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Background 
 
The R language is well established as the language for doing statistics, data analysis, data-mining 
algorithm development, stock trading, credit risk scoring, market basket analysis and all manner 
of predictive analytics. However, given the deluge of data that must be processed and analyzed 
today, many organizations have been reticent about deploying R beyond research into production 
applications.  
 
The main barrier is that R is a memory-bound language. All data used in calculations — vectors, 
matrices, lists, data frames, and so forth — all need to be held in memory. Even for modern 
computers with 64-bit address spaces and huge amounts of RAM, dealing with data sets that are 
tens of gigabytes and hundreds of millions of rows (or larger) can present a significant challenge. 
The problem isn’t just one of capacity, that is, being simply being able to accommodate the data 
in memory for analysis. For mission-critical applications, performance is also a prime 
consideration: if the overnight analysis does not complete in time for the open of business the 
next day, that’s just as much of a failure as an out-of-memory error. And with data set sizes 
growing rapidly, scalability is also of concern: even if the in-memory analysis completes today, 
the IT manager still needs the confidence that the production run will complete — on time! — as 
the data set grows.  
 
Revolution Analytics has addressed these capacity, performance and scalability challenges with 
its “Big Data” initiative to extend the reach of R into the realm of production data analysis with 
terabyte-class data sets. This paper describes Revolution Analytics’ new add-on package called 
RevoScaleR™, which provides unprecedented levels of performance and capacity for statistical 
analysis in the R environment. For the first time, R users can process, visualize and model their 
largest data sets in a fraction of the time of legacy systems, without the need to deploy expensive 
or specialized hardware. 

Limitations of In-memory Data Analysis 
 
As mentioned above, R requires all data to be loaded into memory for processing. This design 
feature limits the size of files that can be analyzed on a modest desktop computer. For example, 
in the following line of code, the data frame, myData, contains 5,000,000 rows and three 
columns, only a very small subset of the airline data file that will be examined later in this paper. 
The error message from the R interpreter shows that even this relatively small file cannot be 
processed in the R environment on a PC with 3 gigabytes of memory. 
 
> lm(ArrDelay~UniqueCarrier+DayOfWeek, data=myData) 
Error: cannot allocate vector of size 751.8 Mb 
 
Of course, a high-end PC or server configured with much more memory and running a 64-bit 
version of R can go a considerable way in extending the memory barrier. But even when the data 
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can fit into memory, the performance of standard R on large files can be prohibitively slow. 
Really breaking through the memory/performance barrier requires implementing external 
memory algorithms and data structures that explicitly manage “data placement and 
movement”.[2] RevoScaleR brings parallel external memory algorithms and a new very efficient 
data file format to R. 

RevoScaleR Features 
 
The RevoScaleR package provides a mechanism for scaling the R language to handle very large 
data sets. There are three major components to this package: 

• A new file format especially designed for large files, 
• External memory implementations of the statistical algorithms most commonly used with 

large data sets, and 
• An extensible programming framework that allows R and later C++ programmers to 

write their own external memory algorithms that can take advantage of Revolution R 
Enterprise’s new Big Data capabilities. 

RevoScaleR XDF File Format 
 
RevoScaleR provides a new data file type with extension .xdf that has been optimized for “data 
chunking”, accessing parts of an Xdf file for independent processing. Xdf files store data in a 
binary format. Methods for accessing these files may use either horizontal (rows) or vertical 
(columns) block partitioning. The file format provides very fast access to a specified set of rows 
for a specified set of columns. New rows and columns can be added to the file without re-writing 
the entire file.  RevoScaleR also provides a new R class, RxDataSource, that has been designed 
to support the use of external memory algorithms with .xdf files. 
 
