
1

Big Data Analysis
with Revolution R Enterprise

August 2010

Joseph B. Rickert

Copyright © 2010 Revolution Analytics, Inc. All Rights Reserved.

2

Background

The R language is well established as the language for doing statistics, data analysis, data-mining
algorithm development, stock trading, credit risk scoring, market basket analysis and all manner
of predictive analytics. However, given the deluge of data that must be processed and analyzed
today, many organizations have been reticent about deploying R beyond research into production
applications.

The main barrier is that R is a memory-bound language. All data used in calculations — vectors,
matrices, lists, data frames, and so forth — all need to be held in memory. Even for modern
computers with 64-bit address spaces and huge amounts of RAM, dealing with data sets that are
tens of gigabytes and hundreds of millions of rows (or larger) can present a significant challenge.
The problem isn’t just one of capacity, that is, being simply being able to accommodate the data
in memory for analysis. For mission-critical applications, performance is also a prime
consideration: if the overnight analysis does not complete in time for the open of business the
next day, that’s just as much of a failure as an out-of-memory error. And with data set sizes
growing rapidly, scalability is also of concern: even if the in-memory analysis completes today,
the IT manager still needs the confidence that the production run will complete — on time! — as
the data set grows.

Revolution Analytics has addressed these capacity, performance and scalability challenges with
its “Big Data” initiative to extend the reach of R into the realm of production data analysis with
terabyte-class data sets. This paper describes Revolution Analytics’ new add-on package called
RevoScaleR™, which provides unprecedented levels of performance and capacity for statistical
analysis in the R environment. For the first time, R users can process, visualize and model their
largest data sets in a fraction of the time of legacy systems, without the need to deploy expensive
or specialized hardware.

Limitations of In-memory Data Analysis

As mentioned above, R requires all data to be loaded into memory for processing. This design
feature limits the size of files that can be analyzed on a modest desktop computer. For example,
in the following line of code, the data frame, myData, contains 5,000,000 rows and three
columns, only a very small subset of the airline data file that will be examined later in this paper.
The error message from the R interpreter shows that even this relatively small file cannot be
processed in the R environment on a PC with 3 gigabytes of memory.

> lm(ArrDelay~UniqueCarrier+DayOfWeek, data=myData)
Error: cannot allocate vector of size 751.8 Mb

Of course, a high-end PC or server configured with much more memory and running a 64-bit
version of R can go a considerable way in extending the memory barrier. But even when the data

3

can fit into memory, the performance of standard R on large files can be prohibitively slow.
Really breaking through the memory/performance barrier requires implementing external
memory algorithms and data structures that explicitly manage “data placement and
movement”.[2] RevoScaleR brings parallel external memory algorithms and a new very efficient
data file format to R.

RevoScaleR Features

The RevoScaleR package provides a mechanism for scaling the R language to handle very large
data sets. There are three major components to this package:

• A new file format especially designed for large files,
• External memory implementations of the statistical algorithms most commonly used with

large data sets, and
• An extensible programming framework that allows R and later C++ programmers to

write their own external memory algorithms that can take advantage of Revolution R
Enterprise’s new Big Data capabilities.

RevoScaleR XDF File Format

RevoScaleR provides a new data file type with extension .xdf that has been optimized for “data
chunking”, accessing parts of an Xdf file for independent processing. Xdf files store data in a
binary format. Methods for accessing these files may use either horizontal (rows) or vertical
(columns) block partitioning. The file format provides very fast access to a specified set of rows
for a specified set of columns. New rows and columns can be added to the file without re-writing
the entire file. RevoScaleR also provides a new R class, RxDataSource, that has been designed
to support the use of external memory algorithms with .xdf files.

