
A Statistical Model of the Ultimatum Game∗

Kristopher W. Ramsay†

Curtis S. Signorino‡

November 3, 2009

Abstract

In this paper we derive a statistical estimator to be used when the data generating process
is best described as an equilibrium to the popular ultimatum bargaining game with private in-
formation and private values. This procedure gives the analyst the ability to estimate the effect
of substantively interesting covariates on equilibrium behavior in this work horse bargaining
model. Using Monte Carlo analysis we explore the small sample properties of this estimator
and compare how the inference one makes with this model differ from those generated by linear
and generalized linear models. We end by demonstrating the real world effect of using our es-
timator with a re-analysis of results from ultimatum lab experiments where subject covariates
are hypothesized to explain bargaining behavior. We find, contrary to the experimental claim,
there is no evidence of a “national” effect on offers in this data when the bargaining estimator
is used.

∗We would like to thank Tim Carter, Kevin Clarke, Songying Fang, Sean Gailmard, Stephen Gent, Jeremy
Kedziora, Jaehoon Kim, Randy Stone, and Robert Walker for their comments and helpful discussions. Support from
the National Science Foundation (Grant # SES-0213771) and from the Peter D. Watson Center for Conflict and
Cooperation is gratefully acknowledged.

†Department of Politics, Princeton University. email: kramsay@princeton.edu.
‡Department of Political Science, University of Rochester. email: curt.signorino@rochester.edu.



1 Introduction

Over the last twenty years, formal models and quantitative analyses have come a long way toward

explaining how strategic actors bargain in a variety of political settings. (Banks 1990, Bennett 1996,

Baron 1989, Fearon 1995, Huth and Allee 2002, Laver and Schofield 1990, London 2002, Morrow

1989, Wagner 2000, Powell 1987, Powell 1996). Game theory, in particular, has proved to be a

useful tool for understanding the basic logic of bargaining in the face of conflicting interests. If the

frequency with which a single idea or framework is cited or used in the literature is a measure of its

importance, then the importance of bargaining models cannot be denied. For example, bargaining

models have been applied by political scientists to analyze everything from the effects of open and

closed rules on the distributive politics of legislative appropriation to the study of war initiation

and termination (Baron and Ferejohn 1989, Fearon 1995, Mansfield, Milner and Rosendorff 2000).

In fact, the theoretical and empirical study of bargaining is one of the few places where the different

subfields of political science can identify one phenomenon that all agree is important and worthy

of attention.

Results of numerous theoretical studies of the bargaining problem have pointed to the impor-

tance of asymmetric information and the “reservation values” of players in distributional politics.

Yet, as is usually the case when scholars try to bring their theoretical model to the data it is dif-

ficult to specify the link between substantive variables, theories, and outcomes. This makes many

hypotheses difficult to operationalize and even more difficult to test. Additionally, it is often the

case that we would like to know the effects of particular substantive variables, like a congressman’s

district demographics or whether a state possesses nuclear weapons, on the bargaining process.

The theoretical models tell us something about the path by which these variables may influence

outcomes. However, there is no “canned” statistical estimator for examining these effects.

As an alternative to the “theory down” approach to understanding bargaining, an increasingly

sophisticated body of work has looked directly at the empirical relationship between substantive

variables of interest, such as regime type, economic interdependence, institutional rules, legisla-

tive composition, and bargaining outcomes (Bennett 1996, McCarty and Poole 1995, Milner 1997,

Werner 1999). However, lacking an explicit model of the process that generates the empirical data,

and leaving out the choice-based path by which these variables influence decisions, it is often the

case that selection and omitted variable bias plague the analysis (King, Keohane and Verba 1994).

In particular, Signorino demonstrates that traditional linear and categorical estimation techniques
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can lead to faulty inferences when the strategic data generating process is ignored during estima-

tion (Signorino 1999, Signorino 2002, Signorino and Yilmaz 2003). It is unclear how reliable the

inferences from these empirical models are given these findings.

What is called for in the bargaining literature is an integration of formal theoretical models

and statistical methods. In particular, analysts need a statistical tool that permits them to make

theoretically consistent inferences about the relationship between substantive variables, the bargain

struck, and the probability of bargaining failure.1 In other words, we need an estimator that

explicitly models the strategic data generating process.

To move in this direction, we derive a statistical model for ultimatum bargaining games. Af-

ter verifying that our theoretical model satisfies the minimum criteria for structural estimation,

we derive an econometric estimator for the bargaining model. This model explicitly captures the

relationship between the variables that affect the players’s utilities and the outcomes of the bar-

gaining in a strategic setting. Next, we conduct a Monte Carlo experiment by generating strategic

bargaining data and then estimating the relationships between the regressors and the dependent

variable(s). We estimate not only the statistical bargaining model, but also traditional OLS and

censored variable models to give a point of reference for understanding the Monte Carlo results.

Finally, we explore the small sample properties of our estimator to better understand its reliability

and power in smaller data sets often found in political science.

2 The Model

Political decision-making is often fundamentally a bargaining problem. That is, the essence of

strategic decision-making between states, parties or leaders is largely about who gets what and

when. One of the simplest and most popular bargaining models is the ultimatum game. In this

section, we describe this bargaining model and then define a statistical model consistent with that

data generating process. The estimator derived in the following section will be a straightforward

structural implementation of the strategic model described below.
1For examples of other work that has begun to deal with this problem in alternative settings see Wolpin (1987),

Merlo and Wilson (1995), McKelvey and Palfrey (1996), Merlo (1997), and Merlo and Wilson (1998).
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Figure 1: Ultimatum Game

2.1 The Ultimatum Game

Consider the usual bargaining arrangement, depicted in Figure 1, where two players must divide

a contested prize. The issue being bargained over could be territory, a budget, or some policy in

a 1-dimensional space. We represent this contested prize as a closed and bounded interval in R.

Without further loss of generality, we consider normalized intervals of the form [0, Q].

To start, player 1 offers some division of the prize (Q−y, y), where player 1’s allocation is Q−y

and player 2’s is y. Player 2 then decides whether to accept or reject player 1’s offer. If player 2

accepts, they divide the prize according to player 1’s offer. If player 2 rejects the offer, they receive

some reservation amount, which may differ between the players.

Our information structure follows a prominent one found in much of the applied bargaining

literature. We assume that the players and the analyst have complete information about the size of

the pie Q and about player 1’s offer y. We also assume that each player’s reservation utility has two

components: one that is public Ri and one that is private εi. From a game theoretic perspective,

the private component εi defines player i’s type. From an econometric perspective, the reservation

utilities are random utility functions in the sense of Luce (1959) and McFadden (1976).

Finally, assume that each player i’s type εi is an independent and identically distributed random

variable, drawn from a well defined probability distribution Fεi on R, with density fεi . Let this
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random variable have mean 0 and finite variance. Also assume that the players’ (and analyst’s)

prior beliefs regarding the other player’s type are Fεi .

It is worth noting that, while this is not the most general information structure one might con-

sider, it is consistent with many substantively motivated models. Here players’ types are private

values, and do not directly influence the other players payoffs over outcomes. Private value uncer-

tainty like this is found in a variety of common applied bargaining models, like those where the

costs of war or litigation are privately known or situations where the type of a player (for example

those that are “resolved” or those facing domestic audience costs) most directly affects the costs or

benefits of bargaining failure. Alternatively, players could have shocks to common valued compo-

nents of their utilities, implying correlation in payoffs, or independent shocks to each settlement.