Table 1 lists the key functions for working with Xdf files: 
 
Table 1-Key Xdf Functions 
 Function Description 
rxDataFrameToXdf Write a data frame in memory to an Xdf file 
rxDataStepXdf Transform data from an input  Xdf file to and output .xdf file 
rxSetVarInfoXdf Modify the variable information for an Xdf file, including names, descriptions and factor labels 
rxGetVarInfoXdf Get the variable information for an Xdf file, including column names, descriptions, and factor 

labels. 
rxReadXdf Read data from an Xdf file into a data frame 
rxGetInfoXdf Get information about an Xdf file 
rxTextToXdf Convert text files into an Xdf file 
 
Table 2 lists some of the available low level functions for working with chunks of data. The 
RevoScaleR: Getting Started Guide presents detailed examples for working with these 
functions.[1] 
 
Table 2 - RxDataSource Functions 
Function Description 
rxOpenData Opens the data file for reading and returns a handle 
rxReadNext Reads the next chunk of data from the specified file using the data handle 
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rxReadAll Reads all of the data from the file specified by the data handle and creates a data frame 
rxCloseData Closes the data file specified by the data handle 

 

Statistical Algorithms 
 
The RevoScaleR package also contains parallel external memory implementations of the most 
common algorithms used to analyze very large data files. These functions, which are listed in 
Table 3, represent the initial release of the RevoScaleR package. Additional algorithms are 
planned for subsequent releases. 
 
Table 3 - Statistical Functions in RevoScaleR 
Function Description 
rxSummary Computes summary statistics on data in an Xdf file or in a data frame 
rxCrossTabs  Creates contingency tables by cross-classifying factors in an Xdf file or data frame. This 

function permits multi-dimensional cross classification 
rxLinMod Fits linear models from data residing in an Xdf file or data frame. rxLinModels fits both 

simple and multiple regression models. 
rxLogit Fits binomial, logistic regression models from data residing in and Xdf file or data frame 
rxPredict Computes predicted values and residuals for the models created by rxLinMod and rxLogit 
 
All of the RevoScaleR statistical functions produce objects that may be used as input to standard 
R functions. 
 

Extensible Programming Framework 
 
Advanced R users can write their own functions to exploit the capabilities of the Xdf files and 
RxdataSource objects. Any statistical or data mining function that can work on chunks of data 
and be implemented as an external memory algorithm is a candidate for a RevoScaleR 
implementation. This R programming interface is available in the initial release of RevoScaleR; a 
subsequent release will add a C++ programming interface. 

RevoScaleR Examples 
 
This section illustrates many of the capabilities of the RevoScaleR package through an extended 
example that uses the moderately large airlines data file: AirlineData87to08. This file contains 
flight arrival and departure details for all commercial flights within the United States for the 
period October 1987 through April 2008. The file contains 123,534,969 rows and 29 columns 
(variables).  It requires 13,280,963 KB (over 13 Gb) to store, uncompressed on disk.  
 
The first block of code immediately below (Code Block 1) loads the RevoScaleR library.  For a 
more robust computer, the number of cores can also be set appropriately using the rxOptions 
function. (For the Intel Xeon dual 6-core processor server used in the benchmarks below, setting 
this value to 12, the number of physical cores, produced optimal results.) 
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Code Block 1 
library(RevoScaleR) 
 
Code Block 2 access the file stored on disk in the Xdf format, displays information about the file  
and its variables (see Table 4) and produces a summary (Table 5) for two variables: Arrdelay and 
DayofWeek.  

Code Block 2 
defaultDataDir <- "C:/Users/ . . ./revoAnalytics" 
dataName <- file.path(defaultDataDir,"AirlineData87to08") 
rxGetInfoXdf(dataName, getVarInfo=TRUE) 
# Get summary data 
rxSummary(~ArrDelay:DayOfWeek,data=dataName) 
 
 
Table 4 – Information and Variables in Airline File  

> rxGetInfoXdf(dataName, getVarInfo=TRUE) 

Name: C:\Users\. . . \AirlineData87to08.xdf 

Number of rows: 123534969 

Number of variables: 29 

Number of blocks: 832 

Variable Information: 
Var 1: Year, Type: factor 
    22 factor levels: 1987 1988 1989 1990 1991 ... 2004 2005 2006 2007 2008 
Var 2: Month, Type: factor 
    12 factor levels: January February March April May ... August September October  
November December 
Var 3: DayofMonth, Type: factor 
    31 factor levels: 1 2 3 4 5 ... 27 28 29 30 31 
Var 4: DayOfWeek, Type: factor 
    7 factor levels: Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Var 5: DepTime, Type: numeric, Storage: float32, Low/High: (0.0167, 29.5000) 

