
! arguments 2-9 = values for elements 2-9 of the descriptor vector (different 

order).  
! info = status value returned to indicate if DESCINIT worked correctly. If info 

= 0, the routine call was sucessful. If info = -i, the ith argument had an illegal 
value.  
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10.6. Case Study  

Case Study: Matrix-Vector Multiplication 

Problem Description 

In the following two Fortran programs, the Matrix-Vector multiplication Axb will be 
performed first serially (step 1 of the checklist) and then in parallel using a 
ScaLAPACK routine. A is a 16x16 matrix and b is a 16 element vector. Both A and b 
have been filled with random integers in the range -50:50. Below is a diagram 
showing the operands.  

 

Figure 10.4. Operands for the Matrix-Vector multiplication example 

Serial Solution  

To perform the multiplication A x b on a single processor, you can use the tried-and-
true LAPACK routine SGEMV. This is actually a BLAS level 2 routine, and a coding 
exists in the name itself. The 'S' indicates single-precision, the 'GE' indicates a 
general matrix, and the 'MV' indicates that the routine performs a matrix-vector 
multiplication. More specfically, SGEMV performs the operation  

y=alpha*Ab+beta*y
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where the y vector is the result of the operation and alpha and beta are constants 
chosen by the user. The syntax for the SGEMV call is  

SGEMV(trans,m,n,alpha,A,lda,b,incb,beta,y,incy)

where the arguments are  

trans ='N', use normal matrix A in the calculations; ='Y', use
transpose of A

m number of rows in A
n number of columns of A
alpha scaling factor (usually 1.0)
A address of the beginning of matrix A [Can put for this

argument A or A(1,1)]
lda total number of rows specified when A was declared (leading

dimension)
b address of the beginning of vector b [Can put for this

argument b of b(1)]
incb stride for determining which elements of b to use (typically

1)
beta scaling/initialization factor (typically 0.0)
y on exit from routine, vector y contains the result of the

multiplication
incy stride for determining which values of y are meaningful

(typically 1)

Serial MV Program 

Below is the serial program that performs the matrix-vector multiplication Ab. For 
those unfamiliar, the declaration statements at the beginning of the code are in 
Fortran 90 syntax. In addition, the elements of A and the elements of b are stored in 
the text files "a.data" and "b.data" respectively. Notice how simple this program is: 
first the variables are declared, the operands are initialized, SGEMV is called, and the 
result is output.  

program serial_mv
real, dimension(16,16) :: a
real, dimension(16) :: b,y

open(unit=12,file="a.data")
read(12,*) a
open(unit=13,file="b.data")
read(13,*) b

call sgemv('n',16,16,1.0,a,16,b,1,0.0,y,1)

print *,"product is ",y

end program serial_mv
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The output from this program is 

product is 4341., 3467., -5259., 1716., -5821., 750., -6561., -
237., 5149., -9212., -2387., 0., -1815., 4601. 3890., 836.

[Author's comment: It amazes me that from this large set of random numbers being 
multiplied and added that one element of the solution vector is exactly 0!]  

Parallel Solution  

Now we can put in all the proceeding information in this section and write a program 
that follows the checklist for using a ScaLAPACK routine. First off, the name of the 
parallel ScaLAPACK is already known: just put a 'P' in front of the serial routine. 
Thus, we will use the PSGEMV ScaLAPACK routine.  

The first decision is what type of processor grid we want. The parallel code will run 
on 4 processors, which will be arranged on a 2x2 processor grid that looks like the 
one in Figure 10.5 below. Notice that the color coding is by rank of the processor: 0 
is red, 1 is green, etc. 

 

Figure 10.5. A 2x2 processor grid. 

The second decision is to pick the blocking desired for the matrix A and the vector b. 
For the matrix A we choose 8x8 blocks of array elements; for the vector b, we 
choose 8x1 blocks of array elements. If the reader follows the steps involved in the 
2-D block-cycle distribution method for the processor grid shown, the distribution of 
array elements ends up as shown in Figure 10.6, where the matrix A is on the left 
side of the diagram and the vector b is on the right. This type of blocking - especially 
of A - is quite common because it gives equal amounts of array elements to the local 
memories of each of the four processors. 
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Figure 10.6. Distribution of array elements.  

The third piece of knowledge we need is the detailed syntax of the PSGEMV routine, 
so it can be used correctly. The syntax that is shown below is that which is used 
when we to multiply the entire array A with the entire array b. Both SGEMV and 
PSGEMV have the capability of working with only parts of A and b, but that is the 
subject for another time.  

PSGEMV(trans,m,n,alpha,la,1,1,desca,lb,1,1,descb,1,beta,ly,1,1,descy,1)

where the arguments are  

trans ='N', use normal matrix A in the calculations; ='Y', use
transpose of A

m number of rows in the global array A
n number of columns in the global array A
alpha scaling factor (usually 1.0)
la local array containing the some of the elements of the

distrbuted,
global array A (shape and contents of la change from

processor to processor)
desca array descriptor vector for the global array A (used by the

routine to know what elements of A are on what processor)
lb local array containing some blocks of of the distributed,

global vectror b
descb array descriptor vector for the global vector b
beta scaling/initialization factor (typcially 0.0)
ly local array containing some elements of the resultant

product vector y
descy array descriptor vector for the global, resultant vector y

Because each of the 4 processors must call PSGEMV, the entire global arrays end up 
being given block by block to the routine.  
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Parallel MV program  

The parallel program consists of different parts that perform certain of the steps 
outlined in the "ScaLAPACK routine checklist" given in Section 10.3. Shown below is 
the first part of the code in which variables are initialized, the BLACS library is 
initialized (Step 2), and the processor grid is created (Step 3). 

program parallel_mv
! global arrays
real, dimension(16,16) :: a
real, dimension(16) :: b,y

! variables for BLACS initialization and processor grid creation
integer iam,nprocs,ictxt,nprow,npcol,myrow,mycol

!variables needed for distributing global arrays across the proc grid
integer desca(9), descb(9),descy(9),m,n,mb,nb,rsrc,csrc
integer llda,lldb,info

! local arrays
real, dimension(8,8) :: la
real, dimension(8) :: lb,ly

!Initializing the BLACS library (STEP 2)
call blacs_pinfo (iam,nprocs)
call blacs_get(-1,0,ictxt)

!Creating and using the processor grid (STEP 3)
nprow=2; npcol=2
call blacs_gridinit(ictxt,'r',nprow,npcol)
call blacs_gridinfo(ictxt,nprow,npcol,myrow,mycol)

In this next part of the code DESCINIT is used to create the array descriptors (Step 
4). 