Table 1 lists the key functions for working with Xdf files:

Table 1-Key Xdf Functions
 Function Description
rxDataFrameToXdf Write a data frame in memory to an Xdf file
rxDataStepXdf Transform data from an input Xdf file to and output .xdf file
rxSetVarInfoXdf Modify the variable information for an Xdf file, including names, descriptions and factor labels
rxGetVarInfoXdf Get the variable information for an Xdf file, including column names, descriptions, and factor

labels.
rxReadXdf Read data from an Xdf file into a data frame
rxGetInfoXdf Get information about an Xdf file
rxTextToXdf Convert text files into an Xdf file

Table 2 lists some of the available low level functions for working with chunks of data. The
RevoScaleR: Getting Started Guide presents detailed examples for working with these
functions.[1]

Table 2 - RxDataSource Functions
Function Description
rxOpenData Opens the data file for reading and returns a handle
rxReadNext Reads the next chunk of data from the specified file using the data handle

4

rxReadAll Reads all of the data from the file specified by the data handle and creates a data frame
rxCloseData Closes the data file specified by the data handle

Statistical Algorithms

The RevoScaleR package also contains parallel external memory implementations of the most
common algorithms used to analyze very large data files. These functions, which are listed in
Table 3, represent the initial release of the RevoScaleR package. Additional algorithms are
planned for subsequent releases.

Table 3 - Statistical Functions in RevoScaleR
Function Description
rxSummary Computes summary statistics on data in an Xdf file or in a data frame
rxCrossTabs Creates contingency tables by cross-classifying factors in an Xdf file or data frame. This

function permits multi-dimensional cross classification
rxLinMod Fits linear models from data residing in an Xdf file or data frame. rxLinModels fits both

simple and multiple regression models.
rxLogit Fits binomial, logistic regression models from data residing in and Xdf file or data frame
rxPredict Computes predicted values and residuals for the models created by rxLinMod and rxLogit

All of the RevoScaleR statistical functions produce objects that may be used as input to standard
R functions.

Extensible Programming Framework

Advanced R users can write their own functions to exploit the capabilities of the Xdf files and
RxdataSource objects. Any statistical or data mining function that can work on chunks of data
and be implemented as an external memory algorithm is a candidate for a RevoScaleR
implementation. This R programming interface is available in the initial release of RevoScaleR; a
subsequent release will add a C++ programming interface.

RevoScaleR Examples

This section illustrates many of the capabilities of the RevoScaleR package through an extended
example that uses the moderately large airlines data file: AirlineData87to08. This file contains
flight arrival and departure details for all commercial flights within the United States for the
period October 1987 through April 2008. The file contains 123,534,969 rows and 29 columns
(variables). It requires 13,280,963 KB (over 13 Gb) to store, uncompressed on disk.

The first block of code immediately below (Code Block 1) loads the RevoScaleR library. For a
more robust computer, the number of cores can also be set appropriately using the rxOptions
function. (For the Intel Xeon dual 6-core processor server used in the benchmarks below, setting
this value to 12, the number of physical cores, produced optimal results.)

5

Code Block 1
library(RevoScaleR)

Code Block 2 access the file stored on disk in the Xdf format, displays information about the file
and its variables (see Table 4) and produces a summary (Table 5) for two variables: Arrdelay and
DayofWeek.

Code Block 2
defaultDataDir <- "C:/Users/ . . ./revoAnalytics"
dataName <- file.path(defaultDataDir,"AirlineData87to08")
rxGetInfoXdf(dataName, getVarInfo=TRUE)
Get summary data
rxSummary(~ArrDelay:DayOfWeek,data=dataName)

Table 4 – Information and Variables in Airline File

> rxGetInfoXdf(dataName, getVarInfo=TRUE)

Name: C:\Users\. . . \AirlineData87to08.xdf

Number of rows: 123534969

Number of variables: 29

Number of blocks: 832

Variable Information:
Var 1: Year, Type: factor
 22 factor levels: 1987 1988 1989 1990 1991 ... 2004 2005 2006 2007 2008
Var 2: Month, Type: factor
 12 factor levels: January February March April May ... August September October
November December
Var 3: DayofMonth, Type: factor
 31 factor levels: 1 2 3 4 5 ... 27 28 29 30 31
Var 4: DayOfWeek, Type: factor
 7 factor levels: Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Var 5: DepTime, Type: numeric, Storage: float32, Low/High: (0.0167, 29.5000)

Var 6: CRSDepTime, Type: numeric, Storage: float32, Low/High: (0.0000, 24.0000)

Var 7: ArrTime, Type: numeric, Storage: float32, Low/High: (0.0167, 29.9167)