Var 6: CRSDepTime, Type: numeric, Storage: float32, Low/High: (0.0000, 24.0000) 

Var 7: ArrTime, Type: numeric, Storage: float32, Low/High: (0.0167, 29.9167) 

Var 8: CRSArrTime, Type: numeric, Storage: float32, Low/High: (0.0000, 24.0000) 
Var 9: UniqueCarrier, Type: factor 
    29 factor levels: 9E AA AQ AS B6 ... UA US WN XE YV 
Var 10: FlightNum, Type: factor 
    8160 factor levels: 1451 1453 1454 1455 1457 ... 9742 9743 6813 6913 6513 
Var 11: TailNum, Type: factor 
    13537 factor levels: NA N7298U N7449U N7453U N7288U ... N516AS N763JB N766JB 
N75428 N75429 

Var 12: ActualElapsedTime, Type: integer, Low/High: (-719, 1883) 

Var 13: CRSElapsedTime, Type: integer, Low/High: (-1240, 1613) 

Var 14: AirTime, Type: integer, Low/High: (-3818, 3508) 

Var 15: ArrDelay, Type: integer, Low/High: (-1437, 2598) 

Var 16: DepDelay, Type: integer, Low/High: (-1410, 2601))  
Var 17: Origin, Type: factor 
    347 factor levels: SAN SFO BUR OAK LAX ... ROW GCC RKS MKG OTH 
Var 18: Dest, Type: factor 
    352 factor levels: SFO RNO OAK BUR LAX ... PIR GCC RKS MKG OTH 
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Var 19: Distance, Type: integer, Low/High: (0, 4983) 

Var 20: TaxiIn, Type: integer, Low/High: (0, 1523) 

Var 21: TaxiOut, Type: integer, Low/High: (0, 3905) 

Var 22: Cancelled, Type: logical, Storage: uchar, Low/High: (0, 1) 
Var 23: CancellationCode, Type: factor 
    5 factor levels: NA carrier weather NAS security 

Var 24: Diverted, Type: logical, Storage: uchar, Low/High: (0, 1) 

Var 25: CarrierDelay, Type: integer, Low/High: (0, 2580) 

Var 26: WeatherDelay, Type: integer, Low/High: (0, 1510) 

Var 27: NASDelay, Type: integer, Low/High: (-60, 1392 

Var 28: SecurityDelay, Type: integer, Low/High: (0, 533) 

Var 29: LateAircraftDelay, Type: integer, Low/High: (0, 1407) 
 
 
Table 5 – Summary of variables ArrDelay and DayofWeek 
Summary Statis tics  for: ArrDelay:DayOfWeek (Tota l : 123534969, Miss ing: 2587529)

 Name                                          Mean StdDev Min Max Val idObs

ArrDelay:DayOfWeek                                        7.049963 30.75081 -1437 2598 120947440

Statis tics  by category (7 categories ):

Category                      Means StdDev Min Max Val idObs

ArrDelay for DayOfWeek=Monday                              6.669515 30.17812 -1410 1879 17750849

ArrDelay for DayOfWeek=Tuesday                                  5.960421 29.06076 -1426 2137 17643973

ArrDelay for DayOfWeek=Wednesday                           7.091502 30.37856 -1405 2598 17697936

ArrDelay for DayOfWeek=Thursday                             8.945047 32.30101 -1395 2453 17683723

ArrDelay for DayOfWeek=Friday                                        9.606953 33.07271 -1437 1808 17707329

ArrDelay for DayOfWeek=Saturday                                4.187419 28.29972 -1280 1942 15617054

ArrDelay for DayOfWeek=Sunday               6.52504 31.11353 -1295 2461 16846576  
 
Next we perform a simple linear regression of ArrDelay against DayOfWeek using the “cube” 
option of rxLinMod, the RevoScaleR function to fit linear models. When cube is set to TRUE 
and the first explanatory variable in the regression model is categorical, rxLinMod uses a 
partitioned inverse algorithm to fit the model. This algorithm can be faster and uses less memory 
than the default inverse algorithm. Code Block 3 shows the code for fitting the model and uses 
the standard R functions to obtain the results of the regression (Table 6) and plot Arrival delay 
by day of week (Figure 1). 
 