! Making the array descriptor vectors (STEP 4)
m=16; n=16
mb=8; nb=8
rsrc=0; csrc=0
llda=8
call descinit(desca,m,n,mb,nb,rsrc,csrc,ictxt,llda,info)
n=1; nb=1; lldb=8
call descinit(descb,m,n,mb,nb,rsrc,csrc,ictxt,lldb,info)
call descinit(descy,m,n,mb,nb,rsrc,csrc,ictxt,lldb,info)

! Filling the global arrays A,b
open(unit=12,file="a.data")
read(12,*) a
open(unit=13,file="b.data")
read(13,*) b
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In this third part of the parallel code, each processor (identified by its processor grid 
coordinates fills up its own local array with the correct quadrant of A and the correct 
half of b (STEP 5).  

! Each processor fills in its local arrays with correct elements
! from the global arrays (STEP 5)
if(myrow.eq.0.and.mycol.eq.0) then

do i_loc=1,8
do j_loc=1,8

la(i_loc,j_loc)=a(i_loc,j_loc)
end do
lb(i_loc)=b(i_loc)

end do
end if

if(myrow.eq.1.and.mycol.eq.0) then
do i_loc=1,8

do j_loc=1,8
la(i_loc,j_loc)=a(i_loc+llda,j_loc)

end do
lb(i_loc)=b(i_loc+lldb)

end do
end if

if(myrow.eq.0.and.mycol.eq.1) then
do i_loc=1,8

do j_loc=1,8
la(i_loc,j_loc)=a(i_loc,j_loc+llda)

end do
end do

end if

if(myrow.eq.1.and.mycol.eq.1) then
do i_loc=1,8

do j_loc=1,8
la(i_loc,j_loc)=a(i_loc+llda,j_loc+llda)

end do
end do

end if

Finally, PSGEMV is ready to be called and is (STEP 6). This last part of the code then 
prints out the the resultant vector y, which is contained only on two of the processors 
(STEP 7) and the last statements exit the BLACS library (Step 8). 

! Call the ScaLAPACK routine (STEP 6)
n=16
call

psgemv('n',m,n,1.0,la,l,l,desca,lb,l,l,descb,1,0.0,ly,l,l,descy,l)

! Each processor prints out its part of the product vector y (STEP 7)
if(myrow.eq.0.and.mycol.eq.0) then

do i=1,8
print *,'PE:',myrow,mycol,' y(',i,')=',ly(i)
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end do
end if

if(myrow.eq.1.and.mycol.eq.0) then
do i=1,8

print *,'PE:',myrow,mycol,' y(',i+lldb,')=',ly(i)
end do

end if

! Release the proc grid and BLACS library (STEP 8)
call blacs_gridexit(ictxt)
call blacs_exit(0)

end program parallel_mv

The output of the parallel code is shown below and, as you can see, it agrees with 
the output of the serial code AS IT SHOULD. 

PE: 0,0 y( 1 )= 4341.
PE: 0,0 y( 2 )= 3467.
PE: 0,0 y( 3 )= -5259.
PE: 0,0 y( 4 )= 1716.
PE: 0,0 y( 5 )= -5821.
PE: 0,0 y( 6 )= 750.
PE: 0,0 y( 7 )= -6561.
PE: 0,0 y( 8 )= -237.
PE: 0,0 y( 9 )= 5149.
PE: 0,0 y( 10 )= -9212.
PE: 0,0 y( 11 )= -2387.
PE: 0,0 y( 12 )= 0.
PE: 0,0 y( 13 )= -1815.
PE: 0,0 y( 14 )= 4601.
PE: 0,0 y( 15 )= 3890.
PE: 0,0 y( 16 )= 836.

Coda:  

A proper ending to this section is to list the key points you can glean from the 
parallel matrix-vector program just discussed in terms of using the ScaLAPACK 
library routines for your own work.  

! Need to do all the preparatory steps before simply calling the ScaLAPACK 
routine!  

! Each processor must call and contribute to the ScaLAPACK routine.  
! When comparing the serial and parallel matrix-vector multiplication codes it 

can be seen that the global arrays A,b, and y are used in the SGEMV call, 
while it is local arrays la, lb, ly and their array descriptor vectors that are 
used in the PSGEMV call. This is an example of an overall strategy for parallel 
programming called data decomposition, in which each processor holds part 
of the data and does calculations with part of the data.  
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! In general, the size, shape, and contents of the local arrays will be different 
for each processor. 

 
10.7. Self Test  

Parallel Mathematical Libraries Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
10.8. Course Problem  

Chapter 10 Course Problem  

This chapter is unique in that it is not about MPI. Instead, it describes an alternative 
to writing your own MPI code which utilizes routines from a parallel library. 
Specifically, the ScaLAPACK library which provides parallel routines for Linear 
Algebra calculations. Unfortunately, there is no ScaLAPACK routine for searching an 
array so there is no exercise for this chapter. Take the chapter off!  

 
11. Portability Issues  

Portability Issues 
The MPI standard was defined in May of 1994. This standardization effort was a 
response to the many incompatible versions of parallel libraries that were in 
existence at that time. If you write a parallel program in compliance with the MPI 
standard, you should be able to compile it on any vendor's MPI compiler. However, 
slight differences exist among the various implementations of MPI because the 
standard's authors did not specify how some routines should be implemented. These 
differences may lead to an "unsafe" program that behaves differently on one system 
than it does on another. Several outcomes are consistent with the MPI specification 
and the actual outcome depends on the precise timing of events. In order to 
complete successfully, an "unsafe" program may require resources that are not 
guaranteed by the MPI implementation of the system on which it is running. 