Var 8: CRSArrTime, Type: numeric, Storage: float32, Low/High: (0.0000, 24.0000)
Var 9: UniqueCarrier, Type: factor
 29 factor levels: 9E AA AQ AS B6 ... UA US WN XE YV
Var 10: FlightNum, Type: factor
 8160 factor levels: 1451 1453 1454 1455 1457 ... 9742 9743 6813 6913 6513
Var 11: TailNum, Type: factor
 13537 factor levels: NA N7298U N7449U N7453U N7288U ... N516AS N763JB N766JB
N75428 N75429

Var 12: ActualElapsedTime, Type: integer, Low/High: (-719, 1883)

Var 13: CRSElapsedTime, Type: integer, Low/High: (-1240, 1613)

Var 14: AirTime, Type: integer, Low/High: (-3818, 3508)

Var 15: ArrDelay, Type: integer, Low/High: (-1437, 2598)

Var 16: DepDelay, Type: integer, Low/High: (-1410, 2601))
Var 17: Origin, Type: factor
 347 factor levels: SAN SFO BUR OAK LAX ... ROW GCC RKS MKG OTH
Var 18: Dest, Type: factor
 352 factor levels: SFO RNO OAK BUR LAX ... PIR GCC RKS MKG OTH

6

Var 19: Distance, Type: integer, Low/High: (0, 4983)

Var 20: TaxiIn, Type: integer, Low/High: (0, 1523)

Var 21: TaxiOut, Type: integer, Low/High: (0, 3905)

Var 22: Cancelled, Type: logical, Storage: uchar, Low/High: (0, 1)
Var 23: CancellationCode, Type: factor
 5 factor levels: NA carrier weather NAS security

Var 24: Diverted, Type: logical, Storage: uchar, Low/High: (0, 1)

Var 25: CarrierDelay, Type: integer, Low/High: (0, 2580)

Var 26: WeatherDelay, Type: integer, Low/High: (0, 1510)

Var 27: NASDelay, Type: integer, Low/High: (-60, 1392

Var 28: SecurityDelay, Type: integer, Low/High: (0, 533)

Var 29: LateAircraftDelay, Type: integer, Low/High: (0, 1407)

Table 5 – Summary of variables ArrDelay and DayofWeek
Summary Statis tics for: ArrDelay:DayOfWeek (Tota l : 123534969, Miss ing: 2587529)

 Name Mean StdDev Min Max Val idObs

ArrDelay:DayOfWeek 7.049963 30.75081 -1437 2598 120947440

Statis tics by category (7 categories):

Category Means StdDev Min Max Val idObs

ArrDelay for DayOfWeek=Monday 6.669515 30.17812 -1410 1879 17750849

ArrDelay for DayOfWeek=Tuesday 5.960421 29.06076 -1426 2137 17643973

ArrDelay for DayOfWeek=Wednesday 7.091502 30.37856 -1405 2598 17697936

ArrDelay for DayOfWeek=Thursday 8.945047 32.30101 -1395 2453 17683723

ArrDelay for DayOfWeek=Friday 9.606953 33.07271 -1437 1808 17707329

ArrDelay for DayOfWeek=Saturday 4.187419 28.29972 -1280 1942 15617054

ArrDelay for DayOfWeek=Sunday 6.52504 31.11353 -1295 2461 16846576

Next we perform a simple linear regression of ArrDelay against DayOfWeek using the “cube”
option of rxLinMod, the RevoScaleR function to fit linear models. When cube is set to TRUE
and the first explanatory variable in the regression model is categorical, rxLinMod uses a
partitioned inverse algorithm to fit the model. This algorithm can be faster and uses less memory
than the default inverse algorithm. Code Block 3 shows the code for fitting the model and uses
the standard R functions to obtain the results of the regression (Table 6) and plot Arrival delay
by day of week (Figure 1).

Note that the p-values calculated by the standard t-test are extremely small, as would be expected
by using such a simple model with such a large data set. Also note that the “cube” option
produces a data frame as output that shows the counts of the data points that went into producing
each coefficient (Table 7).