These different information structures imply completely different strategic and structural models

and we do not consider them here.2

In this game each player’s strategy can be characterized by a mapping from types into actions:

σi : εi → Ai, i = {1, 2}, where Ai defines the actions available to player i. Since player 1 is making

the ultimatum offer her action, or proposal, can be represented by a number in [0, Q]. Player 2 is

then left to accept or reject the offer, so A2 = {accept, reject}.
Assuming the players utilities are linear in the share of the pie, our random utility structure

and information assumptions lead to the following simple utilities over outcomes and the game tree

found in Figure 1:

u1(y, accept) = Q− y

u2(y, accept) = y

u1(y, reject) = R1 + ε1

u2(y, reject) = R2 + ε2

In equilibrium, the ultimatum game has player 1 making an offer that balances the marginal

utility of increasing the probability that an offer is accepted and the marginal utility of a larger

amount of y. Player 2, knowing her own type, chooses the alternative that maximizes her utility.
2Different sources of private information can induce different equilibrium behavior. For bargaining examples, see

Fey and Ramsay (2009). For discrete choice games in extensive form, see Signorino (2003).
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2.2 Existence and Uniqueness of Equilibrium

An equilibrium to such a “statistical” ultimatum bargaining game, where each player knows the

other has random utilities, is equivalent to a perfect Bayesian Nash equilibrium of a game in which

the types of the players are private information and those types reference private value components

of players’ utilities. This means we can use well-known game theoretic tools to begin to specify

both our theoretical predictions and our empirical estimator.3 Recent research has shown that

traditional existence results do not guarantee the existence of an equilibrium in Bayesian games

with unbounded type spaces and continuous actions sets (Meirowitz 2003). It is, however, easy to

show that there always exists a generically unique perfect Bayesian equilibrium to this ultimatum

game. Proposition 1 gives a sufficient condition for this to be true in our game.

Proposition 1. If Fε2 is log-concave, then there exists a unique perfect Bayesian-Nash equilibrium

to the statistical ultimatum game.

This result is not surprising, as this game is closely related to the ultimatum game of Fearon

(1995), whose Claim 2 showed the existence of a generically unique equilibrium for his game. We

therefore leave the rather tedious proof for the appendix, and instead sketch the logic of each

player’s equilibrium choice. From this discussion uniqueness of the equilibrium will be obvious. To

start, assuming player 1 has made an offer y, player 2 chooses between that offer and her reservation

value R2 + ε2. In any equilibrium player 2 has an easy question to answer, which is better: the

settlement or disagreement? Thus in any equilibrium player two plays a simple cutpoint strategy

where types who prefer the settlement to their reservation payoff accept offers and the remaining

types reject.4

Player 1 can reason that player 2 will choose in such a way, given the offer she makes, but as

player 1 does not observe ε2, she must assess the probability that player 2 will accept his offer.

In equilibrium, player 1 correctly conjectures two will player her cutpoint strategy, so the relevant

question for one is: what is the probability that 2 accepts an offer y? Given F2 and two’s strategy
3For examples of work on statistical game theory see McKelvey and Palfrey (1996), Beja (1992), van Damme

(1991).
4The equilibrium is generically unique because there are many things player 2 could do when she is indifferent and

no matter which action she takes in that special case, player 1’s offer strategy is unaffected, so they are all consistent

with equilibrium.
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it must be

Pr(accept|y) = Pr(y ≥ R2 + ε2)

= Pr(ε2 ≤ y −R2)

≡ Fε2(y −R2). (1)

Now, player 1 has a simple concave optimization problem, given two’s strategy. His expected

utility from an offer y ∈ [0, Q] is

Eu1(y|Q) = Fε2(y −R2) · (Q− y) + (1− Fε2(y −R2)) · (R1 + ε1),

subject to the constraints that 0 ≤ y ≤ Q. By the F.O.C. and the log-concavity of fε2 , 1’s optimal

offer is the unique y∗ that implicitly solves

y∗ = Q−R1 − ε1 − Fε2(y
∗ −R2)

fε2(y∗ −R2)
, (2)

when the constraints on the optimization problem are slack, and is 0 or Q otherwise. This single

optimization problem and the binary choice described above completely characterize rational play

to this game and, therefore, the equilibrium is unique.

An important question concerns how the optimal offer changes with changes in the reservation

values. Moreover, because the observable reservation values are specified with regressors, we would

like to understand the comparative statics for two cases: (1) for regressors that appear either in X

or Z, but not both; and (2) for regressors that appear in both X and Z. Let m(x) = Fε2 (x)

fε2 (x) . We

leave the proof for the appendix and simply note the following:

Proposition 2. Suppose

• Regressor x appears only in Xβ, with associated coefficient βx;

• Regressor z appears only in Zγ, with associated coefficient γz; and

• Regressor v appears in both Xβ and Zγ, with associated coefficients βv and γv, respectively.

Then the unconstrained optimal offer y∗ will be

• Unconditionally monotone in x with direction sign(dy∗/dx) = sign(−βx),

• Unconditionally monotone in z with direction sign(dy∗/dz) = sign(γz),
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• Conditionally monotone in v if and only if sign(dy∗/dv) = sign [γvm
′(y∗ − zγz − vγv)− βv]

is constant for all v, and nonmonotonic in v otherwise.5

The intuition here is relatively straightforward. Increasing player 1’s reservation value (via x)

decreases the amount she is willing to offer player 2. Conversely, increasing player 2’s (observable)

reservation value (via z) increases the amount player 1 thinks she will need to offer player 2. If

both of these countervailing pressures are present simultaneously (e.g., when a variable like v enters

both reservation values), then the relationship is more complicated. Depending on the magnitudes

and signs of the coefficients βv and γv, the optimal offer may be nonmonotonic in v. It is worth

noting that the above results are for the unconstrained optimal offer. When the constraints are

applied, the strict monotonicity results reduce to weak monotonicity due to potential censoring.

3 The Logit Ultimatum Estimator

For the remainder of this paper we study a particular class of distribution functions for the error

term and explore the statistical properties of the resulting estimator. Let us assume we have data

on both player 1’s and player 2’s actions — i.e., assume we can measure and code y and Q for each

observation, as well as whether player 2 accepted or rejected the offer. Let the public portion of

the players’ reservation values be R1 = Xβ,and R2 = Zγ, where X and Z are sets of substantive

regressors. Our interest is in estimating the effects of X and Z on y and player 2’s decision.6

Because the outcome of the bargaining model consists of two dependent variables — 1’s offer

and 2’s decision — our probability model is a joint density over those random variables. Recall from

Proposition 1 that the requirement for uniqueness (in combination with existence) is log-concavity

of Fε2 . For our estimator, we will assume that the players’ types, ε1 and ε2, are drawn i.i.d logistic.