Because of the varying MPI implementations, it is important to be aware of the 
issues you should consider when writing code that you want to be portable. Some of 
these issues are 

! Buffering Assumptions. In standard mode, blocking sends and receives 
should not be assumed to be buffered. The reason for this is that buffer 
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memory is finite and all computers will fail under sufficiently large 
communication loads. If you write a program using buffering assumptions, it 
will work under some conditions and fail under others. Hence, it is not 
portable. 

! Barrier Synchronization Assumptions for Collective Calls. In MPI, 
collective communications are always assumed to be blocking. However, your 
program should not depend on whether collective communication routines, 
like broadcast commands, act as barrier synchronizations. An MPI 
implementation of collective communications may or may not have the effect 
of barrier synchronization. One obvious exception to this is the MPI_BARRIER 
routine. 

! Communication Ambiguities. When writing a program, you should make 
sure that messages are matched by the intended receive call. Ambiguities in 
the communication specification can lead to incorrect or non-deterministic 
programs if race conditions arise. Use the message tags and communicators 
provided by MPI to avoid these types of problems.  

  

 
11.1. Course Problem  

Chapter 11 Course Problem  

This brief chapter points out the most important feature of MPI: that it has source 
code portability. This means that once you get an MPI program working on one 
parallel computer, you can transfer the source code to a new parallel computer, 
recompile and run your code and it will produce the same results.  

Exercise  

Take any of the programs you have written for the previous chapter exercises and 
run them on several parallel platforms with MPI installed. You should see the same 
answers. (Recall the Parallel I/O program used routines that are part of MPI-2).  

 
12. Program Performance  

MPI Program Performance 
Defining the performance of a parallel program is more complex than simply 
optimizing its execution time. This is because of the large number of variables that 
can influence a program's behavior. Some of these variables are 

! the number of processors 
! the size of the data being worked on 
! interprocessor communications limits 
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! available memory  

This chapter will discuss various approaches to performance modeling and how to 
evaluate performance models with empirical performance data taken by data 
collecting performance tools.  

 
12.1. Introduction to Performance Modeling  

Introduction to Performance Modeling 

In this section, three metrics that are commonly used to measure performance are 
introduced . They are 

1. execution time 
2. efficiency 
3. speedup 

Then, three simple models used to roughly estimate a parallel program's 
performance are discussed. These approaches should be taken as approximate 
measures of a parallel program's performance. More comprehensive ways of 
measuring performance will be discussed in a later section.  

 
12.1.1. Performance Metrics  

Performance Metrics 

An obvious performance parameter is a parallel program's execution time, or what 
is commonly referred to as the wall-clock time. The execution time is defined as the 
time elapsed from when the first processor starts executing a problem to when the 
last processor completes execution.  

It is sometimes useful to have a metric that is independent of the problem size. Two 
measures that are independent of problem size are relative efficiency and relative 
speedup. Relative efficiency is defined as T1/(P*Tp), where T1 is the execution time 
on one processor and Tp is the execution time on P processors. Relative speedup is 
defined as T1/Tp. Often an algorithm-independent definition of efficiency and speedup 
is needed for comparison purposes. These measures are called absolute efficiency 
and absolute speedup and they can be defined by making T1 the execution time on 
one processor of the fastest sequential algorithm. When the terms efficiency and 
speedup are used without qualifiers, they usually refer to absolute efficiency and 
absolute speedup, respectively. 

Note that it is possible for efficiencies to be greater than 1 and speedups to be 
greater than P. For example, if your problem size is such that your arrays do not fit 
in memory and/or cache in the serial code, but do fit in memory and/or cache when 
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run on multiple processors, then you can have an additional speedup because your 
program is now working with fast memory.  

 
12.1.2. Simple Models  

Simple Models 

The following simple models can be used to roughly estimate a parallel program's 
performance: 

! Amdahl's Law. Stated simply, Amdahl's Law is: if the sequential component 
of an algorithm accounts for 1/s of the program's execution time, then the 
maximum possible speedup that can be achieved on a parallel computer is s. 
For example, if the sequential component is 10 percent, then the maximum 
speedup that can be achieved is 10. Amdahl's Law is not usually relevant for 
estimating a program's performance because it does not take into account a 
programmer's ability to overlap computation and communication tasks in an 
efficient manner.  

! Extrapolation from observation. This model presents a single number as 
evidence of enhanced performance. Consider the following example: An 
algorithm is implemented on parallel computer X and achieves a speedup of 
10.8 on 12 processors with problem size N = 100. However, a single 
performance measure serves only to determine performance in a narrow 
region of the parameter space and may not give a correct picture of an 
algorithm's overall performance.  

! Asymptotic analysis. For theoretical ease, performance is sometimes 
characterized in a large limit. You may encounter the following example: 
Asymptotic analysis reveals that the algorithm requires order((N/P)*log(N/P)) 
time on P processors, where N is some parameter characterizing the problem 
size. This analysis is not always relevant, and can be misleading, because you 
will often be interested in a regime where the lower order terms are 
significant.  

 
12.2. Developing Better Models  

Developing Better Models 

Better qualitative models than those described in the previous section can be 
developed to characterize the performance of parallel algorithms. Such models 
explain and predict the behavior of a parallel program while still abstracting away 
many technical details. This gives you a better sense of how a program depends on 
the many parameters that can be varied in a parallel computation. One such model, 
Scalability Analysis, consists of examining how a given metric (execution time, 
efficiency, speedup) varies with a program parameter. Questions you might ask from 
this model are 
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! How does efficiency vary with increasing problem size? (Fixed number of 
processors.)  

! How does efficiency vary with the number of processors? (Scalability with 
fixed problem size.) A specific question of this type would be: What is the 
fastest way to solve problem A on computer X? (In this case one optimizes a 
given metric, keeping the problem size fixed.) 

! How do you vary the number of processors with the problem size to keep the 
execution time roughly constant?  

Although qualitative models are quite useful, quantitative models can provide a more 
precise description of performance and should be used for serious examinations of 
performance. The following example describes a quantitative model used to examine 
the metric execution time. 

Example of a Quantitative Model: 

The execution time, Te, is given by, Te = Tcomp + Tcomm + Tidle, where the execution 
time is divided between computing, communicating, or sitting idle, respectively. It is 
important to understand how the execution time depends on programming variables 
such as the size of the problem, number of processors, etc.  

