
JSS Journal of Statistical Software
MMMMMM YYYY, Volume VV, Issue II. http://www.jstatsoft.org/

Estimating Models of Strategic Interaction in R

Brenton Kenkel
University of Rochester

Curtis S. Signorino
University of Rochester

Abstract

This article introduces new software, the games package, for the estimation of strate-
gic statistical models in R. In these models, the probability distribution over outcomes
corresponds to the equilibrium of an underlying game form. We review such models and
provide derivations for one example, including discussion of alternative motivations for the
stochastic component of the models. We introduce the basic functionality of the games
package, such as how to estimate players’ utilities for outcomes as a function of covari-
ates. The software also includes functions for bootstrapping, plotting fitted values with
their confidence intervals, performing non-nested model comparisons, and checking global
convergence failures. We use the new software to replicate Leblang’s (2003) analysis of
speculative currency attacks.

Keywords: random utility models, structural estimation, game theory, econometrics, political
science.

1. Introduction

The games package provides functions for estimation of statistical models of strategic in-
teraction in the R language (R Development Core Team 2010). These are random-utility
models of choices by multiple agents, each of whom conditions his or her actions on the likely
decisions of the other players. In these models, the distribution of outcomes is determined
by the equilibrium of the underlying game. The goal is to estimate how the players’ util-
ity for each possible outcomes varies as a function of observed variables. These models are
appropriate for situations where the ultimate outcome following one actor’s choice depends
on actions taken by another, which are common in social science. In such cases, standard
estimators like binary-choice regression or Heckman selection models will lead to incorrect
inferences (Signorino 2002; Signorino and Yilmaz 2003). The games package implements
models for both discrete interactions and ultimatum bargaining. The package also provides
various post-estimation functions, including convergence checks, plotting of fitted values, and
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non-nested model comparison tests.

Estimation of strategic statistical models was previously implemented in Gauss in the Strat
package (Signorino 2003a). The games package provides new models and additional post-
estimation functionality over that available in Strat, and it is implemented in the popular R
language. Certain recursive strategic models can be estimated using standard software for
probit or logistic regression (Bas, Signorino, and Walker 2007), but these two-step estimates
are inefficient compared to full-information maximum likelihood. We are aware of no other
software for full structural estimation of strategic statistical models.

Section 2 of this paper provides a brief introduction to strategic statistical models, including
a derivation of the simplest example. Section 3 discusses the details of their implementation
in the games package and provides a replication of Leblang (2003). The post-estimation
functionality is covered in Section 4.

2. Strategic statistical models

Strategic statistical models were first introduced to analyze international crises and the out-
break of war (Signorino 1999). Signorino shows that standard techniques like logistic regres-
sion are inappropriate when applied to data generated by multi-agent strategic interactions,
a point developed further by Signorino and Yilmaz (2003). Signorino (2003b) introduces
a class of models that yield consistent estimates of players’ utilities when the structure of
interaction is known. These models have since been applied to data on U.S. congressional
races (Carson 2003, 2005), currency markets (Leblang 2003), armed deterrence (Signorino and
Tarar 2006), international economic sanctions (McLean and Whang 2010), territorial conflict
(Carter 2010), and Latin American governmental crises (Helmke 2010).

Every strategic model is associated with a game form and solution concept. First, the struc-
ture of the interaction must be known: the number of players, the order in which they move,
the number of actions each has available, and the possible outcomes. The purpose is to es-
timate players’ utilities for each outcome, usually as a function of covariates, from data on
observed outcomes of the game being played. This requires the introduction of a stochastic
component, so that there is a non-degenerate probability distribution over outcomes for any
given set of coefficients (i.e., those on the covariates describing players’ utilities). In partic-
ular, we will specify where error enters the model and calculate the equilibrium outcome for
each given set of parameters and stochastic shocks, using the appropriate solution concept
for the assumed stochastic structure (see below). The probability of each outcome can then
be obtained by assuming a distribution for the error terms.