The i.i.d. assumption greatly simplifies matters by reducing the joint density to the product of

two univariate densities. Moreover, Bagnoli and Bergstrom (2005) demonstrate that the logistic
5We use the terms “unconditionally monotone” and ”conditionally monotone” as defined in Signorino & Yilmaz

(2003:563-64). g(x, y) is said to be conditionally monotone in x if sign(dg(x, y)/dx) is constant for all x, conditional

on y. g(x, y) is said to be unconditionally monotone in x if sign(dg(x, y)/dx) is not only constant for all x but also

in the same direction regardless of y. We also thank an anonymous reviewer for pointing out we can give this more

general proposition than we had in previous drafts.
6In this case, we assume all players and the analyst share the same public information embodied in the regressors

X and Z, as well as their effects β and γ on the dependent variables. This may not always be an appropriate

assumption. In another paper, Kedziora, Ramsay and Signorino (2009) examine a statistical model where the analyst

has more information about players than the players have about each other.
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distribution is log-concave, so we have existence and uniqueness of the logit ultimatum equilibrium.

Although our results require only log-concavity of ε2 the most natural assumption is to treat the

players symmetrically, which is what we do here.

Given the distributions on ε1 and ε2, the structural estimator for this statistical bargaining

game can be derived straightforwardly. First, consider player 2’s decision concerning whether to

accept or reject player 1’s offer. Since Fε2 is logistic, Equation 1 is just the logistic probability

Pr(accept|y) = Λ(y − Zγ)

= {1 + exp [−(y − Zγ)/s2]}−1 (3)

where Λ( · ) is the logistic c.d.f. and s2 is the logistic scale parameter for ε2.7 Although we usually

ignore scale parameters in logit and probit models because of identification, the scale parameters

are identified in the logit ultimatum estimator. We will return to this later.

For player 1, the distribution of y∗(ε1), is more complicated. Equation 2 provided the implicit

equilibrium condition for player 1’s optimal offer. Substituting the logistic distribution for Fε2 gives

y∗ = Q−Xβ − ε1 − Λ(y∗ − Zγ)
λ(y∗ − Zγ)

, (4)

where λ( · ) is the logistic p.d.f.

At this point, we must solve for y∗ in terms of player 1’s type ε1. Then, given that the analyst

does not observe ε1, we must derive the probability of observing a given offer y∗, based on the

assumed distribution for ε1. Solving for y∗ as a function of ε1 produces

y∗(ε1) = Q−Xβ − ε1 − 1
1 + e−(y∗−Zγ)/s2

· s2

[
1 + e−(y∗−Zγ)/s2

]2

e−(y∗−Zγ)/s2

= Q−Xβ − ε1 − s2

[
1 + e(y∗−zγ)/s2

]
(5)

= Q−Xβ − ε1 − s2

[
1 +W

(
e

Q−Xβ−ε1−s2−Zγ
s2

)]
. (6)

where W is Lambert’s W.8 Simple differentiation of y∗ with respect to ε1 shows that y∗ is a

monotonic function of ε1 and, therefore, we can derive the density function for equilibrium offers.
7A logistically distributed random variable ε with scale parameter s has variance V (ε) = π2s2/2.
8Lambert’s W solves transcendental functions of the form z = wew for w. For a discussion of Lambert’s W and the

algorithm to solve the transcendental equation see Corless, Gonnet, Hare, Jeffrey and Knuth (1996), Fitsch, Shafer

and Crowley (1973), Barray and Culligan-Hensley (1995), and Valluri, Jeffrey and Corless (2000). Lambert’s W has

nice properties and makes the probability distribution of y∗ easy to characterize. First, Lambert’s W is single valued

on R+, and since eα ≥ 0 for all α ∈ R, it is single-valued where we need to use it. Second, W’s first and second

derivatives exist and are well behaved.
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To derive the density for the optimal offer fy∗(y∗), we apply the method of monotonic transfor-

mation (Casella and Berger 2002, Thrm 2.1.5), producing9

fy∗(y∗) =
e
−

{
Q−y∗−Xβ−s2

[
1+e(y∗−Zγ)/s2

]}
/s1

s1

{
1 + e−{Q−y∗−Xβ−s2[1+e(y∗−Zγ)/s2 ]}/s1

}2 ·
[
1 + e(y∗−Zγ)/s2

]
(7)

with cumulative distribution function

Fy∗(y∗) =
1

1 + e{Q−y∗−Xβ−s2[1+e(y∗−Zγ)/s2 ]}/s1
(8)

The constraint on the action space of player 1, however, implies that the observed y∗ is censored

both from above and below. This censored distribution of offers leads to the following likelihood.

Let y be the observed offer and define a set of dummy variables δk k ∈ {0, y, 1} such that δ0 = 1

if y = 0, δy = 1 if 0 < y < Q, and δ1 = 1 if y = Q. That is, much like a censored (Tobit) model,

we can think of there being a “latent” best offer that we only observe when its realization is in the

constraint set. Otherwise we see the best feasible offer, i.e., a boundary point. Next, code player

2’s acceptance as δaccept = 1 if she accepted the offer and δaccept = 0 if she rejected the offer.10

Assuming we have data on both player 1’s and player 2’s actions (i.e., y and δaccept), then the

likelihood would be

L =
n∏

i=1

{
Fy∗(0)δ0 · fy∗(y)δy · [1− Fy∗(Q)]δ1 ×

Pr(accept|y)δaccept · [1− Pr(accept|y)]1−δaccept

}
(9)

where the observation index has been omitted. Deriving the log-likelihood from this is straightfor-

ward. We then have a log-likelihood function for our data in terms of distributions already derived,

which are functions of our regressors, and an explicit model of the ultimatum game. Estimates of

β, γ, s1, and s2 may be obtained using maximum likelihood estimation (or, with simple extension,

via Bayesian MCMC).

It is interesting to note that all of the parameters — β, γ, s1, and s2 — are individually

identified in this model. Typically, in logit or probit models, we can only estimate the regression

parameters and the variance parameter to scale. In this case, identification of γ and s2 are driven

by our assumptions concerning what the players know and how that enters their payoffs. Consider

Equation 3, player 2’s probability of accepting. If no regression parameter is associated with the
9Derivation using the method of transformations is shown in the appendix.

10For a similar random utility motivation for censoring see Amemiya (1984).
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offer y, then the usual logit (or probit) identification issue is not present here. It is important to

note that this is not an ad hoc assumption made to ensure identification. Rather, we started by

assuming that the players were bargaining over a known pie Q and that player 1 makes a known

offer y. It is this shared observability of the offer y that identifies γ and s2 in Equation 3.

The regression and variance parameters are also identified through player 1’s choice. Equations 7

and 8 show that s1 and s2 interact with terms (e.g., Q, y∗, and 1) with which no other regression

parameters are associated. In other words, a change in s1 or s2 cannot be “compensated” with

a change in β or γ to produce the same probability value. The noteworthy aspect of these two

equations is that player 2’s parameters are identified through our assumptions about player 1’s

information concerning player 2.

Finally, suppose we had data only on player 2’s or player 1’s actions, but not both. For a given

dependent variable (i.e., player 1 or player 2’s action), we could simply use the appropriate density

(already derived) as the basis of our log-likelihood equation.

4 Monte Carlo Analysis

In this section, we present two sets of Monte Carlo analyses. In the first, we conduct an analysis of

the small sample properties of the estimator. In the second, we demonstrate the bias that can occur

when typical regression techniques (e.g., OLS, FGLS, and Tobit) are used to analyze bargaining

data, even when the underlying relationships are unconditionally monotonic.

4.1 Small Sample Properties

Many researchers are faced with data sets of relatively small sample size. Moreover, it may be

difficult and costly to collect additional data. Given this predicament, analysts are often interested

in how a particular estimator performs in small to medium-sized samples. With this concern in

mind, we report a series of Monte Carlo experiments where we set the number of observations at

levels consistent with the size of smaller data sets found in experimental and field work.