! Computation time, Tcomp: The computation time is the time a single 
processor spends doing its part of a computation. It depends on the problem 
size and specifics of the processor. Ideally, this is just Tserial/P, but it may be 
different depending upon the parallel algorithm you are using. 

! Communication time, Tcomm: The communication time is the part of the 
execution time spent on communication between processors. To model this, 
you start from a model of the time for a single communication operation. This 
time is usually broken up into two parts, Tcomm,op = Tl + Tm. The first part is 
the time associated with initializing the communication and is called the 
latency, Tl. The second part is the time it takes to send a message of length 
m, Tm. Tm is given by m/B where B is the physical bandwidth of the channel 
(usually given in megabytes per second). So a simple model of 
communications, which assumes that communication cannot be overlapped 
with other operations would be: Tcomm=Nmessages x (Tl+<m>/B) where 
<m> is the average message size and Nmessages is the number of messages 
required by the algorithm. The last two parameters depend on the size of the 
problem, number of processors, and the algorithm you are using. Your job is 
to develop a model for these relationships by analyzing your algorithm. 
Parallel programs implemented on systems that have a large latency cost 
should use algorithms that minimize the number of messages sent. 

! Idle time, Tidle: When a processor is not computing or communicating, it is 
idle. Good parallel algorithms try to minimize a processor's idle time with 
proper load balancing and efficient coordination of processor computation and 
communication. 

  

 
12.3. Evaluating Implementations  
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Evaluating Implementations 

Once you implement a parallel algorithm, its performance can be measured 
experimentally and compared to the model you developed. When the actual 
performance differs from the predictions of your model, you should first check to 
make sure you did both the performance model and the experimental design 
correctly and that they measure the same thing. If the performance discrepancy 
persists, you should check for unaccounted-for overhead and speedup 
anomalies. 

If an implementation has unaccounted-for overhead, then any of the following may 
be the reason: 

! Load imbalances: An algorithm may suffer from computation or 
communication imbalances among processors.  

! Replicated computation: Disparities between observed and predicted times 
can signal deficiencies in implementation. For example, you fail to take into 
account the need to parallelize some portion of a code.  

! Tool/algorithm mismatch: The tools used to implement the algorithm may 
introduce inefficiencies. For example, you may call a slow library subroutine.  

! Competition for bandwidth: Concurrent communications may compete for 
bandwidth, thereby increasing total communication costs.  

If an implementation has speedup anomalies, meaning that it executes faster than 
expected, then any of the following may be the reason:  

! Cache effects: The cache, or fast memory, on a processor may get used 
more often in a parallel implementation causing an unexpected decrease in 
the computation time.  

! Search anomalies: Some parallel search algorithms have search trees that 
search for solutions at varying depths. This can cause a speedup because of 
the fundamental difference between a parallel algorithm and a serial 
algorithm.  

 
12.4. Performance Tools  

Performance Tools 

The previous section emphasized the importance of constructing performance models 
and comparing these models to the actual performance of a parallel program. This 
section discusses the tools used to collect empirical data used in these models and 
the issues you must take into account when collecting the data.  

You can use several data collection techniques to gather performance data. These 
techniques are 
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! Profiles show the amount of time a program spends on different program 
components. This information can be used to identify bottlenecks in a 
program. Also, profiles performed for a range of processors or problem sizes 
can identify components of a program that do not scale. Profiles are limited in 
that they can miss communication inefficiencies. 

! Counters are data collection subroutines which increment whenever a 
specified event occurs. These programs can be used to record the number of 
procedure calls, total number of messages sent, total message volume, etc. A 
useful variant of a counter is a timer which determines the length of time 
spent executing a particular piece of code.  

! Event traces contain the most detailed program performance information. A 
trace based system generates a file that records the significant events in the 
running of a program. For instance, a trace can record the time it takes to call 
a procedure or send a message. This kind of data collection technique can 
generate huge data files that can themselves perturb the performance of a 
program. 

When you are collecting empirical data you must take into account  

! Accuracy. In general, performance data obtained using sampling techniques 
is less accurate than data obtained using counters or timers. In the case of 
timers, the accuracy of the clock must also be considered. 

! Simplicity. The best tools, in many circumstances, are those that collect data 
automatically with little or no programmer intervention and provide 
convenient analysis capabilities.  

! Flexibility. A flexible tool can easily be extended to collect additional 
performance data or to provide different views of the same data. Flexibility 
and simplicity are often opposing requirements.  

! Intrusiveness. Unless a computer provides hardware support, performance 
data collection inevitably introduces some overhead. You need to be aware of 
this overhead and account for it when analyzing data.  

! Abstraction. A good performance tool allows data to be examined at a level 
of abstraction appropriate for the programming model of the parallel 
program.  

 
12.5. Finding Bottlenecks with Profiling Tools  
 

Finding Bottlenecks with Profiling Tools 

Bottlenecks in your code can be of two types:  

! computational bottlenecks (slow serial performance)  
! communications bottlenecks 

Tools are available for gathering information about both. The simplest tool to use is 
the MPI routine MPI_WTIME which can give you information about the performance 
of a particular section of your code. For a more detailed analysis, you can typically 
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use any of a number of performance analysis tools designed for either serial or 
parallel codes. These are discussed in the next two sections.  

 
12.5.1. Serial Profiling Tools  
 

Serial Profiling Tools 

We discuss the serial tools first since some of these tools form the basis for more 
sophisticated parallel performance tools. Also, you generally want to start from a 
highly optimized serial code when converting to a parallel implementation. Some 
useful serial performance analysis tools include Speedshop (ssrun, SGI) and 
Performance Application Programming Interface (PAPI, many platforms). The 
Speedshop and PAPI tools use hardware event counters within your CPU to gather 
information about the performance of your code. Thus, they can be used to gather 
information without recompiling your original code. PAPI also provides the low-level 
interface for another tool called HPMcount.  

ssrun (Speedshop) 

ssrun (Speedshop) is a popular performance tool available on SGI platforms that 
periodically samples the state of the program counter and stack, and writes this 
information to a file for later analysis. The sampling interval can be based upon 
system timers, upon hardware events (e.g. instruction or data cache misses), or 
upon entry and exit into blocks of code. This allows you to determine both the cause 
of the poor performance and which subroutines are responsible for the poor 
performance. 