Note that the p-values calculated by the standard t-test are extremely small, as would be expected 
by using such a simple model with such a large data set. Also note that the “cube” option 
produces a data frame as output that shows the counts of the data points that went into producing 
each coefficient (Table 7). 

Code Block 3 
# Fit a linear model with the cube option 
arrDelayLm1 <- rxLinMod(ArrDelay ~ -1+DayOfWeek, data=dataName, cube=TRUE) 
summary(arrDelayLm1)   # Use the standard R function summary 
arrDelayLm1$countDF   # Look at the optput from the cube option 
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# Plot arrival delay by day of week 
xyplot( ArrDelay ~ DayOfWeek, data = arrDelayLm1$countDF, type = "l",  
 lwd=3,pch=c(16,17), auto.key=TRUE) 
 
Table 6 – Output of summary 
rxLinMod.formula(formula  = ArrDelay ~ -1 + DayOfWeek, 

data  = dataName, cube=TRUE)

Coefficients :        Es timate Std. Error t va lue Pr(>|t|)

DayOfWeek.Monday         6.669515 0.007288 915.1 2.22E-16

DayOfWeek.Tuesday       5.960421 0.00731 815.4 2.22E-16

DayOfWeek.Wednesday       7.091502 0.007299 971.6 2.22E-16

DayOfWeek.Thursday     8.945047 0.007302 1225 2.22E-16

DayOfWeek.Friday        9.606953 0.007297 1316.6 2.22E-16

DayOfWeek.Saturday       4.187419 0.00777 538.9 2.22E-16

DayOfWeek.Sunday         6.52504 0.007481 872.2 2.22E-16

Res idual  s tandard error: 30.71 on 120947433 degrees  of freedom

Multiple R-squared: 0.002933,

F-s tatis tic: 5           Adjusted R-squared: 0.002933  
 
 
  Figure 1 – Average Arrival Delay by Day of Week 
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Table 7 – Output from cube option 
arrDelayLm1$countDF   

DayOfWeek    ArrDelay  Counts 

Monday  6.669515 17750849 

Tuesday  5.960421 17643973 

Wednesday   7.091502 17697936 

Thursday  8.945047 17683723 

 Friday 9.606953 17707329 

Saturday   4.187419 15617054 

Sunday   6.52504 16846576 
  

The RevoScaleR package also contains a predict function for predicting values of a linear model 
and computing residuals. The rxPredict function in Code Block4 appends the variables 
ArrDelay_Pred and ArrDelay_Resid as columns 30 and 31, respectively, to the airlines data file. 
Figure 2 which shows 9 residual plots of 1000 residuals randomly selected from the file 
Airlinedata87To08, illustrates how the residuals are available to R for further analysis. 

Code Block 4 
# Predict function computes predicted values and residuals 
rxPredict(modelObject=arrDelayLm1,data=dataName,computeResiduals=TRUE) 
par(mfrow=c(3,3)) 
start <- runif(16,1,120000000) 
for (i in 1:9){ 
 residualDF <- rxReadXdf(file=dataName,varsToKeep="ArrDelay_Resid", 
                    startRow= start[i],numRows=1000) 
      plot(residualDF$ArrDelay_Resid)} 
 
Figure 2 – 1000 residuals from 4 random locations* 

 

* 31730477  72004173  83622653   6801174  47990749  99815488  17721542 88637507  43808465 
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Next, we consider a multiple regression of arrival delay (ArrDelay) on the day of the week 
(DayOfWeek) and departure time (CRSDepTime). The second line of Code Block 5 constructs 
the linear model to carry out the regression and illustrates the “inline” use of the “F” function 
which makes a factor variable out of CRSDepTime on the fly as it is being used to construct the 
linear model. This function illustrates a fundamental design concept of RevoScaleR: the ability 
efficiently transform data, and create new variables without having to make multiple passes 
through the file. The cube option produces a table of arrival delay counts by departure time and 
day of the week. The first five lines of this output are displayed in Table 8. Figure 3 show a plot 
of arrival delay by departure time and day of the week that is based on these data. 