For the Monte Carlo analysis, the ultimatum game in Figure 1 was used as the data generating

process. For a given observation, the value of the disputed good, Q, was drawn from a uniform

distribution on [0, 10]. The public reservation values consisted of a single variable for each player,

x for player 1 and z for player 2, with associated parameters βu and γu, respectively, set to one.
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Figure 2: Small Sample Monte Carlo Results. The plots display the distributions of the parameter

estimates for samples of size N=50 (light grey), N=100 (grey), and N=200 (black). In each case,

the true value of βu, γu, s1, and s2 was one (or, equivalently, ln(s1) and ln(s2) were each zero.)
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x and z were drawn from i.i.d. uniform distributions on the interval [0, 6].11 Lastly, the private

information for players 1 and 2, ε1 and ε2, respectively, were drawn from i.i.d. logistic distributions,

with variance parameters s1 = 1 and s2 = 1, respectively. Based on this, player 1 determines his

optimal offer y using Equation 6 and the constraint 0 ≤ y ≤ Q. Given that, player 2 makes a

decision by comparing y to her reservation zγu + ε2. The data for a given observation then consists

of Q, y, δaccept, x, and z.

The Monte Carlo analysis was conducted for three sample sizes: N=50, 200, and 500 obser-

vations. In each iteration of the analysis, a sample was generated (as detailed above) and the

logit ultimatum estimator was used to recover estimates of βu, γu, s1, and s2. This procedure was

conducted 5000 times for each sample size, each time saving the parameter estimates.

Figure 4.1 depicts the distribution of the estimated model parameters for N=50, 200, and 500

sample sizes. The results are encouraging. Sample densities seem to approach normal distributions,

even with as few as one or two hundred observations. As expected, the smaller the sample size the

higher the variance of the estimated values. Somewhat surprisingly, though, the bias is relatively

small for even very small sample sizes. For example with N = 50, the distribution of β̂u and γ̂u

are already normal with means incredibly close to the population equation values. Only in the

estimates of the variance parameters (ln(s1) and ln(s2)) do we pick up meaningful bias, which

disappears for N near 200. This suggests that the statistical bargaining model can be usefully

applied to reasonably small data sets.

4.2 Bias in Alternative Methods

When analyzing bargaining data — whether offers or acceptances — it is currently common prac-

tice to employ standard techniques, such as OLS, FGLS, Tobit, Logit, and Probit. Although it is

beyond the scope of this paper to analyze all the reasons for this, we highlight one very sensible

and theoretically motivated argument. This argument suggests that a structural statistical model

need not be derived directly from a formal theoretic model. Rather, if one can demonstrate mono-

tonicity through comparative statics analysis, then off-the-shelf parametric models with a linear

link function should be perfectly appropriate for data analysis. As we demonstrated in Section 3,

the optimal offer is unconditionally monotonic in any regressor that appears in only one player’s

reservation value. If we refrain from including regressors that are common to both players’ reserva-
11As we will discuss in the next section, a larger reservation value makes censoring more likely (all else equal). We

chose this value to represent an average or middle case.
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tion values, we then have an ideal case to assess the above argument, as well as the use of standard

models in general.

In order to investigate the possibility of bias in standard techniques, we conducted a second

set of Monte Carlo simulations, similar to the first, but with a larger sample size and, of course,

estimating alternative models. For this set of Monte Carlo experiments, the data generating process

was the same as in Section 4.1 (e.g., βu = γu = s1 = s2 = 1), but with the following exceptions. In

each iteration of the Monte Carlo simulation, N=1000 observations were generated for the sample.

We noticed that the larger the maximum size of the observable reservation value, the greater

the number of the observations that were censored by the bargaining constraint. Therefore, to

assess the effect of censoring on the inferences from the traditional models, separate Monte Carlo

experiments were conducted for each value of Max R ∈ {2, 4, 6, 8, 10}, in which x and z were drawn

from U [0, Max R].

In each iteration of the Monte Carlo analysis, the full logit ultimatum model was estimated

for comparison with three alternative models. For player 2’s acceptance data, a traditional logit

model was estimated by regressing δaccept on the offer y and player 2’s reservation variable z, with

associated parameters ωl and γl, respectively. For the offers data y, two models were estimated.

The first was a Normal model of the form

y = constn + βnx + γnz + θnQ + ε,

estimated via maximum likelihood estimation.12 The variable Q was included because the offer will

depend not only on x and z, but also on the size of the prize. In addition to the Normal model,

we estimated the Tobit model

y = constt + βtx + γtz + ε

with censoring below at zero and above at Q. After estimating each model, the parameter estimates

were saved. This was repeated for 2000 Monte Carlo iterations to form a density of the estimates.

Tables 1 displays the results of the logit ultimatum model (“Ultimatum”), estimated using

the full set of data, as well as the results of a simple logit model estimated using only player 2’s

data. The table is divided into five sections, one for each value of Max R. For each value of Max

R, the average number of censored observations is displayed (out of 1000 observations for each
12The Normal model will produce results essentially identical to OLS. We chose an MLE-based Normal model

rather than OLS for a more straightforward comparison with the Tobit model.
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Max Number Ultimatum Logit

R Censored β̂u γ̂u ω̂l γ̂l

2 253 .99 .99 1.00 −1.00

(.06) (.02) (.07) (.10)

4 331 1.00 1.00 1.00 −1.00

(.03) (.02) (.07) (.07)

6 421 1.00 1.00 1.00 −1.01

(.02) (.02) (.08) (.07)

8 511 .99 .99 1.00 −1.01

(.02) (.02) (.08) (.07)

10 593 1.00 1.00 1.01 −1.01

(.02) (.02) (.09) (.08)

Each set of results is based on 2000 Monte Carlo iter-
ations, each with samples of size N=1000. The mean
parameter estimate is shown on top. The standard
deviation is shown below in parentheses.

Table 1: Monte Carlo Results for Ultimatum and Logit Models.

15



sample). Each cell in the table reports the mean (top) and the standard deviation (bottom) of the

distribution of the estimates for each group of 2000 Monte Carlo iterations.

As is clear in Table 1, β̂u and γ̂u are recovered by the logit ultimatum model on average, and the

standard deviations of the estimates are small. Moreover, the estimates continue to be unbiased and

have low variance, even as the censoring exceeds half of the observations on average per iteration

(i.e., as Max R increases to 8 or 10).

It is also clear that a properly specified logit can be used alone to assess the effect of offer size

and substantive regressors on the success or failure of bargaining. In fact, the logit’s estimates

are consistently close to the true values. The negative sign on γ̂l is correct and simply a result

of specifying the regression equation as ωly + γlz. As before, increased censoring due to Max R

does not affect the consistency of the estimates. Not surprisingly, the effect of z is estimated more

precisely when all of the data is used with the “Ultimatum” model, rather than when limited only

to data on player 2’s decision.

Table 2 displays the results of using the uncensored Normal model or a Tobit model to analyze

the relationship between the regressors and the size of the offer y. First consider the uncensored

Normal model. A number of scholars, looking at the continuous nature of the offer variable, have

chosen to use OLS and FGLS to analyze such data.13 For the uncensored Normal model, a constant

was estimated, along with βn and γn (the effects of x and z, respectively), an effect θn for the size

of the prize Q, and the estimate of the variance σ2
n.

