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We demonstrate that the expected value and variance commonly given for a 
well-known probability distribution are incorrect. We also provide corrected 
versions and report changes in a computer program to account for the known 
practical uses of this distribution. 

The probability distribution in question, named the continuous parameter 
binomial (CPB) by King (1989a), has been known for at least six decades. 
The publications that reported the moments incorrectly, or were at least un- 
clear about them, include a dated article (Guldberg 1931), a dissertation and 
several resulting published articles (Katz 1945, 1965), a popular reference 
book (Johnson and Kotz 1969),' work in political science on event count 
regression models (King 1989a), and extensions of these event count models 
in econometrics (Winkelmann and Zimmermann 1991). Event count regres- 
sion models have become increasingly common in empirical political science 
research; some recent examples include Wang et al. (1993) and Krause 
(1994). 

We first prove that the commonly given expressions for the expectation 
and variance of the CPB are incorrect. Then, we derive the correct expres- 
sions. Finally, we evaluate the impact on the existing empirical applications of 
event count regression models (in political science and elsewhere), which rely 
in part on the CPB but the wrong expectation or variance. We show that the 
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1. Johnson and Kotz (1969) did not give the CPB expected value explicitly. However, they 
do so implicitly by giving the factorial moments in their equation 42 (p. 41) and saying that it 
applies to the CPB; these are wrong because they imply the wrong expression for the expected 
value. 
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corrections will not materially affect any existing substantive results. We also 
provide information in this section about a computer program to run event 
count regression models and for which the moments have been corrected. 

The Problem 

As is well known, a random variable Y has a binomial distribution with 
parameters n, n E N, and p, p E (0,l) (writing Y - ~ ( ~ l n , ~ ) )  if 

where k = 0, l  , . . . , n. The expectation and variance of Y are given by E(Y) = 
np and Var(Y) = np(1 - p), respectively. 

The CPB arises by replacing the nonnegative integer n in equation 1 by a 
continuous a E R+ where k = 0,1,. . . , ti and 

int(a) + 1 if a non-integer 
a if a integer 

When a is not an integer, the p, terms do not sum to one as is required for 
probability distributions. Thus, the probabilities pk are obtained by applying 
the following normalization: 

For continuous a ,  we rewrite equation 1, using either the generalized bino- 
mial coefficient (:) or the Gamma function: 

since n! = r(n + 1). The claim we disprove is that the expected value of the 
probability distribution defined by equation 2 is equal to ap for all a and p. 

Proposition 1 

Let the random variable Y have a continuous parameter binomial distribution 
C ~ B ( ~ l a , p ) ,  where a ,  p E (0,l). Then 
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hwf. 
If a E (0,l) then k E {0,1), and 

Moreover. 

The Solution 

The correct expected value can be calculated by the usual formula: 

Using the same method as above, E(Y) can be calculated for successive 
intervals of a and generalized. For the first three unit regions, the expected 
value is as follows. 
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E ( Y ( 2  < a 3,p) = ap 

The same pattern continues for subsequent intervals of a. Generalizing over 
all a and p yields 

where 

and (y), is Pochhammer's symbol, given by 

= Y(Y + I)(Y + 2) . . . (Y + i - 1) 

(Y)O = 1. 

Equation 6 may alternatively be written as 

where (t) is the generalized binomial coeflcient, defined for real n and integer 
k as 

Appendix A gives a more formal proof of this same result. 
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The difference between the expected value ap assumed in the literature 
and the correct expression in equation 5 is not large, but it is not zero, and it 
varies with the two parameters of the CPB. Fortunately, it can be easily shown 
that the @-ratio in equation 5 converges for both a andp. There are a number 
of interesting characteristics to the error's limits centering around this ratio. 
First, notice that in the @-ratio all but the first term in both the numerator and 
denominator polynomials contain a pi term; where i 2 1. Thus, 

Similarly, all but the first term in both the numerator and denominator poly- 
nomials contain an ( a  - A) term. Therefore, for the intervals A - 1 < a 5 A, 

Finally, there is an overall convergence in the @-ratio as a increases. Note 
that the numerator and denominator polynomials of the @-ratio are exactly the 
same, except for the last term in the denominator. As a increases, this addi- 
tional term decreases in its effect on the ratio, giving 

To get a feel for this convergence we present figure 1. This figure is a three- 
dimensional plot with values of a andp along the two axes on the floor (with 
ranges 1 < a 5 10 and 0 5 p 5 1, respectively) and with the height of the 
surface representing the effect of @il-l(a - A,p)l@fi(a - A#). As the above 
limits indicate, the surface is on or near the floor (i.e., a ratio of one) for most 
combinations of a and p. The effect of the @-ratio on ap decreases exponen- 
tially asp  decreases, decreases in each interval A - 1 < a A as a+ ri, and 
decreases exponentially overall as a + m. 