Usage:  

ssrun [ssrun options] command [command arguments]

The ssrun options for selecting the sampling interval are listed below. The output of 
ssrun has been converted to text using prof. Where available, the hypertext links 
give some sample output for a simple program.  

ssrun 
option time base Comments/Description 

-usertime 30 ms timer Fairly coarse resolution. The experiment runs quickly and the output 
file is small. Some bugs are noted in speedshop(1). 

-
pcsamp[x]   
-
fpcsamp[x] 

10 ms timer   
1 ms timer 

Moderately coarse resolution. Emphasizes functions that cause cache 
misses or page faults. Add suffix x for 32 bit counts. 
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-fgi_hwc instructions   
6553 instructions 

emphasizes functions that execute many instructions. 

-cy_hwc   
-fcy_hwc 

16411 clocks   
3779 clocks 

Fine-grain resolution based on elapsed cycles. This emphasizes 
functions with cache misses and mispredicted branches. 

-ic_hwc   
-fic_hwc 

2053 icache 
miss   
419 icache miss 

Emphasizes code that doesn't fit in the L1 cache. 

-isc_hwc   
-fisc_hwc 

131 scache miss   
29 scache miss Emphasizes code that doesn't fit in the L2 cache. 

-dc_hwc   
-fdc_hwc 

2053 dcache 
miss   
419 dcache miss 

Emphasizes code that causes L1 cache data misses. 

-dsc_hwc   
-fdsc_hwc 

131 scache miss   
29 scache miss Emphasizes code that causes L2 cache data misses. 

-tlb_hwc   
-ftlb_hwc 

257 TLB misses   
53 TLB misses Emphasizes code that causes page faults. 

-gfp_hwc   
-fgfp_hwc 

32771 fp 
instructions   
6553 fp 
instructions 

Emphasizes code that performs heavy FP calculation. 

-prof_hwc user-set Hardware counter and overflow values from counters named in 
environment variables. 

-fpe floating point 
exceptions Creates a trace file that records all floating point exceptions. 

PAPI 

The Performance API (PAPI) project specifies a standard application programming 
interface (API) for accessing hardware performance counters available on most 
modern microprocessors.  The PAPI provides two interfaces to the underlying counter 
hardware; a simple, high level interface for the acquisition of simple measurements 
and a fully programmable, low level interface directed towards users with more 
sophisticated needs. The low level PAPI deals with hardware events in  groups called 
EventSets. EventSets reflect how the counters are most frequently used, such as 
taking simultaneous measurements of different hardware events and relating them 
to one another. For example, relating cycles to memory references or flops to level 1 
cache misses can indicate poor locality and memory management. In addition, 
EventSets allow a highly efficient implementation which translates to more detailed 
and accurate measurements. EventSets are fully programmable and have features 
such as guaranteed thread safety, writing of counter values, multiplexing and 
notification on threshold crossing, as well as processor specific features. The high 
level interface simply provides the ability to start, stop and read specific events, one 
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at a time.   In addition, the PAPI provides portability across different platforms. It 
uses the same routines with similar argument lists to control and access the counters 
for every architecture.  

  

   

 
12.5.2. Parallel Profiling Tools  
 

Parallel Profiling Tools 

Some MPI aware parallel performance analysis tools include Vampir (multiple 
platforms), DEEP/MPI and HPMcount (IBM SP3 and Linux). In some cases, profiling 
information can be gathered without recompiling your code.  

In contrast to the serial profiling tools, the parallel profiling tools usually require you 
to instrument your parallel code in some fashion. Vampir falls into this category. 
Others can take advantage of hardware event counters. 

Vampir is available on all major MPI platforms. It includes a MPI tracing and profiling 
library (Vampirtrace) that records execution of MPI routines, point-to-point and 
collective communications, as well as user-defined events such as subroutines and 
code blocks.  

HPMcount, which is based upon PAPI can take advantage of hardware counters to 
characterize your code. HPMcount is being developed for performance measurement 
of applications running on IBM Power3 systems but it also works on Linux.  It is in 
early development. 

 
12.6. Self Test  

Program Performance Self Test 

Now that you've finished this chapter, test yourself on what you've learned by taking 
the Self Test provided. Simply click on the Self Test link in the ACTION MENU above 
to get started. 

 
12.7. Course Problem  

Chapter 12 Course Problem 
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In this chapter, the broad subject of parallel code performance is discussed both in 
terms of theoretical concepts and some specific tools for measuring performance 
metrics that work on certain parallel machines. Put in its simplest terms, improving 
code performance boils down to speeding up your parallel code and/or improving 
how your code uses memory.  

As you have learned new features of MPI in this course, you have also improved the 
performance of the code. Here is a list of performance improvements so far:  

! Using Derived Datatypes instead of sending and receiving the separate pieces 
of data  

! Using Collective Communication routines instead of repeating/looping 
individual sends and receives  

! Using a Virtual Topology and its utility routines to avoid extraneous 
calculations  

! Changing the original master-slave algorithm so that the master also 
searches part of the global array (The slave rebellion: Spartacus!)  

! Using "true" parallel I/O so that all processors write to the output file 
simultaneously instead of just one (the master)  

But more remains to be done - especially in terms of how the program affects 
memory. And that is the last exercise for this course. The problem description is the 
same as the one given in Chapter 9 but you will modify the code you wrote using 
what you learned in this chapter.  

Description  

The initial problem implements a parallel search of an extremely large (several 
thousand elements) integer array. The program finds all occurrences of a certain 
integer, called the target, and writes all the array indices where the target was found 
to an output file. In addition, the program reads both the target value and all the 
array elements from an input file. 

Exercise 

Modify your code from Chapter 9 so that it uses dynamic memory allocation to use 
only the amount of memory it needs and only for as long as it needs it. Make both 
the arrays a and b ALLOCATABLE and connect them to memory properly. You may 
also assume that the input data file "b.data" now has on its first line the number of 
elements in the global array b. The second line now has the target value. The 
remaining lines are the contents of the global array b.  

Solution 

When you have finished writing the code for this exercise, view our version of the 
Performance Code.  