The uncensored Normal results highlight two potential problems with using OLS on bargaining

data. First, the estimates of the parameters change significantly as the number of censored obser-

vations increases. In particular, γ̂n ranges from .09 to .47. Second, every estimate looks as though

it is a very good estimate, i.e., the standard deviation of the density is small.

It is already well known, however, that censoring can significantly affect estimates in a tradi-

tional OLS model. Moreover, a sophisticated empiricist would likely conclude that the strategic

process would, in some way, censor the observed data. Therefore, she may account for this in her

estimation, and analyze the data using a Tobit model, which is censored here above at Q and below

at 0.

The Tobit results are also found in Table 2. As in the Normal case, the standard deviations of

the estimates are small, leading one to believe the estimates are, in some sense, good. Perhaps most
13See Bothelho, Harrison, Hirsch and Ruström (2005) and Henrich, Boyd, Bowles, Camerer, Fehr, Gintis and

McElreath (2001).
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Max Number Normal Tobit

R Censored Constn β̂n γ̂n θ̂n σ̂2
n Constt β̂t γ̂t σ̂2

t

2 253 −.42 −.25 .47 .29 .29 .92 −.35 .56 1.69

(.05) (.03) (.03) (.01) (.02) (.11) (.07) (.07) (.08)

4 331 −.49 −.31 .35 .36 .58 1.13 −.48 .43 3.23

(.07) (.02) (.02) (.01) (.03) (.15) (.05) (.05) (.17)

6 421 −.22 −.34 .23 .38 .91 1.52 −.59 .31 4.93

(.09) (.02) (.02) (.01) (.04) (.18) (.05) (.04) (.27)

8 511 .19 −.34 .15 .35 1.17 1.92 −.69 .22 6.32

(.09) (.02) (.02) (.01) (.06) (.21) (.04) (.04) (.39)

10 593 .53 −.30 .09 .31 1.33 2.29 −0.78 .16 7.34

(.09) (.01) (.01) (.01) (.07) (.23) (.04) (.04) (.51)

Each set of results is based on 2000 Monte Carlo iterations, each with samples of size N=1000. The
mean parameter estimate is shown on top. The standard deviation is shown below in parentheses.

Table 2: Uncensored Normal and Tobit Regression Models
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interesting, Table 2 shows that the Tobit model does not adequately control for the censoring in the

bargaining offers. In particular, the parameter estimates change as the number of censored cases

increase. The estimates for β̂t change from −.35 to −.78, an increase in magnitude of 122 percent.

Similarly, the estimates of γ̂t change from .56 to .16, a decrease in magnitude of 71 percent.

Because the Ultimatum, Tobit, and Normal models are all based on different structural and/or

distributional assumptions, it is important to compare their estimated conditional expectations as

a function of x and z. Figure 2 displays the expected offer for four configurations of x and z. In

each panel, either x or z is held constant at 0 or 10 and the other is varied from 0 to 10. The

conditional expectations are based on the parameter estimates where Max R = 10 — i.e., allowing

for any observed reservation level between 0 and 10. The solid, dashed, and dotted lines correspond

to the expected offers from the Ultimatum, Tobit, and Normal models, respectively.

As Figure 2 shows, the Tobit model (which allows for censoring) and the Normal model (which

does not) are very similar, not only in terms of the effects of x and z on the expected offer, but

also on the size of the offer itself. Figures 2(a)-2(d) also suggest that we can characterize when the

Tobit and Normal models will be closer to or diverge from the ultimatum model. Consider first

Figures 2(a) and 2(d). These are situations where increasing a player’s reservation level has little

effect on the offer. For example, in 2(a), player 2’s observed reservation level is at the minimum

(z = 0). In this case, player 1 knows that player 2 is likely to accept if she makes even a small

offer. When her own reservation is near zero, player 1 will give up a small amount of the prize.

However, as player 1’s reservation (x) increases, she offers less. In 2(d), player 1’s reservation is at

the highest level (x = 10), making her unwilling to give up much of the prize. Regardless of player

2’s reservation level, player 1 makes a negligible offer. In these two cases — when the reservation

level has little effect on the offer — the Tobit and Normal models are fairly close approximations

of the ultimatum model.

Now consider Figures 2(b) and 2(c). In these cases, the ultimatum model shows that a change

in the observed reservation level has a substantial effect on the offer. For example, in Figure 2(b),

player 1 knows that player 2 has a very high reservation (z = 10). Therefore, the size of the

offer will depend on player 1’s reservation level. When player 1’s own reservation is near zero,

she is willing to offer almost all of the prize. However, when player 1’s reservation is near the

maximum, her offer will be negligible. In Figure 2(c), player 1’s reservation is assumed to be at

the minimum (x = 0). In this case, player 1 will take just about anything. Therefore, as player

2’s reservation level increases, player 1’s offer also increases. In these cases, Tobit and the Normal
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Figure 3: Effect of x and z on Expected Offer. Solid: Ultimatum Game. Dashed: Tobit. Dotted:

Normal.
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model underestimate the effect of x and z — the slopes of their lines are attenuated. Moreover, the

Ultimatum model allows for much larger offers, while the maximum offers in the Tobit and Normal

models are only about 4.

Finally, consider the question of whether player 2’s reservation z has a substantively large effect

on the offer. Figures 2(c) and 2(d) suggest that if one were to estimate the Tobit or Normal

models, one would infer that player 2’s reservation z does not have much of a substantive effect

(however statistically significant) on the offer. By construction, we know this is incorrect. Indeed,

the ultimatum model in Figure 2(c) shows that player 2’s reservation value can have a large effect

on the expected offer.

From these simulations, we see that the appropriate statistical method can depend on the

question one wishes to answer. In this case, the logistic regression proved to be an acceptable —

although slightly less efficient — method for investigating how different variables affect bargaining

failure, given data on the offers. This is not terribly surprising, since the logit model is the right

structural model for player 2’s decision.14 However, if we are interested in saying something about

how substantive variables affect the kind of bargain that is struck – and, in particular, the size

of the offer — then traditional techniques are inappropriate. The Monte Carlo experiments show

that (1) these techniques produce incorrect estimates of β and γ, (2) that the estimates change as

a function of the distribution of the reservation values of the players, and (3) that inferences based

on the marginal effects will at times be misleading. Since we cannot know, ex ante, the empirical

distribution of the reservation payoffs, independent of the estimation of β̂ and γ̂, OLS and Tobit

results for real world data are not reliable estimates. Moreover, this analysis was conducted for

a model where all relationships were unconditionally monotonic. Given the specific structure of

the strategic interaction in the ultimatum game, researchers should be wary of using off-the-shelf

parametric methods, unless those methods are demonstrated to be consistent with the assumptions

of the structural model.
14If, on the other hand, we had reason to believe that player 1’s private information was correlated with player 2’s,

then using the sample of bargaining success/failure data alone would induce a Heckman-like selection bias. Similarly,

if the interaction contained multiple stages and player 2’s decision was based on expectations of what player 1 might

offer in the future, then the logit estimates would likely suffer from a functional form misspecification bias.
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5 An Application to Experimental Bargaining Data

Perhaps the most notable aspect of bargaining is its ubiquity in human interaction – and therefore

its widespread study across many disciplines. Everything from bargaining between multinational

cooperations and states over terms of foreign investment, to the resolution of territorial disputes,

to economists and anthropologist’s interests in how social and personal characteristics affect the

“rational” behavior of individuals, has been studied in the context of bargaining models. Here we

analyze a data set on experimental ultimatum games conducted by Bothelho et al. (2005). Their

work and the experimental data they present allows us to illustrate the substantive differences

between using our logit bargaining estimator versus OLS.