Code Block 5 
# Multiple Regression 
arrDelayLm2 <- rxLinMod(ArrDelay ~ DayOfWeek:F(CRSDepTime), 
data=dataName,cube=TRUE) 
arrDelayDT <- arrDelayLm2$countDF 
arrDelayDT[1:5,] 
summary(arrDelayLm2) 
names(arrDelayDT) <- c("DayOfWeek", "DepartureHour", "ArrDelay", "Counts") 
xyplot( ArrDelay ~ DepartureHour|DayOfWeek, data = arrDelayDT, 
type = "l", lwd=3,pch=c(16,17), 
main='Average Arrival Delay by Day of Week by Departure Hour', layout=c(2,4), 
auto.key=TRUE) 

Table 8. Output from Cube Option 
> arrDelayDT[1:5,]

Row DayOfWeek X.CRSDepTime ArrDelay Counts

1 Monday            0 6.687033 142344

2 Tuesday            0 6.318279 129261

3  Wednesday           0 7.891790 128777

4 Thursday            0 8.692393 125657

5 Friday           0 8.381638 126683  
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Figure 3. Plot of Data produced by Cube Option 
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Finally, we illustrate the flexible way the RevoScaleR function rxDataStepXdf can be used to 
generate a file containing a subset of the airlines data and new variables that are transformations 
of some of the variables in the airlines data file. These variables are created “on the fly” with the 
help of the transformFunc parameter to the rxDataStepXdf function. The first six lines of Code 
Block 6 are a function that defines the new variable. Lines 9 and 10 show the rxDataStepXdf 
function which reads the airline data file, creates an new file keeping only the variables 
designated and transforms these variables using the specified transformation function.  
 

Code Block 6 
# Create function to transform data 
myTransforms <- function(data){ 

data$Late <- data$ArrDelay > 15 
data$DepHour <- as.integer(data$CRSDepTime) 
data$Night <- data$DepHour >= 20 | data$DepHour <= 5 
return(data)} 

# The rxDataStepXdf function read the existing data set, performs the 
# transformations, and creates a new data set. 
rxDataStepXdf(outData="ADS2", inData=dataName, transformFunc=myTransforms, 
 varsToKeep=c("ArrDelay","CRSDepTime","DepTime")) 
# 
rxShowInfoXdf("ADS2", numRows=5) 
# Run a logistic regression using the new variables 
logitObj <- rxLogit(Late~DepHour+Night, data="ADS2", verbose=TRUE 
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Table 9 shows the meta-data for the newly created file, called ADS2, and shows the first five 
llines of data. Table 10 shows the output from perfroming a logistic regression using the newly 
defined variables. 

 

Table 9. Description of data file ADS2 and first five rows of data 
> rxShowInfoXdf("ADS2", numRows=5)

Name: C:\. . . \ADS2.xdf

Number of rows: 123534969

Number of variables : 6

Number of blocks : 832

Column Information:

Col  1: 'ArrDelay', Int (Min/Max=-1437,2598) 

Col  2: 'CRSDepTime', Float (Min/Max=0,24) 

Col  3: 'DepTime', Float (Min/Max=0.0166667,29.5) 

Col  4: 'Late', UChar (Min/Max=0,1) 

Col  5: 'DepHour', Int

Col  6: 'Night', UChar (Min/Max=0,1) 

DataSet[5, 6]

Col  1: 'ArrDelay', Int [5, 1]  (Min/Max=-1437,2598) 

Col  2: 'CRSDepTime', Float [5, 1]  (Min/Max=0,24) 

Col  3: 'DepTime', Float [5, 1]  (Min/Max=0.0166667,29.5) 

Col  4: 'Late', UChar [5, 1]  (Min/Max=0,1)  NumSelected = 3

Col  5: 'DepHour', Int [5, 1] 

Col  6: 'Night', UChar [5, 1]  (Min/Max=0,1)  NumSelected = 0

ArrDelay CRSDepTime DepTime Late DepHour Night

[   1,.] 23 7.5000 7.6833 T 7 F 

[   2,.] 14 7.5000 7.4833 F 7 F 

[   3,.] 29 7.5000 7.6833 T 7 F 

[   4,.] -2 7.5000 7.4833 F 7 F 

[   5,.] 33 7.5000 7.8167 T 7 F  
Table 10. Output from logistic regression 
Logis tic Regress ion Resul ts  for: Late ~ DepHour + Night