Code Block 3
Fit a linear model with the cube option
arrDelayLm1 <- rxLinMod(ArrDelay ~ -1+DayOfWeek, data=dataName, cube=TRUE)
summary(arrDelayLm1) # Use the standard R function summary
arrDelayLm1$countDF # Look at the optput from the cube option

7

Plot arrival delay by day of week
xyplot(ArrDelay ~ DayOfWeek, data = arrDelayLm1$countDF, type = "l",
 lwd=3,pch=c(16,17), auto.key=TRUE)

Table 6 – Output of summary
rxLinMod.formula(formula = ArrDelay ~ -1 + DayOfWeek,

data = dataName, cube=TRUE)

Coefficients : Es timate Std. Error t va lue Pr(>|t|)

DayOfWeek.Monday 6.669515 0.007288 915.1 2.22E-16

DayOfWeek.Tuesday 5.960421 0.00731 815.4 2.22E-16

DayOfWeek.Wednesday 7.091502 0.007299 971.6 2.22E-16

DayOfWeek.Thursday 8.945047 0.007302 1225 2.22E-16

DayOfWeek.Friday 9.606953 0.007297 1316.6 2.22E-16

DayOfWeek.Saturday 4.187419 0.00777 538.9 2.22E-16

DayOfWeek.Sunday 6.52504 0.007481 872.2 2.22E-16

Res idual s tandard error: 30.71 on 120947433 degrees of freedom

Multiple R-squared: 0.002933,

F-s tatis tic: 5 Adjusted R-squared: 0.002933

 Figure 1 – Average Arrival Delay by Day of Week

DayOfWeek

A
rrD

el
ay

4

5

6

7

8

9

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

8

Table 7 – Output from cube option
arrDelayLm1$countDF

DayOfWeek ArrDelay Counts

Monday 6.669515 17750849

Tuesday 5.960421 17643973

Wednesday 7.091502 17697936

Thursday 8.945047 17683723

 Friday 9.606953 17707329

Saturday 4.187419 15617054

Sunday 6.52504 16846576

The RevoScaleR package also contains a predict function for predicting values of a linear model
and computing residuals. The rxPredict function in Code Block4 appends the variables
ArrDelay_Pred and ArrDelay_Resid as columns 30 and 31, respectively, to the airlines data file.
Figure 2 which shows 9 residual plots of 1000 residuals randomly selected from the file
Airlinedata87To08, illustrates how the residuals are available to R for further analysis.

Code Block 4
Predict function computes predicted values and residuals
rxPredict(modelObject=arrDelayLm1,data=dataName,computeResiduals=TRUE)
par(mfrow=c(3,3))
start <- runif(16,1,120000000)
for (i in 1:9){
 residualDF <- rxReadXdf(file=dataName,varsToKeep="ArrDelay_Resid",
 startRow= start[i],numRows=1000)
 plot(residualDF$ArrDelay_Resid)}

Figure 2 – 1000 residuals from 4 random locations*

* 31730477 72004173 83622653 6801174 47990749 99815488 17721542 88637507 43808465

9

Next, we consider a multiple regression of arrival delay (ArrDelay) on the day of the week
(DayOfWeek) and departure time (CRSDepTime). The second line of Code Block 5 constructs
the linear model to carry out the regression and illustrates the “inline” use of the “F” function
which makes a factor variable out of CRSDepTime on the fly as it is being used to construct the
linear model. This function illustrates a fundamental design concept of RevoScaleR: the ability
efficiently transform data, and create new variables without having to make multiple passes
through the file. The cube option produces a table of arrival delay counts by departure time and
day of the week. The first five lines of this output are displayed in Table 8. Figure 3 show a plot
of arrival delay by departure time and day of the week that is based on these data.

Code Block 5
Multiple Regression
arrDelayLm2 <- rxLinMod(ArrDelay ~ DayOfWeek:F(CRSDepTime),
data=dataName,cube=TRUE)
arrDelayDT <- arrDelayLm2$countDF
arrDelayDT[1:5,]
summary(arrDelayLm2)
names(arrDelayDT) <- c("DayOfWeek", "DepartureHour", "ArrDelay", "Counts")
xyplot(ArrDelay ~ DepartureHour|DayOfWeek, data = arrDelayDT,
type = "l", lwd=3,pch=c(16,17),
main='Average Arrival Delay by Day of Week by Departure Hour', layout=c(2,4),
auto.key=TRUE)