In the ultimatum experiments that generated this data, the researchers sought to isolate the

effects of demographic variables on the bargaining process. They start from the widely known

experimental observation that, when people “play” the ultimatum game, they do not play the

(complete information) game’s subgame perfect Nash equilibrium. In particular, ultimatum exper-

iments consistently show that proposers giving receivers larger shares of the pie than is predicted

by strict income maximizing behavior. In a number of previous studies, most noticeably Roth,

Prasnikar, Okuno-Fujiwar and Zamir (1991) and Henrich et al. (2001), economists and anthropol-

ogists have joined together to conduct experiments in various countries. They found that, not only

do people not play the subgame perfect Nash equilibrium, but there also appears to be systematic

differences in the way people play the game across countries and cultures.

Bothelho et al. (2005) enter the debate by claiming that variance across countries does not

necessarily imply a “cultural” or “national” effect. They correctly point out that these studies fail

to control for the potential effects of demographic variables. In their paper, they report on two sets

of experiments, one in the US (at the University of Southern California) and one in Russia (at the

Moscow Institute of Electronic Technology). In these experiments, the authors collect information

on the demographic characteristics of the players, and attempt to assess their influence on the

bargaining process.

For illustrative purposes, we replicate the FGLS random effects model used in Bothelho et al.

(2005, 357-358) Table 4B. Noting that the comparative static on Xβ in the bargaining model is

linear, one might suspect that using a variant of least squares regression would produce the same

results as the estimation of the bargaining model. It turns out, however that is not the case.

Table 5 displays three variations of the random effects model. The first, labeled “FGLS-RE”,
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FGLS-RE MLE-RE 1 MLE-RE 2

Constant 36.62 36.62 36.35
(3.15) (3.03) (1.59)

US*Round2 1.52 1.52
(2.25) (2.22)

US*Round3 .79 .79
(2.28) (2.24)

US*Round4 1.23 1.23
(2.25) (2.22)

US*Round5 5.21 5.21 3.88
(2.25) (2.22) (1.74)

Russia 3.66 3.66
(4.49) (4.33)

Russia*Round2 1.88 1.89
(2.29) (2.25)

Russia*Round3 3.18 3.19
(2.29) (2.25)

Russia*Round4 4.59 4.61 3.11
(2.29) (2.25) (1.71)

Russia*Round5 2.27 2.27
(2.29) (2.25)

Russia*Male -11.05 -11.05 -5.30
(3.63) (3.47) (2.86)

US*Male -6.20 -6.21
(3.67) (3.51)

σu 8.98 8.51 9.31
(.94) (1.00)

σe 8.50 8.35 8.39
(.39) (.39)

ρ .53 .51 .55
(.06) (.06)

log-likelihood = -1076.75 -1082.55
AIC (df) = 2181.51 (14) 2177.09 (6)

N = 289 289 289
Dependent variable: Offer made by player 1. Note: A positive coefficient denotes
a positive effect on the expected offer. Standard errors are shown in parentheses.
Bolded coefficients are statistically significant at p ≤ .05.

Table 3: Replication of Botelho et al 2005 Table 4B.
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is an exact replication of the feasible generalized least squares model with random effects as shown

in Bothelho et al. (2005, 357-358) Table 4B.15 As Table 5 shows, the FGLS-RE model suggests

that US participants were likely to increase their offers in round 5, Russian participants tended

to increase their offers in round 4, and that Russian males made substantially lower offers than

other participants. No other instances of learning, gender effects, or national effects were found.

Moreover, it is not clear at all what we should make of the round 4 and 5 interaction effects.

For comparison with subsequent models, the random effects model was replicated, but using

maximum likelihood estimation. These are shown in Table 5 as ”MLE-RE 1”. The results are essen-

tially identical to the FGLS-RE model. Finally, a reduced version of the model was run, including

only regressors that were statistically significant (at p ≤ .05). As the MLE-RE 2 model shows, the

results are sensitive to regressor specification. In this case, neither of the Russia interactions are

statistically significant at standard levels. Moreover, a likelihood ratio test between MLE-RE 1 and

MLE-RE 2 supports (p=.17) the restrictions made in MLE-RE 2 (as do the AIC values, for that

matter). For comparison purposes we will refer back to the log-likelihood values and AIC (Akaike

information criterion) of these two MLE models.

Table 5 displays the results for four regressions using the ultimatum estimator. Each model con-

sists of two sets of estimates: β̂ associated with player 1’s reservation and γ̂ associated with player

2’s reservation. To keep the analysis as similar to the original study as possible, we do not use the

offer acceptance data by player 2 in our ultimatum estimator. Nevertheless, we hypothesized that

learning and/or demographics might affect player 1’s expectations concerning player 2’s reservation

value. Therefore, in some models, we included (Z) variables for player 2. It is important to note,

though, that the Zγ terms here reflect player 1’s expectation concerning player 2’s reservation.16

The model labeled “Ultimatum 1” displays the regression results when we include all the vari-

ables originally employed in the Bothelho et al. (2005, 357-358) Table 4B analysis. These results

show no learning effects – only strong baseline reservation values (i.e., the constant terms), as well

as national*male interactions. In particular, being male raises the proposer’s reservation value.

Moreover, Russian males have higher reservation values than do US males. Interestingly, there are

no learning or national/gender effects for player 1’s expectation about player 2’s reservation value.

Because the effect on the offer (rather than the reservation value) can be a bit more complicated
15Any differences in numbers are purely due to rounding for presentation. The results were exactly replicated using

Stata’s xtreg command.
16Although σ2 is technically identified in this model and can be recovered in monte carlo analysis, we found it to

be very fragile here, given the number of observations. Because of that, we have normalized σ2 = 1.
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Ultimatum 1 Ultimatum 2 Ultimatum 3 Ultimatum 4

(1) β̂ (2) γ̂ (1) β̂ (2) γ̂ (1) β̂ (2) γ̂ (1) β̂ (2) γ̂

Constant 58.02 47.56 53.79 47.58 68.69 47.69 68.14 47.56
(3.67) (.40) (1.56) (.14) (4.21) (.78) (4.16) (.14)

US*Round2 -1.83 .02
(4.55) (.50)

US*Round3 -.07 .07
(4.40) (.58)

US*Round4 -.66 .05
(4.40) (.54)

US*Round5 -7.69 -.12
(4.53) (.47)

Russia -2.96 .06
(5.09) (.62)

Russia*Round2 -3.33 -.10
(4.35) (.57)

Russia*Round3 -6.29 -.12
(4.38) (.54)

Russia*Round4 -7.97 -.16
(4.35) (.54)

Russia*Round5 -3.59 -.14
(4.17) (.60)

Russia*Male 16.22 .34 12.96 19.21 .44 17.96
(2.82) (.34) (2.29) (2.63) (.33) (2.48)

US*Male 9.66 .19 11.61 9.72 .23 9.36
(2.89) (.33) (2.41) (2.85) (.32) (2.80)

White -6.26 -.05 -6.056
(3.54) (.64) (3.53)

Slavic -8.24 -.23 -7.23
(2.96) (.27) (2.78)

Science Major -12.69 -.20 -11.74
(3.86) (.49) (3.71)

Business Major -6.96 -.07 -6.36
(2.81) (.41) (2.74)

ln(σ1) 2.21 2.23 2.19 2.19
(.06) (.06) (.06) (.06)

log-likelihood = -1014.82 -1020.85 -1008.47 -1010.07
AIC (df) = 2077.65 (24) 2049.71 (4) 2044.94 (14) 2036.15 (8)

N = 289 289 289 289
Dependent variable: Offer made by player 1. Note: A positive coefficient denotes a positive effect on that
player’s reservation value. See Proposition 2 for the expected effect on the offer. Standard errors are shown
in parentheses. Bolded coefficients are statistically significant at p ≤ .05.