To get a feel for the difference between the expected value ap assumed in 
the literature and the correct expression in equation 5, we present two addi- 
tional figures. Figure 2 is, again, a three-dimensional plot with values of a 
and p along the two axes on the floor (with ranges 0 < a 5 5 and 0 I p 5 1, 
respectively), and with the height of the surface representing the error 4a.p) 
= E(Y)  - q. As can be seen, the surface is on or near the floor (i.e., zero 
error) for most combinations of a and p. The error decreases as p decreases, 
decreases in each interval A - 1 < a 5 A as a-+ A, and decreases overall as a 
-* m. The largest errors are for values of p near 1.0 and a near zero. 
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Eg. 1 .  The effect of @-'(a  - ti,p)/@qa - ti,p) for 1 5 a 5 10 and 0 5 p I 1. Fig.2. PIotoftheerrore(a,p) = -E(Yla,p) - a p f o r O s a 5 5 a n d O s ~ 5 1 .  
The effect of @"-'(a - ti,p)lW(a - n,p) on up decreases exponentially as p The error decreases exponentially as p decreases, decreases in each intend 
decreases, decreases in each interval ti - 1 < a S ti as a -+ fi, and decreases ti - 1 < a 5 r i a s  a -+ f i ,  anddecreasesoverailasa+m. 
exponentially overall as a + m .  

However, the maximum error is never as large as 1 .O. The discrete jumps in 
the graph are due to the fact that, when a is an integer, the CPB reduces to 
exactly the binomial and the error drops to zero. 

While figure 2 shows the absolute error .s(a,p) for a small range of a ,  it is 
perhaps more interesting to examine the proportion of this error to the ex- 
pected value itself. In this way, we get a feel for the seriousness of the error 
over a and p-for example, .s(a,p) = 0.9 makes more of a difference when 
E(Y) = 2.1 than it does when E(Y) = 20.1. Figure 3 presents a three- 
dimensional plot with values of a and p along the two axes on the floor (with 
ranges 0 < a I 10 and 0 p 1, respectively), and with the height of the 
surface representing the proportion of error to expected value, e(a,p)lE(Y). 
Again, the surface is on or near the floor (i.e., zero percent) for most of the 
ranges of a and p. By far the largest effect is seen in the interval 0 < a 5 1 ,  
when the count takes on values (0,l). Outside of that, the error decreases 
exponentially as p decreases, decreases in each interval ii - 1 < a ii as 
a + A, and decreases exponentially overall as a -, co. 

We also provide the correct variance here. Since V(Y)  = E(Y2) - E(Y)*, 

I 
I 

and we already have the correct expression for E(Y), we only need E(YZ), 

I which can be calculated by the usual formula. 

As with E(Y), E(Y2) may be calculated for successive intervals of a and then 
generalized. The first three intervals of a are as follows. 
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Kg. 3. Ratio of the error r(a,p) to the expected value E(qa,p) for 0 s a s 10 
and 0 s p 5 1. The ratio of the error r(a,p) to the expected value E(Y(a,p) is 
greatest for 0 C a < 1. Therefore, it (1) decreases exponentially asp decreases, 
(2) decreases in each interval R - 1 < a S ri as a + R, and (3) decreases 
exponentially overall as a + a. 

Notice that in all cases the denominator is simply @"(a - 6.p). The pattern 
for the numerator becomes clearer after a few more intervals. 
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/eqa - ti, p )  

Generalizing the above gives 

where Xf=, xi = 0 if j > k. 

Practical Implications 

Although the continuous parameter binomial probability distribution has been 
studied for more than 60 years in the literature on theoretical statistics, it was 
not until King's (1989a) development of the generalized event count (GEC) 
model that the distribution was used in empirical research or in political 
science. The CPB distribution was used by King to model underdispersion in 
the study of event counts, which are dependent variables measured as the 
number of times an event occurs. The CPB is also one special case of his GEC 
distribution. The parameterization given above can be translated into that used 
by King by letting A = ap and oZ = 1 - p. King also let A vary over the 
explanatory variables by setting it to exp(x,P). 