Table 8. Output from Cube Option
> arrDelayDT[1:5,]

Row DayOfWeek X.CRSDepTime ArrDelay Counts

1 Monday 0 6.687033 142344

2 Tuesday 0 6.318279 129261

3 Wednesday 0 7.891790 128777

4 Thursday 0 8.692393 125657

5 Friday 0 8.381638 126683

10

Figure 3. Plot of Data produced by Cube Option
Average Arrival Delay by Day of Wee

DepartureHour

A
rrD

el
ay

0
5

10
15

20

0 1 2 3 4 5 6 7 8 9 101112131415161718192021222324

Monday Tuesday

Wednesday

0

5
10

15
20

Thursday
0

5

10
15

20
Friday Saturday

0
5

10

15
20

Sunday

Finally, we illustrate the flexible way the RevoScaleR function rxDataStepXdf can be used to
generate a file containing a subset of the airlines data and new variables that are transformations
of some of the variables in the airlines data file. These variables are created “on the fly” with the
help of the transformFunc parameter to the rxDataStepXdf function. The first six lines of Code
Block 6 are a function that defines the new variable. Lines 9 and 10 show the rxDataStepXdf
function which reads the airline data file, creates an new file keeping only the variables
designated and transforms these variables using the specified transformation function.

Code Block 6
Create function to transform data
myTransforms <- function(data){

data$Late <- data$ArrDelay > 15
data$DepHour <- as.integer(data$CRSDepTime)
data$Night <- data$DepHour >= 20 | data$DepHour <= 5
return(data)}

The rxDataStepXdf function read the existing data set, performs the
transformations, and creates a new data set.
rxDataStepXdf(outData="ADS2", inData=dataName, transformFunc=myTransforms,
 varsToKeep=c("ArrDelay","CRSDepTime","DepTime"))

rxShowInfoXdf("ADS2", numRows=5)
Run a logistic regression using the new variables
logitObj <- rxLogit(Late~DepHour+Night, data="ADS2", verbose=TRUE

11

Table 9 shows the meta-data for the newly created file, called ADS2, and shows the first five
llines of data. Table 10 shows the output from perfroming a logistic regression using the newly
defined variables.

Table 9. Description of data file ADS2 and first five rows of data
> rxShowInfoXdf("ADS2", numRows=5)

Name: C:\. . . \ADS2.xdf

Number of rows: 123534969

Number of variables : 6

Number of blocks : 832

Column Information:

Col 1: 'ArrDelay', Int (Min/Max=-1437,2598)

Col 2: 'CRSDepTime', Float (Min/Max=0,24)

Col 3: 'DepTime', Float (Min/Max=0.0166667,29.5)

Col 4: 'Late', UChar (Min/Max=0,1)

Col 5: 'DepHour', Int

Col 6: 'Night', UChar (Min/Max=0,1)

DataSet[5, 6]

Col 1: 'ArrDelay', Int [5, 1] (Min/Max=-1437,2598)

Col 2: 'CRSDepTime', Float [5, 1] (Min/Max=0,24)

Col 3: 'DepTime', Float [5, 1] (Min/Max=0.0166667,29.5)

Col 4: 'Late', UChar [5, 1] (Min/Max=0,1) NumSelected = 3

Col 5: 'DepHour', Int [5, 1]

Col 6: 'Night', UChar [5, 1] (Min/Max=0,1) NumSelected = 0

ArrDelay CRSDepTime DepTime Late DepHour Night

[1,.] 23 7.5000 7.6833 T 7 F

[2,.] 14 7.5000 7.4833 F 7 F

[3,.] 29 7.5000 7.6833 T 7 F

[4,.] -2 7.5000 7.4833 F 7 F

[5,.] 33 7.5000 7.8167 T 7 F
Table 10. Output from logistic regression
Logis tic Regress ion Resul ts for: Late ~ DepHour + Night

Dependent Variable: Late

Tota l independent variables : 3

Number of va l id observations : 120947440 (Number excluded for miss ings : 2587529)

-2*LogLikel ihood: 1.17048e+008 (Res idual Deviance on 120947437 degrees of freedom)