Table 4: Ultimatum Regressions
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to interpret and because the variables appear to have no effect on player 2’s reservation value, we

estimated a reduced version of the model, with regressors only in player 1’s utility. The results of

this model are shown in the “Ultimatum 2” column. As one can see, the results are substantively

the same as for the Ultimatum 1 model. The reduced Ultimatum 2 model is also supported over

the Ultimatum 1 model, whether one examines the AIC scores or conducts a likelihood ratio test

(p=.91). Therefore, Proposition 2 tells us that we can interpret the regressors affecting player 1’s

reservation value as having an unconditionally monotonic opposite effect on his expected offer: in

this case, males are expected to make lower offers and Russian males are expected to make lower

offers than US males. Both Ultimatum 1 and Ultimatum 2 models have higher log-likelihoods and

lower (i.e., better) AIC scores than the random effects models in Table 5, suggesting a better fit to

the data.

Given the notable differences between the random effects models in Table 5 and the Ultimatum

1 and 2 models in Table 5, we conducted additional ultimatum regressions employing other plausible

variables in the Bothelho et al. (2005) data. Ultimatum models 3 and 4 in Table 5 display these

results. Ultimatum model 3 suggests that, again, Russian males have a higher reservation value,

as do US males, with Russian males having a higher reservation relative to US males. However,

we see here that Slavic participants, as well as science and business majors, tend to have a lower

reservation value. As before, none of the new variables affect player 1’s expectation concerning

player 2’s reservation. Moreover, when we restrict the regression to include only regressors for

player 1, not only are the results (Ultimatum 4) substantively the same, but the AIC and likelihood

ratio test (p=.78) support the restrictions in the Ultimatum 4 model. Because of that we can again

interpret the effects of player 1’s variables as having an opposite effect on the offer: Russian and

US males make lower offers, whereas Slavic proposers and science or business majors make higher

offers. Finally, the log-likelihood and AIC values indicate that these two models fit the data better

than the original random effects model or either of the previous ultimatum specifications, even

accounting for the number of parameters estimated.

In sum, the ultimatum estimator produces substantively different results and better fits the

data than does the OLS/Normal variant. Moreover, where the OLS/Normal variant was sensitive

to regressor specification, the ultimatum estimator was much more robust in that respect. Finally,

and perhaps most interestingly, the Ultimatum 4 model, which is supported over the others via

log-likelihood tests and AIC scores, is exactly the specification that Proposition 2 would tell us

has unconditional comparative statics relating offer size to regressors. Yet, even in this case, the
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OLS/Normal models produces very different — presumably biased — inferences.

6 Conclusion

This manuscript derives a statistical estimator that can be used when the data generating process

is best described as an equilibrium to an ultimatum bargaining game. The model is shown to have

a number of nice properties. It allows the analyst to estimate, under the assumptions of the theory,

players’ utility functions and equilibrium quantities of interest–such as how equilibrium offers and

the probability of bargaining failure react to changes in the independent variables. Monte Carlo

experiments show that substantive inferences regarding the effect of variables will be different if this

data generating process is ignored in the process of estimation. We also show that the statistical

bargaining model allows the analyst to estimate the variance of the underlying logistic distribution

of errors and that the estimator is well behaved in small samples.

Furthermore we can compare this model to other likelihood modes often used by analysts. First

we see traditional logit models work well to answer some questions, particularly about bargaining

failure, if properly specified. That is, in a take it or leave it setting the logit model is the right

structural model. Second, a criticism of structural estimation in political science has been that it is

hard to deal with theories, or data generating processes, where players choose from more than two or

three alternatives. The logit ultimatum model also shows that the structural estimation approach

is not limited to games where players have finite action paces. In particular, there are number of

games — such as the Romer-Rosenthal setter model and the Rubenstein bargaining model — that

may be estimable in similar ways. Finally, the broad interest in bargaining games leaves open a

number of substantive areas where this estimator can be applied. From lab experiments to the

study of territorial disputes, a simple bargaining framework underlies many theoretical arguments.

The model described above allows analysts to obtain statistical estimates a step closer to theory

and open up new possibilities for testing hard to operationalize hypotheses.
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A Analytic derivations

First a useful definition.

Definition 1. A continuously differentiable function f : R → R+ is log-concave on an interval

(a, b) if and only if (ln f(x))′′ ≤ 0.

Also note the following useful fact from calculus.17

Fact 1. If a continuously differentiable function f : R → R+ is log-concave on an interval (a, b),

then f ′(x)
f(x) is a non-increasing function of x ∈ (a, b)

Proof. The function f is log-concave if and only if, for all x ∈ (a, b),

(lnf(x))′′ =
d

dx

f ′(x)
f(x)

≤ 0. (A-1)

Proposition 1. If Fε2 is log-concave, then there exists a unique perfect Bayesian-Nash equilibrium

to the statistical ultimatum game as described above.

Proof. The proof of this result is a straight forward construction of the equilibrium. It is a simple

extension to types drawn from R of the result in Fearon (1995).

That player 2 rejects if and only if y < R2 + ε2 is immediate from sequential rationality and,

as f2 is continuous y = R2 + ε2 with probability zero, without loss of generality we can assume

that player 2 accepts when she is indifferent between a settlement and disagreement. Then, in any

equilibrium player 2 plays the cutpoint strategy:

s2(y, ε2) =





accept if y ≥ R2 + ε2

reject if y < R2 + ε2.

Note also that the Pr(accept|y) = Pr(y > R2 + ε2) = Pr(ε2 < y − R2), and Pr(ε2 < y − R2) ≡
Fε2(y −R2).

Now, assume Fε2 is log-concave and consider the optimization problem for player 1, given player

2’s strategy. His expected utility for an offer y is:

Eu1(y, Q) = Fε2(y −R2) · (Q− y) + (1− Fε2(y −R2)) · (R1 + ε1). (A-2)

Differentiating shows that Eu1(y)′ is positive when
17For a paper on log-concave functions and their applications, see -Bagnoli and Bergstrom (2005).
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0 < fε2(y −R2)(Q− y)− Fε2(y −R2)− fε2(y −R2)(R1 + ε1),

which implies
fε2(y −R2)
Fε2(y −R2)

>
1

Q− y −R1 − ε1
. (A-3)

By Fact 1 the LHS is non-increasing and, by inspection, the RHS is strictly increasing in y.