Dependent Variable: Late

Tota l  independent variables : 3

Number of va l id observations : 120947440 (Number excluded for miss ings : 2587529)

-2*LogLikel ihood: 1.17048e+008 (Res idual  Deviance on 120947437 degrees  of freedom)

Condition number of fina l  VC matrix: 67.1834

Row Coeffs . Va lue Std. Error t Va lue Pr(>|t|)

[   1,.] (Intercept) -2.3573 0.0008 -2960.3166 0.0000

[   2,.] DepHour 0.0705 0.0001 1219.4029 0.0000

[   3,.] Night -0.2033 0.0008 -255.8746 0.0000  
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RevoScaleR Benchmarks 
In order to provide some idea of the performance that can be reasonably expected from 
RevoScaleR functions operating on moderately sized data sets, this section provides benchmarks 
of rxLinMod, rxCrossTabs and rxLogit. All benchmarks were conducted on two platforms: (1) a 
Lenovo Thinkpad laptop with dual-core, Intel P8600 2.40GHz processor and 3 GB of RAM 
running Windows 7, and (2) an Intel Xeon X5660 server with 2 2.80 GHz CPUs each with 6 
cores and 12 threads with 72GB of RAM running Windows Server 2008. While no formal 
comparisons are against other well known statistical systems are included in this analysis, we 
believe that RevoScaleR’s capacity and performance abilities substantially out-perform 
competitive products.  

rxLinMod 
The file AirlineData87to08 contains information on flight arrivals and departure details for all 
commercial flights within the US from October 1987 to April. It is 13,280,936 KB and contains 
123,534,969 rows and 29 columns. Table 4 above provides a summary of the information in the 
file. The following R code (Code Block 7) runs a simple regression followed by a multiple 
regression with three explanatory variables. Note that the explanatory variables are categorical. 
The cube option for rxLinMod ensures the efficient processing of categorical data. 

Code Block 7 
library(RevoScaleR) 
#rxOptions(numCoresToUse=12) 
defaultDataDir <- "C:/Users/. . ./revoAnalytics" 
dataName <- file.path(defaultDataDir,"AirlineData87to08") 
rxShowInfoXdf(dataName) 
# Simple Regression 
system.time(delayArr <- rxLinMod(ArrDelay ~ 
DayOfWeek,data=dataName,blocksPerRead=30)) 
# summary(delayArr) 
# Multiple Regression 
system.time(delayCarrierLoc <- rxLinMod(ArrDelay ~  

UniqueCarrier+Origin+Dest,data=dataName,blocksPerRead=30,cube=TRUE)) 
 
Table 11 contains the results of the regression benchmarks. Note that the average time for first 
runs of the simple regression on the laptop is considerably longer than the average time to 
complete subsequent runs of the same regression. This was most likely due to disk caching on 
the laptop. This phenomenon was not observed when doing the multiple regression on the laptop 
and it was not observed at all on the server. Performance on the server was consistent among 
multiple runs. Other than setting the number of cores to be used by the RevoScaleR compute 
engine equal to 12, the number of real cores available on the server, no attempt was made to 
optimize the performance of the server. 
 
Table 11 – Regression Benchmark Results 

  Average Elapsed Time (seconds) 

Simple Regression Laptop Server 

first run 38.74 NA 

subsequent runs 4.05 2.6 

Multiple Regression 85.9 21.01 
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rxCrossTabs 
The file CensusIp2001 contains US census data. It is 17,079,992 KB, and contains 14,583,271 
rows and 265 columns. Table 12 contains a portion of the output describing the file 
CensusIp2001 that is produced by the command rxShoInfoXdf. 
 