Condition number of fina l VC matrix: 67.1834

Row Coeffs . Va lue Std. Error t Va lue Pr(>|t|)

[1,.] (Intercept) -2.3573 0.0008 -2960.3166 0.0000

[2,.] DepHour 0.0705 0.0001 1219.4029 0.0000

[3,.] Night -0.2033 0.0008 -255.8746 0.0000

12

RevoScaleR Benchmarks
In order to provide some idea of the performance that can be reasonably expected from
RevoScaleR functions operating on moderately sized data sets, this section provides benchmarks
of rxLinMod, rxCrossTabs and rxLogit. All benchmarks were conducted on two platforms: (1) a
Lenovo Thinkpad laptop with dual-core, Intel P8600 2.40GHz processor and 3 GB of RAM
running Windows 7, and (2) an Intel Xeon X5660 server with 2 2.80 GHz CPUs each with 6
cores and 12 threads with 72GB of RAM running Windows Server 2008. While no formal
comparisons are against other well known statistical systems are included in this analysis, we
believe that RevoScaleR’s capacity and performance abilities substantially out-perform
competitive products.

rxLinMod
The file AirlineData87to08 contains information on flight arrivals and departure details for all
commercial flights within the US from October 1987 to April. It is 13,280,936 KB and contains
123,534,969 rows and 29 columns. Table 4 above provides a summary of the information in the
file. The following R code (Code Block 7) runs a simple regression followed by a multiple
regression with three explanatory variables. Note that the explanatory variables are categorical.
The cube option for rxLinMod ensures the efficient processing of categorical data.

Code Block 7
library(RevoScaleR)
#rxOptions(numCoresToUse=12)
defaultDataDir <- "C:/Users/. . ./revoAnalytics"
dataName <- file.path(defaultDataDir,"AirlineData87to08")
rxShowInfoXdf(dataName)
Simple Regression
system.time(delayArr <- rxLinMod(ArrDelay ~
DayOfWeek,data=dataName,blocksPerRead=30))
summary(delayArr)
Multiple Regression
system.time(delayCarrierLoc <- rxLinMod(ArrDelay ~

UniqueCarrier+Origin+Dest,data=dataName,blocksPerRead=30,cube=TRUE))

Table 11 contains the results of the regression benchmarks. Note that the average time for first
runs of the simple regression on the laptop is considerably longer than the average time to
complete subsequent runs of the same regression. This was most likely due to disk caching on
the laptop. This phenomenon was not observed when doing the multiple regression on the laptop
and it was not observed at all on the server. Performance on the server was consistent among
multiple runs. Other than setting the number of cores to be used by the RevoScaleR compute
engine equal to 12, the number of real cores available on the server, no attempt was made to
optimize the performance of the server.

Table 11 – Regression Benchmark Results

 Average Elapsed Time (seconds)

Simple Regression Laptop Server

first run 38.74 NA

subsequent runs 4.05 2.6

Multiple Regression 85.9 21.01

13

rxCrossTabs
The file CensusIp2001 contains US census data. It is 17,079,992 KB, and contains 14,583,271
rows and 265 columns. Table 12 contains a portion of the output describing the file
CensusIp2001 that is produced by the command rxShoInfoXdf.

Table 12 - Header Information and first five columns of CensusIp2001

> rxShowInfoXdf(dataFile)

Name: C:\Users\. . . \CensusIp20001.xdf

Number of rows: 14583731

Number of variables: 265

Number of blocks: 487

Column Information:

Col 1: 'rectype', UInt (Min/Max/PadForMissings=0,1,0) Labels

Col 2: 'year', ('Census year'), UInt (Min/Max/PadForMissings=0,13,0) Labels Codes

Col 3: 'datanum', ('Data set number'), Int (Min/Max=1,1)

Col 4: 'serial', Int (Min/Max=1,6175965)

Col 5: 'numprec', ('Number of person records following'), Int (Min/Max=0,54) Labels Codes

The following R code (Code Block 8) runs the benchmark. Note that the text string in the third
line must include the entire path to the directory containing the file