 



186 
Introduction to MPI – created by the PACS Training Group 
All rights reserved. Do not copy or redistribute in any form. 
NCSA Access ©2001 Board of Trustees of the University of Illinois.  
 

13. Parallel Algorithms Underlying MPI Implementations  

Looking Under the Hood -- Parallel Algorithms 
Underlying MPI Implementations 
This chapter looks at a few of the parallel algorithms underlying the implementations 
of some simple MPI calls. The purpose of this is not to teach you how to "roll your 
own" versions of these routines, but rather to help you start thinking about 
algorithms in a parallel fashion. First, the method of recursive halving and 
doubling, which is the algorithm underlying operations such as broadcasts and 
reduction operations, is discussed. Then, specific examples of parallel algorithms that 
implement message passing are given. 

 
13.1. Recursive Halving and Doubling  

Recursive Halving and Doubling 

To illustrate recursive halving and doubling, suppose you have a vector distributed 
among p processors, and you need the sum of all components of the vector in each 
processor, i.e., a sum reduction. One method is to use a tree-based algorithm to 
compute the sum to a single processor and then broadcast the sum to every 
processor. 

Assume that each processor has formed the partial sum of the components of the 
vector that it has. 

Step 1: Processor 2 sends its partial sum to processor 1 and processor 1 adds this 
partial sum to its own. Meanwhile, processor 4 sends its partial sum to processor 3 
and processor 3 performs a similar summation.  

Step 2: Processor 3 sends its partial sum, which is now the sum of the components 
on processors 3 and 4, to processor 1 and processor 1 adds it to its partial sum to 
get the final sum across all the components of the vector.  

At each stage of the process, the number of processes doing work is cut in half. The 
algorithm is depicted in the Figure 13.1 below, where the solid arrow denotes a send 
operation and the dotted line arrow denotes a receive operation followed by a 
summation.  
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Figure 13.1. Summation in log(N) steps. 

Step 3: Processor 1 then must broadcast this sum to all other processors. This 
broadcast operation can be done using the same communication structure as the 
summation, but in reverse. You will see pseudocode for this at the end of this 
section. Note that if the total number of processors is N, then only 2 log(N) (log base 
2) steps are needed to complete the operation.  

There is an even more efficient way to finish the job in only log(N) steps. By way of 
example, look at the next figure containing 8 processors. At each step, processor i 
and processor i+k send and receive data in a pairwise fashion and then perform the 
summation. k is iterated from 1 through N/2 in powers of 2. If the total number of 
processors is N, then log(N) steps are needed. As an exercise, you should write out 
the necessary pseudocode for this example.  
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Figure 13.2. Summation to all processors in log(N) steps. 

What about adding vectors? That is, how do you add several vectors component-wise 
to get a new vector? The answer is, you employ the method discussed earlier in a 
component-wise fashion. This fascinating way to reduce the communications and to 
avoid abundant summations is described next. This method utilizes the recursive 
halving and doubling technique and is illustrated in Figure 13.3. 

Suppose there are 4 processors and the length of each vector is also 4. 

Step 1: Processor p0 sends the first two components of the vector to processor p1, 
and p1 sends the last two components of the vector to p0. Then p0 gets the partial 
sums for the last two components, and p1 gets the partial sums for the first two 
components. So do p2 and p3. 

Step 2: Processor p0 sends the partial sum of the third component to processor p3. 
Processor p3 then adds to get the total sum of the third component. Similarly, 
processor 1, 2, and 4 find the total sums of the 4th, 2nd, and 1st components, 
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respectively. Now the sum of the vectors are found and the components are stored 
in different processors.  

Step 3: Broadcast the result using the reverse of the above communication process.  

 

Figure 13.3. Adding vectors 

Pseudocode for Broadcast Operation: 

The following algorithm completes a broadcast operation in logarithmic time. Figure 
13.4 illustrates the idea.  
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Figure 13.4. Broadcast via recursive doubling. 

The first processor first sends the data to only two other processors. Then each of 
these processors send the data to two other processors, and so on. At each stage, 
the number of processors sending and receiving data doubles. The code is simple 
and looks similar to 

if(myRank==0) {
send to processors 1 and 2;

}
else
{

receive from processors int((myRank-1)/2);
torank1=2*myRank+1;
torank2=2*myRank+2;
if(torank1N)
send to torank2;

}

 
13.2. Parallel Algorithm Examples  

Specific Examples 

In this section, specific examples of parallel algorithms that implement message 
passing are given. The first two examples consider simple collective communication 
calls to parallelize matrix-vector and matrix-matrix multiplication. These calls are 
meant to be illustrative, because parallel numerical libraries usually provide the most 
efficient algorithms for these operations. (See Chapter 10 - Parallel Mathematical 
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Libraries.) The third example shows how you can use ghost cells to construct a 
parallel data approach to solve Poisson's equation. The fourth example revisits 
matrix-vector multiplication, but from a client server approach. 

! Example 1: Matrix-vector multiplication using collective communication. 
! Example 2: Matrix-matrix multiplication using collective communication. 
! Example 3: Solving Poisson's equation through the use of ghost cells. 
! Example 4: Matrix-vector multiplication using a client-server approach. 

 
13.2.1. Example 1: Matrix-vector Multiplication  

Example 1: Matrix-vector Multiplication 

The figure below demonstrates schematically how a matrix-vector multiplication, 
A=B*C, can be decomposed into four independent computations involving a scalar 
multiplying a column vector. This approach is different from that which is usually 
taught in a linear algebra course because this decomposition lends itself better to 
parallelization. These computations are independent and do not require 
communication, something that usually reduces performance of parallel code. 

 

Figure 13.5. Schematic of parallel decomposition for vector-matrix 
multiplication, A=B*C, in Fortran 90. The vector A is depicted in yellow. The 
matrix B and vector C are depicted in multiple colors representing the 
portions, columns, and elements assigned to each processor, respectively.  
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The columns of matrix B and elements of column vector C must be distributed to the 
various processors using MPI commands called scatter operations. Note that MPI 
provides two types of scatter operations depending on whether the problem can be 
divided evenly among the number of processors or not. Each processor now has a 
column of B, called Bpart, and an element of C, called Cpart. Each processor can 
now perform an independent vector-scalar multiplication. Once this has been 
accomplished, every processor will have a part of the final column vector A, called 
Apart. The column vectors on each processor can be added together with an MPI 
reduction command that computes the final sum on the root processor. A Fortran 90 
code and C code are available for you to examine. 