The choice of stochastic structure is crucial for the estimation and interpretation of utility
parameters. The games package implements methods for two cases:

Agent error Each player’s utility over outcomes is fixed and common knowledge. However,
there are perceptual or implementation errors that can lead to a player not choosing the
action that maximizes her expected utility calculated in terms of the outcome payoffs.
This can be represented as a shock αmj to Player m’s expected utility for taking action
j, where the shock is realized immediately before m makes her action choice (and hence
is unknown to the preceding players). We typically assume that each αmj is drawn
independently from a normal or logistic distribution. The solution concept under agent
error is quantal response equilibrium (McKelvey and Palfrey 1998), wherein each player
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anticipates the probability of “mistakes” by the others and adjusts her expectations
accordingly.

Private information There is a different stochastic shock to each player’s utility for each
outcome. We will write this as πmk, for Player m and outcome k. The key assumption is
that each player fully knows her utility for each outcome, but only knows the distribution
of the shocks to the other players’ outcome utilities. The solution concept in this
case is perfect Bayesian equilibrium: each player takes the action that gives her the
highest expected utility, with respect to the realized shocks to her preferences and her
expectations about the actions the other players will take. Whereas the distribution over
outcomes was induced by the possibility of wrong decisions in the agent error case, now
it comes from the fact that observationally indistinguishable players may have different
privately known preferences. Except in the statistical ultimatum model, we will assume
that each πmk is drawn from a normal distribution.

We illustrate both of these stochastic structures in the egame12 example below. Signorino
(2003b) discusses these in greater depth, and concludes from Monte Carlo experiments that
models of the two types do not yield appreciably different results when the underlying game
form is relatively simple.

2.1. Illustration: The egame12 model

The egame12 model, with two players and three possible outcomes, is the simplest strategic
model. The players are indexed m = 1, 2, and each has an action set am = {L,R}. The
outcomes are indexed Y = 1, 3, 4. The structure of the interaction is as follows:

1. Player 1 chooses his action a1. If a1 = L, the game ends and the outcome is Y = 1.
Otherwise, if a1 = R, Player 2 gets to move.

2. Player 2 chooses her action a2. If a2 = L, the outcome is Y = 3; if a2 = R, the outcome
is Y = 4.

These are illustrated in the game trees in Figure 1. Let p1 and p2 denote the action prob-
abilities for Player 1, where p1 = P(a1 = L) and p2 = P(a2 = R). Let Player 2’s ac-
tion probabilities, conditional on 2’s move being reached, be p3 = P(a2 = L|a1 = R) and
p4 = P(a2 = R|a1 = R).

Each player’s utility depends on the outcome of the game; utility to Player m for outcome
k ∈ {1, 3, 4} is denoted Umk. When estimating this game, we usually model each of these
utilities as a linear function of known covariates, Umk = X>mkβmk, with the goal of estimating
the coefficients βmk. Each player chooses her action a ∈ {L,R} to maximize her expected
utility, EUm(a). Since Player 2 moves last, her expected utilities are simply EU2(L) = U23

and EU2(R) = U24. Similarly, since the action a1 = L is a game-ending move, Player 1’s
expected utility from this is EU1(L) = U11. However, Player 1’s expected utility from the
action R depends on Player 2’s choice, so we have EU1(R) = p3U13 + p4U14.

We observe N plays of the game, each with realized outcome Yi and associated regressors
Xmki for each player m and outcome k. Our goal is to estimate β = (βmk)m∈{1,2},k∈{1,3,4}, the
set of coefficients describing players’ utilities for particular outcomes, via maximum likelihood.
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Figure 1: Game trees for the egame12 model.
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Once we assume a stochastic structure (agent error or private information), we can calculate
the observation-wise choice probabilities p1i, . . . , p4i for any β. The log-likelihood is then

log `(β |X,Y ) =
∑
Yi=1

log p1i +
∑
Yi=3

(log p2i + log p3i) +
∑
Yi=4

(log p2i + log p4i). (1)

The calculation of these choice probabilities is the subject of the following subsections. For
ease of exposition, observation subscripts are dropped from all terms in the following materials.