The results given above demonstrate that the expected values and vari- 
ances are not correct in the CPB portion of the GEC model. These quantities 
are correct for the cases of Poisson dispersion and overdispersion, which are 
more common empirically, and the maximum error possible, in the under- 
dispersed special case, is less than one event in the predicted number of 
events. But despite these theoretical inaccuracies, virtually all practical empir- 
ical results based on it will be unaffected by our correction. Our reanalyses of 
many specific empirical examples have failed to turn up any substantial differ- 
ences. In fact, the error only approaches its maximum when the count is very 
small. The worst case occurs when the probability of the count being greater 
than one is zero (i.e., 0 < a 5 1). Since, in this situation, empirical re- 
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searchers would, and indeed should, opt for a logit or probit-type model 
instead of the GEC, the worst case will not occur. 

Despite the small changes in empirical results that would result from a 
correction, it is still important to correct the record. We have done this above 
for the mathematical results. In this section, we suggest a strategy for correct- 
ing future statistical analyses. 

Our strategy is to estimate the GEC, as suggested by King, but to 
interpret the empirical results in line with our findings above. In particular, the 
reparameterization E(Yi) = exp(xi/3) is only appropriate if it turns out that the 
data support Poisson dispersion or overdispersion. In the underdispersed spe- 
cial case, we recommend still substituting exp(x,P) into the likelihood func- 
tion for A but not interpreting it as the expected value. Instead, we recom- 
mend that researchers first calculate A and u2 using the log-likelihood 
equation given in King (1989a), then calculate a and p from the reparam- 
eterization, and then use equation 5 in this article to calculate fitted values, 
draw graphs, and interpret causal effects. Because of the invariance-to- 
reparameterization property of maximum likelihood, estimates of the parame- 
ters of the GEC model will still be consistent. 

To make this procedure easy and transparent for empirical researchers, 
we have modified a computer program to provide two methods of parameter 
interpretation, following the general methods suggested in King (1989b, sec. 
5.2). The computer program is called COUNT, and a new version, which 
incorporates these features, is now available.2 

Each of our two methods of parameter interpretation involves the 
expected value. The first is calculating fitted values, that is, estimating E(Y), 
or 9 .  The program asks the user for values of the explanatory variables and 
prints 9 .  For the Poisson and overdispersed cases, these results are based on 
the formulas given in King (1989a, 1989b), whereas for the CPB special case 
they are based on the results in this article. 

Second, we give first differences. That is, holding constant all explana- 
tory variables at their means, COUNT will compute the difference between 
E(Y) for two different values of the remaining explanatory variable. This is to 
be interpreted literally as the effect of that explanatory variable on the depen- 
dent variable, controlling for the others. 

Over- and under-dispersion has its largest effects on the Poisson regres- 
sion model by biasing its standard errors; the effect on the coefficients is quite 
minor. Thus, an alternative strategy to using the GEC is to estimate a Poisson 
model and use heteroskedasticity-consistent standard errors. This is now also 
an option in the COUNT program. 

2. The program COUNT is available free via gopher or anonymous FI'P from hdc- 
gopher.harvard.edu, from the ICPSR. or by contacting the authors. 
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A P P E N D I X  A 

Proposition A .  Let the random variable Y have a continuous parameter binomial 
distribution CPB(yla,p), where a > 0 and 0 5 p 5 1. Then 

@"'(a - ri,p) 
W ( a  - r i ,  p )  I 

where 

and ( y ) ,  is Pochhammer's symbol, given by 

Proof. 

where (;) is the generalized binomial coefficient defined for real n and integer k as 
(3 = n(n - 1 )  ... (t i  - k + I)lk! and ((I) = 1. Since the binomial coefficient may be 
rewritten in terms of Pochhammer's symbol, (g) = (n - k + I),lk!, we get 
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Multiplying the numerator and denominator by (1 - p)*a and using the relationship 
(1 - P)" = x&o (z )  (-p)"' = X&,,[(n - m + I),lm!] ( -p ) ,  yields 

which can be respecified, using the relationship (- l)k(-n)k/k! = (n - k + l),/k!, as 

Because the numerator and denominator are of the same functional form, this may be. 
written as 

E(Y) = a p  [ @'i- l(a - ti ,  p )  
@ * ( a  - ti,  p )  I 

where 

- - ( y  - m + K + I), (m - K) , - ,  
m ! ( i  - m)! P' 1 
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The bracketed term is now a summation over m of the product of two binomial 
coefficients. Examining the indices of the binomial coefficients, we see that the upper 
indices are independent of m and that the sum of the lower indices is constant for all rn. 
Thus, the bracketed term is Vandermonde's convolution3 and we may rewrite it as the 
binomial coefficient obtained by summing both the upper and lower indices, yielding 
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