Something for you to think about as you read the next section on matrix-
matrix multiplication: How would you generalize this algorithm to the 
multiplication of a n X 4m matrix by a 4m by M matrix on 4 processors? 

It is important to realize that this algorithm would change if the program were 
written in C. This is because C decomposes arrays in memory by rows while Fortran 
decomposes arrays into columns. If you translated the above program directly into a 
C program, the collective MPI calls would fail because the data going to each of the 
different processors is not contiguous. This problem can be solved with derived 
datatypes, which are discussed in Chapter 6 - Derived Datatypes. A simpler approach 
would be to decompose the vector-matrix multiplication into independent scalar-row 
computations and then proceed as above. This approach is shown schematically in 
Figure 13.6.  

Figure 13.6. Schematic of parallel decomposition for vector-matrix multiplication, 
A=B*C, in the C programming language. 
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Returning to the Fortran example, another way this problem can be decomposed is 
to broadcast the column vector C to all the processors using the MPI broadcast 
command. (See Section 6.2 - Broadcast.) Then, scatter the rows of B to every 
processor so that they can form the elements of the result matrix A by the usual 
vector-vector "dot product". This will produce a scalar on each processor, Apart, 
which can then be gathered with an MPI gather command (see Section 6.4 - Gather) 
back onto the root processor in the column vector A.  

However, you must be wary because division of a matrix into rows in Fortran 90 
causes data in different processors to be noncontiguous. Again, this can be handled 
with derived datatypes but, in this example, it's simpler to just take the transpose of 
the vector B and scatter the columns. It is left as an exercise for you to write MPI 
code to implement this.  

 

Figure 13.7. Schematic of a different parallel decomposition 
for vector-matrix multiplication in Fortran 90.  

 
13.2.2. Example 2: Matrix-matrix Multiplication  

Example 2: Matrix-matrix Multiplication 

A similar, albeit naive, type of decomposition can be achieved for matrix-matrix 
multiplication, A=B*C. The figure below shows schematically how matrix-matrix 
multiplication of two 4x4 matrices can be decomposed into four independent vector-
matrix multiplications, which can be performed on four different processors.  
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Figure 13.8. Schematic of a decomposition for matrix-matrix multiplication, A=B*C, in 
Fortran 90. The matrices A and C are depicted as multicolored columns with each color 
denoting a different processor. The matrix B, in yellow, is broadcast to all processors.  

The basic steps are 

1. Distribute the columns of C among the processors using a scatter operation.  
2. Broadcast the matrix B to every processor.  
3. Form the product of B with the columns of C on each processor. These are 

the corresponding columns of A.  
4. Bring the columns of A back to one processor using a gather operation.  

The complete Fortran 90 code and C code are provided. 

Again, in C, the problem could be decomposed in rows. This is shown schematically 
below.  

Figure 13.9. Schematic of a decomposition for matrix-matrix multiplication, A=B*C, in the 
C programming language. The matrices A and B are depicted as multicolored rows with 
each color denoting a different processor. The matrix C, in yellow, is broadcast to all 
processors. 

 
13.2.3. Example 3: Poisson Equation  

Example 3: The Use of Ghost Cells to solve a Poisson Equation 

The objective in data parallelism is for all processors to work on a single task 
simultaneously. The computational domain (e.g., a 2D or 3D grid) is divided among 
the processors such that the computational work load is balanced. Before each 
processor can compute on its local data, it must perform communications with other 
processors so that all of the necessary information is brought on each processor in 
order for it to accomplish its local task.  
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As an instructive example of data parallelism, an arbitrary number of processors is 
used to solve the 2D Poisson Equation in electrostatics (i.e., Laplace Equation with 
a source). The equation to solve is  

Figure 13.10. Poisson Equation on a 2D grid with periodic boundary conditions. 

where phi(x,y) is our unknown potential function and rho(x,y) is the known source 
charge density. The domain of the problem is the box defined by the x-axis, y-axis, 
and the lines x=L and y=L. 

Serial Code: 

To solve this equation, an iterative scheme is employed using finite differences. The 
update equation for the field phi at the (n+1)th iteration is written in terms of the 
values at nth iteration via  

 

iterating until the condition  

 

has been satisfied.  

Parallel Code: 

In this example, the domain is chopped into rectangles, in what is often called 
block-block decomposition. In Figure 13.11 below,  
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Figure 13.11. Parallel Poisson solver via domain decomposition on a 3x5 processor 
grid.  

an example N=64 x M=64 computational grid is shown that will be divided amongst 
NP=15 processors. The number of processors, NP, is purposely chosen such that it 
does not divide evenly into either N or M. Because the computational domain has 
been divided into rectangles, the 15 processors {P(0),P(1),...,P(14)} (which are 
laid out in row-major order on the processor grid) can be given a 2-digit designation 
that represents their processor grid row number and processor grid column number. 
MPI has commands that allow you to do this. 
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Figure 13.12. Array indexing in a parallel Poisson solver on a 3x5 processor grid. 

Note that P(1,2) (i.e., P(7)) is responsible for indices i=23-43 and j=27-39 in the 
serial code double do-loop. A parallel speedup is obtained because each processor is 
working on essentially 1/15 of the total data. However, there is a problem. What 
does P(1,2) do when its 5-point stencil hits the boundaries of its domain (i.e., when 
i=23 or i=43, or j=27 or j=39)? The 5-point stencil now reaches into another 
processor's domain, which means that boundary data exists in memory on another 
separate processor. Because the update formula for phi at grid point (i,j) involves 
neighboring grid indices {i-1,i,i+1;j-1,j,j+1}, P(1,2) must communicate with its 
North, South, East, and West (N, S, E, W) neighbors to get one column of boundary 
data from its E, W neighbors and one row of boundary data from its N,S neighbors. 
This is illustrated in Figure 13.13 below.  
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Figure 13.13. Boundary data movement in the parallel Poisson solver following each 
iteration of the stencil. 