Code Block 8
library(RevoScaleR)
rxOptions(numCoresToUse=12) # Only run on the Server
defaultDataDir <- "C:/Users/. . . "
dataFile <- file.path(defaultDataDir,"CensusIp20001")
rxShowInfoXdf(dataFile)
Compute a 4-way cross tabulation
system.time(asmc <- rxCrossTabs(~F(age)+sex+F(marst)+F(condo),
 data=dataFile,pweights="perwt",blocksPerRead=25))

Table 13 presents the results of the benchmarks. Notice that the first time the 2-way cross-tab
was run on the laptop it took and average of 14.17 seconds to complete, while subsequent runs
completed in little over a second. This phenomenon is most likely due to disk caching. Also note
that the 4-way cross-tab on the laptop ran slightly faster, on average, than the 2-way cross-tab.
This effect is also most likely due to disk caching as the laptop was not rebooted between runs.

Table 13 - Results of rxCrossTabs Benchmark

 Average Elapsed Time (seconds)

2-way cross tab Laptop Server

first run 14.17 NA

subsequent runs 1.2 1.78

4-way cross tab

first run 11.26 NA

subsequent runs 1.56 2.9

14

Performance on the server was consistent among multiple runs. No first run effect was observed
which is to be expected. Other than setting the number of cores to be used by the RevoScaleR
compute engine equal to 12, the number of real cores available on the server, no attempt was
made to optimize the performance of the server.

rxLogit
The file mortDefault contains ten years of mortgage default data (2000 to 2009). It is 234,378
KB, has 10,000,000 and 6 variables (Table 14). Code Block 9 presents function to run the
regression and Table 15 contains the benchmark results.

Table 14 – Header Information and Variables in Mortgage File

> rxShowInfoXdf(dataFileName)

Name: C:\Users\. . .\mortDefault.xdf

Number of rows: 10000000

Number of variables: 6

Number of blocks: 10

Column Information:

Col 1: 'creditScore', Int (Min/Max=432,955)

Col 2: 'houseAge', UInt (Min/Max/PadForMissings=0,40,0) Labels

Col 3: 'yearsEmploy', Int (Min/Max=0,15)

Col 4: 'ccDebt', Int (Min/Max=0,15566)

Col 5: 'year', UInt (Min/Max/PadForMissings=0,9,0) Labels

Col 6: 'default', Int (Min/Max=0,1)

Code Block 9
Run a logistic regression on the file
system.time(logitObj <- rxLogit(default~creditScore + yearsEmploy + ccDebt
 + houseAge + year,data=dataFileName,
 blocksPerRead=2, verbose=TRUE,reportProgress="time"))

Table 15 – Results of rxLogit Benchmarks

 Average Elapsed Time (seconds)

 Laptop Server

Logistic Regression 65.37 22.17

Summary

The RevoScaleR package from Revolution Analytics provides external memory algorithms that
help R break through the memory/performance barrier. The XDF file format provides an
efficient and flexible mechanism for processing large data sets. The new package provides
functions for creating XDF files from text files, writing XDF data to text files and data frames
and for transforming and manipulating variables during the read/ write process.

15

The new package also contains statistical functions for generating summary statistics, performing
multi-way cross tabulations on large data sets and for developing linear models and performing
logistic regressions. Preliminary benchmarks show that RevoScaleR functions are fast and
efficient -- enabling real data analysis to be performed on a 120 + million row, 13GB data set on
a common dual core laptop. Moreover, the benchmarks show that the performance of
RevoScaleR functions scale nicely as computational resources increase.

References
[1] Revolution Analytics. RevoScaleR: Getting Started Guide, July 19, 2010

[2] Vitter, Jeffry Scott. Algorithms and Data Structures for External Memory. Now Publishers,
Inc.: Hannover, MA 2008

	Big Data Analysis
	with Revolution R Enterprise
	August 2010
	Joseph B. Rickert

	Background
	Limitations of In-memory Data Analysis
	RevoScaleR Features
	RevoScaleR XDF File Format
	Statistical Algorithms
	Extensible Programming Framework

	RevoScaleR Examples
	Code Block 1
	Code Block 2
	Code Block 3
	Code Block 4
	Code Block 5
	Code Block 6

	RevoScaleR Benchmarks
	rxLinMod
	Code Block 7
	rxCrossTabs
	Code Block 8
	rxLogit

	Summary
	References