Table 12 - Header Information and first five columns of CensusIp2001 

> rxShowInfoXdf(dataFile) 

Name: C:\Users\. . . \CensusIp20001.xdf 

Number of rows: 14583731 

Number of variables: 265 

Number of blocks: 487 

Column Information: 

Col 1: 'rectype', UInt (Min/Max/PadForMissings=0,1,0)  Labels 

Col 2: 'year', ('Census year'), UInt (Min/Max/PadForMissings=0,13,0)  Labels Codes 

Col 3: 'datanum', ('Data set number'), Int (Min/Max=1,1)  

Col 4: 'serial', Int (Min/Max=1,6175965)  

Col 5: 'numprec', ('Number of person records following'), Int (Min/Max=0,54)  Labels Codes 
 
The following R code (Code Block 8) runs the benchmark. Note that the text string in the third 
line must include the entire path to the directory containing the file 

Code Block 8 
library(RevoScaleR) 
rxOptions(numCoresToUse=12) # Only run on the Server 
defaultDataDir <- "C:/Users/. . . " 
dataFile <- file.path(defaultDataDir,"CensusIp20001") 
rxShowInfoXdf(dataFile) 
# Compute a 4-way cross tabulation 
system.time(asmc <- rxCrossTabs(~F(age)+sex+F(marst)+F(condo), 
                 data=dataFile,pweights="perwt",blocksPerRead=25)) 
 
Table 13 presents the results of the benchmarks. Notice that the first time the 2-way cross-tab 
was run on the laptop it took and average of 14.17 seconds to complete, while subsequent runs 
completed in little over a second. This phenomenon is most likely due to disk caching. Also note 
that the 4-way cross-tab on the laptop ran slightly faster, on average, than the 2-way cross-tab. 
This effect is also most likely due to disk caching as the laptop was not rebooted between runs.  
 
Table 13 - Results of rxCrossTabs Benchmark 

  Average Elapsed Time (seconds) 

2-way cross tab Laptop Server 

first run 14.17 NA 

subsequent runs 1.2 1.78 

4-way cross tab     

first run 11.26 NA 

subsequent runs 1.56 2.9 
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Performance on the server was consistent among multiple runs. No first run effect was observed 
which is to be expected. Other than setting the number of cores to be used by the RevoScaleR 
compute engine equal to 12, the number of real cores available on the server, no attempt was 
made to optimize the performance of the server. 

rxLogit 
The file mortDefault contains ten years of mortgage default data (2000 to 2009). It is 234,378 
KB, has 10,000,000 and 6 variables (Table 14). Code Block 9 presents function to run the 
regression and Table 15 contains the benchmark results. 
 
Table 14 – Header Information and Variables in Mortgage File 

> rxShowInfoXdf(dataFileName) 

Name: C:\Users\. . .\mortDefault.xdf 

Number of rows: 10000000 

Number of variables: 6 

Number of blocks: 10 

Column Information: 

Col 1: 'creditScore', Int (Min/Max=432,955)  

Col 2: 'houseAge', UInt (Min/Max/PadForMissings=0,40,0)  Labels 

Col 3: 'yearsEmploy', Int (Min/Max=0,15)  

Col 4: 'ccDebt', Int (Min/Max=0,15566)  

Col 5: 'year', UInt (Min/Max/PadForMissings=0,9,0)  Labels 

Col 6: 'default', Int (Min/Max=0,1)  
 
Code Block 9 
# Run a logistic regression on the file 
system.time(logitObj <- rxLogit(default~creditScore + yearsEmploy + ccDebt  
                  + houseAge + year,data=dataFileName, 
                       blocksPerRead=2, verbose=TRUE,reportProgress="time")) 

 
 
Table 15 – Results of rxLogit Benchmarks 

  Average Elapsed Time (seconds) 

 Laptop Server 

Logistic Regression 65.37 22.17 
 

Summary 
 
The RevoScaleR package from Revolution Analytics provides external memory algorithms that 
help R break through the memory/performance barrier. The XDF file format provides an 
efficient and flexible mechanism for processing large data sets. The new package provides 
functions for creating XDF files from text files, writing XDF data to text files and data frames 
and for transforming and manipulating variables during the read/ write process.  
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The new package also contains statistical functions for generating summary statistics, performing 
multi-way cross tabulations on large data sets and for developing linear models and performing 
logistic regressions. Preliminary benchmarks show that RevoScaleR functions are fast and 
efficient -- enabling real data analysis to be performed on a 120 + million row, 13GB data set on 
a common dual core laptop. Moreover, the benchmarks show that the performance of 
RevoScaleR functions scale nicely as computational resources increase. 
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