 
In order to accommodate this transference of boundary data between processors, 
each processor must dimension its local array phi to have two extra rows and 2 
extra columns. This is illustrated in Figure 13.14 where the shaded areas indicate the 
extra rows and columns needed for the boundary data from other processors.  

Figure 13.14. Ghost cells: Local indices. 
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Note that even though this example speaks of global indices, the whole point about 
parallelism is that no one processor ever has the global phi matrix on processor. 
Each processor has only its local version of phi with its own sub-collection of i and j 
indices. Locally these indices are labeled beginning at either 0 or 1, as in Figure 
13.14, rather than beginning at their corresponding global values, as in Figure 13.12. 
Keeping track of the on-processor local indices and the global (in-your-head) indices 
is the bookkeeping that you have to manage when using message passing 
parallelism. Other parallel paradigms, such as High Performance Fortran (HPF) or 
OpenMP, are directive-based, i.e., compiler directives are inserted into the code to 
tell the supercomputer to distribute data across processors or to perform other 
operations. The difference between the two paradigms is akin to the difference 
between an automatic and stick-shift transmission car. In the directive based 
paradigm (automatic), the compiler (car) does the data layout and parallel 
communications (gear shifting) implicitly. In the message passing paradigm (stick-
shift), the user (driver) performs the data layout and parallel communications 
explicitly. In this example, this communication can be performed in a regular 
prescribed pattern for all processors. For example, all processors could first 
communicate with their N-most partners, then S, then E, then W. What is happening 
when all processors communicate with their E neighbors is illustrated in Figure 
13.15.  

 

Figure 13.15. Data movement, shift right (East). 

 
Note that in this shift right communication, P(i,j) places its right-most column of 
boundary data into the left-most ghost column of P(i,j+1). In addition, P(i,j) 
receives the right-most column of boundary data from P(i,j-1) into its own left-most 
ghost column.  

For each iteration, the psuedo-code for the parallel algorithm is thus  
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t = 0
(0) Initialize psi

(1) Loop over stencil iterations

(2) Perform parallel N shift communications of boundary data
(3) Perform parallel S shift communications of boundary data
(4) Perform parallel E shift communications of boundary data
(5) Perform parallel W shift communications of boundary data

in Fortran in C

(6) do j = 1, M_local
for{i=1;i<=N_local;i++){

do i = 1, N_local
for(j=1;j<=M_local;j++){

update phi(i,j) update
phi[i][j]

enddo }
enddo }

End Loop over stencil iterations

(7) Output data

Note that initializing the data should be performed in parallel. That is, each processor 
P(i,j) should only initialize the portion of phi for which it is responsible. (Recall NO 
processor contains the full global phi). In relation to this point, step (7), Output data, 
is not such a simple-minded task when performing parallel calculations. Should you 
reduce all the data from phi_local on each processor to one giant phi_global on 
P(0,0) and then print out the data? This is certainly one way to do it, but it seems 
to defeat the purpose of not having all the data reside on one processor. For 
example, what if phi_global is too large to fit in memory on a single processor? A 
second alternative is for each processor to write out its own phi_local to a file 
"phi.ij", where ij indicates the processor's 2-digit designation (e.g. P(1,2) writes out 
to file "phi.12"). The data then has to be manipulated off processor by another code 
to put it into a form that may be rendered by a visualization package. This code itself 
may have to be a parallel code.  

As you can see, the issue of parallel I/O is not a trivial one (see Section 9 - Parallel 
I/O) and is in fact a topic of current research among parallel language developers 
and researchers.  

 
13.2.4. Example 4: Matrix-vector Multiplication (Client Server)  

Matrix-vector Multiplication using a Client-Server Approach 
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In Section 13.2.1, a simple data decomposition for multiplying a matrix and a vector 
was described. This decomposition is also used here to demonstrate a "client-server" 
approach. The code for this example is in the C program, server_client_c.c.  

In server_client_c.c, all input/output is handled by the "server" (preset to be 
processor 0). This includes parsing the command-line arguments, reading the file 
containing the matrix A and vector x, and writing the result to standard output. The 
file containing the matrix A and the vector x has the form 

m n
x1 x2 ...
a11 a12 ...
a21 a22 ...

.

.

.

where A is m (rows) by n (columns), and x is a column vector with n elements. After 
the server reads in the size of A, it broadcasts this information to all of the clients. It 
then checks to make sure that there are fewer processors than columns. (If there 
are more processors than columns, then using a parallel program is not efficient and 
the program exits.) The server and all of the clients then allocate memory locations 
for A and x. The server also allocates memory for the result. Because there are more 
columns than client processors, the first "round" consists of the server sending one 
column to each of the client processors. All of the clients receive a column to 
process. Upon finishing, the clients send results back to the server. As the server 
receives a "result" buffer from a client, it sends the next unprocessed column to that 
client.  

The source code is divided into two sections: the "server" code and the "client" code. 
The pseudo-code for each of these sections is 

Server: 

1. Broadcast (vector) x to all client processors.  
2. Send a column of A to each processor.  
3. While there are more columns to process OR there are expected results, 

receive results and send next unprocessed column.  
4. Print result.  

Client:  

1. Receive (vector) x. 
2. Receive a column of A with tag = column number.  
3. Multiply respective element of (vector) x (which is the same as tag) to 

produce the (vector) result.  
4. Send result back to server.  
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Note that the numbers used in the pseudo-code (for both the server and client) have 
been added to the source code.  

Source code similar to server_client_c.c., server_client_r.c is also provided as an 
example. The main difference between theses codes is the way the data is stored. 
Because only contiguous memory locations can be sent using MPI_SEND, 
server_client_c.c stores the matrix A "column-wise" in memory, while 
server_client_r.c stores the matrix A "row-wise" in memory. The pseudo-code for 
server_client_c.c and server_client_r.c is stated in the "block" documentation at the 
beginning of the source code.  

 
14. Complete Reference Listing  

Complete Reference Listing 
You may view a complete listing of the reference materials for this course by clicking 
on the References link in the ACTION MENU above. 

 
15. Course Evaluation Form  

Introduction to MPI Evaluation 
We really want to know what you thought of this course. Please complete the 
evaluation form by clicking on the evaluation icon in the button bar above. Even if 
you didn't finish the course, your input is welcome. 
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