Now if equation (A-3) holds evaluated at y = Q, then

fε2(Q−R2)
Fε2(Q−R2)

>
1

−R1 − ε1
. (A-4)

So, as we move from y = Q to y < Q the LHS is non-decreasing and the RHS is strictly

decreasing. Therefore, the derivative of Eu1(y) is positive over the entire interval [0, Q] and y = Q

is the optimal offer when

ε1 < −R1 − Fε2(Q−R2)
fε2(Q−R2)

. (A-5)

Conversely, differentiation shows that Eu1(y)′ is negative when

0 > fε2(y −R2)(Q− y)− Fε2(y −R2)− fε2(y −R2)(R1 + ε1),

implying
fε2(y −R2)
Fε2(y −R2)

<
1

Q− y −R1 − ε1
. (A-6)

Again, Fact 1 implies LHS is non-increasing. Now if equation (A-6) holds evaluated at y = 0,

then

fε2(−R2)
Fε2(−R2)

<
1

Q−R1 − ε1
. (A-7)

So, as we move from y = 0 to y > 0 the LHS is non-increasing and the RHS is strictly increasing.

Therefore, the derivative of Eu1(y) is negative over the entire interval [0, Q] and y = 0 is the optimal

offer when

ε1 > Q−R1 − Fε2(−R2)
fε2(−R2)

. (A-8)

It is clear from an examination of (A-5) and (A-8) that some times neither equation is satisfied.

To see this note that,
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−R1 − Fε2(Q−R2)
fε2(Q−R2)

≤ Q−R1 − Fε2(−R2)
fε2(−R2)

. (A-9)

Multiplying through by -1 and taking the inverse of each side, we get

fε2(Q−R2)
Fε2(Q−R2)

≤ fε2(−R2)
Fε2(−R2)−Qfε2(−R2)

. (A-10)

At Q = 0 the LHS and RHS are equal. However as Q increases the LHS is non-increasing by Fact

1 and the RHS is strictly increasing. Thus there are always ε1 such that (A-5) and (A-8) cannot

hold, given our assumption that Q > 0.

When neither (A-5) nor (A-8) hold, then for some (possibly multiple) y ∈ [0, Q], the derivative

of Eu1(y) is zero, implying

fε2(y −R2)
Fε2(y −R2)

=
1

Q− y −R1 − ε1
. (A-11)

Since the LHS is non-increasing on [0, Q] and the RHS is strictly increasing on the same interval,

equation (A-11) can have at most one solution. Call this offer y∗ and note that it implicitly solves,

y∗ = Q−R1 − ε1 − Fε2(y
∗ −R2)

fε2(y∗ −R2)
, (A-12)

We now demonstrate that y∗ maximizes player 1’s expected utility. Obviously, since Eu1(y) is

continuous for every ε1 on the interval, the utility maximizing offer exists and must be a critical

point, like y∗ or a boundary point. If neither (A-5) nor (A-8) hold, then there are two cases. First,

if one of the end points is the unique solution to equation (A-11) we are done. Second, if y∗ is

interior the derivative of Eu1(y) at y = 0 is positive and Eu1(y)′ at y = Q is negative by (A-5) and

(A-8). Thus the interior critical point is a local and global maximum.

B Comparative Statics for the Optimal Offer

Recall from Equation 2 that player 1’s unconstrained optimal offer is

y∗ = Q−R1 − ε1 − Fε2(y
∗ −R2)

fε2(y∗ −R2)
.

We are interested in how changes in observable reservation components R1 and R2 change the

optimal offer. First, let us specify the reservation utilities with regressors x, z, and v as follows:

R1 = βxx + βvv
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R2 = γzz + γvv

This specification allows us to characterize the comparative statics for elements that are unique to

each player (e.g., x and z), as well as those that are shared (e.g., v). Next, define

m(x) =
Fε2(x)
fε2(x)

.

Case 1: βv = γv = 0. We first consider the case where R1 and R2 share no common regressors.

By the Implicit Function Theorem we can express the first derivatives of y∗ as

dy∗

dx
=

[
1

1 + m′(y∗ − zγz)

]
(−βx) (A-13)

dy∗

dz
=

[
m′(y∗ − zγz)

1 + m′(y∗ − zγz)

]
γz (A-14)

Because m′(x) > 0 by log-concavity, it follows that

sign(dy∗/dx) = sign(−βx)

sign(dy∗/dz) = sign(γz)

Thus, the unconstrained optimal offer y∗ is unconditionally monotone in x and in z. For βx > 0,

the unconstrained optimal offer decreases monotonically in x. For γx > 0, the unconstrained optimal

offer increases monotonically in z. Because the constrained optimal offer has a floor (zero) and a

ceiling (Q), the constrained optimal offer is weakly monotone in x and in z.

Case 2: βv 6= 0, γv 6= 0. We next consider the case where R1 and R2 share a common regressor v.

It is easy to check that sign(dy∗/dx) = sign(−βx) and sign(dy∗/dz) = sign(γz) as before. However,

the derivative with respect to v is

dy∗

dv
=

[
1

1 + m′(y∗ − zγz − vγv)

]
(−βv) +

[
m′(y∗ − zγz − vγv)

1 + m′(y∗ − zγz − vγv)

]
γv (A-15)

As Equation A-15 shows, v has countervailing effects on the optimal offer, due to the fact that it

appears in both players’ reservation values. Because the denominator is positive in both terms on

the RHS, it follows that sign(dy∗/dv) = sign [γvm
′(y∗ − zγz − vγv)− βv] . Therefore, the optimal

offer increases in v when γvm
′(y∗−zγz−vγv) > βv and decreases in v when γvm

′(y∗−zγz−vγv) <

βv. Notice, however, that m′(y∗ − zγz − vγv) changes with v. Therefore, we are not assured of

monotonicity in v unless we can show the sign remains constant for all admissable values of v

— and, indeed, this will not always be the case as one can construct counter-examples when the

distribution of errors is logistic. ¤
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C Derivation of fy(y)

C.1 Method of Transformation

We assume the distribution of ε1 is logistic with scale parameter s1. Similarly, the distribution of

ε2 is logistic with scale parameter s2. We have confirmed that the derivative of y∗ is single signed

(< 0), so we can apply the method of monotonic transformation to obtain the distribution of y∗.

That is, with y∗ = h(ε1) and ε1 = h−1(y∗):

f∗y (y∗) = fε1(h
−1(y∗))

∣∣∣∣
d(h−1(y∗))

dy∗

∣∣∣∣ . (A-16)

Solving Equation 5 for ε1 produces

ε1 = h−1(y∗) = Q− y∗ −Xβ − s2

[
1 + e(y∗−Zγ)/s2

]
(A-17)

Taking the derivative of h−1(y∗) with respect to y∗ gives

d(h−1(y∗))
dy∗

= −
[
1 + e(y∗−zγ)/s2

]
. (A-18)

Substituting this into A-16 yields

fy∗(y∗) =
e−[h−1(y∗)]/s1

s1

{
1 + e−[h−1(y∗)]/s1

}2 ·
[
1 + e(y∗−Zγ)/s2

]
(A-19)

=
e
−

[
Q−y∗−Xβ−s2

(
1+e(y∗−Zγ)/s2

)]
/s1

s1

{
1 + e−[Q−y∗−Xβ−s2(1+e(y∗−Zγ)/s2)]/s1

}2 ·
[
1 + e(y∗−Zγ)/s2

]
(A-20)

¤
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