Agent error

Assume that each player receives a stochastic shock αmj to her expected utility for choosing
j ∈ {L,R}, where each αmj is drawn independently from a normal distribution with mean 0
and variance σ2.1 To solve for the quantal response equilibrium of the game, we will proceed
via backward induction, solving for Player 2’s choice probabilities in order to find Player 1’s.

If Player 2’s turn is reached, her choice determines the outcome for sure. We thus have
EU2(L) = U23 = x>23β23 and EU2(R) = U24 = x>24β24. The ex ante probability that Player 2
chooses R is

p4 = P[EU2(R) + α2R ≥ EU2(L) + α2L]

= P[α2L − α2R ≤ x>24β24 − x>23β23]

= Φ

(
x>24β24 − x>23β23

σ
√

2

)
,

(2)

where Φ(·) is the standard normal CDF. Since Player 2 must choose from L or R, we have
p3 = 1 − p4. We now can solve for Player 1’s choice probabilities. If Player 1’s action is L,
the outcome is Y = 1 for certain. However, if he chooses R, the outcome is a lottery over
outcomes 3 and 4, with probabilities p3 and p4 respectively. Since Player 1 also receives a
shock to his expected utilities by action, his ex ante chance of choosing R is

p2 = P[EU1(R) + α1R ≥ EU1(L) + α1L]

= P[α1L − α1R ≤ p3x>13β13 + p4x
>
14β14 − x>11β11]

= Φ

(
p3x
>
13β13 + p4x

>
14β14 − x>11β11

σ
√

2

)
.

(3)

Because Player 1 must choose L or R, we have p1 = 1− p2. We can then estimate the agent
error model for a given dataset by substituting (2) and (3) into the log-likehood function (1).

As in standard binary dependent variable models (e.g., GLMs with a logit or probit link),
the statistical model is not identified with respect to the scale parameter σ, so it cannot be
estimated (Signorino 1999; Lewis and Schultz 2003). The scale parameter is fixed to σ = 1
in all of the extensive-form models in games, so each estimated utility coefficient β̂mkj can be
interpreted as an estimate of the ratio βmjk/σ. Alternatively, we allow for σ to be modeled
as a function of covariates, in which case the regression coefficients for these variables can be
estimated. For details, see the example in Section 3.3.

Private information

Assume there is an additive shock πmk to each outcome utility Umk, where each πmk is drawn

1The same calculations as follow can be applied in the case of errors with logistic distributions.
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independently from a normal distribution with mean 0 and variance σ2. We will again proceed
by backward induction, this time to solve for the perfect Bayesian equilibrium.

Player 2 will choose R if and only if U24 + π24 ≥ U23 + π23. The ex ante probability of Player
2 choosing R is therefore

p4 = P[U24 + π24 ≥ U23 + π23]

= P[π23 − π24 ≤ x>24β24 − x>23β23]

= Φ

(
x>24β24 − x>23β23

σ
√

2

)
.

(4)

As before, p3 = 1 − p4. In addition, notice that (4) is essentially the same as in (2), since
Player 2’s actions are decisive over outcomes. The same does not hold when we consider
Player 1’s choice probabilities. In particular, his expected utility for choosing R in the private-
information case is

EU1(R) = p3(x
>
13β13 + π13) + p4(x

>
14β14 + π14)

The ex ante probability of Player 1 selecting R is

p2 = P[EU1(R) ≥ EU1(L)]

= P[p3(x
>
13β13 + π13) + p4(x

>
14β14 + π14) ≥ x>11β11 + π11]

= P[π11 − p3π13 − p4π14 ≤ p3x>13β13 + p4x
>
14β14 − x>11β11]

= Φ

(
p3x
>
13β13 + p4x

>
14β14 − x>11β11

σ
√

1 + p23 + p24

)
.

(5)

In particular, the variance of Player 1’s choice probabilities depends on p3 and p4, which
was not the case under agent error. To estimate the private information model, as before,
substitute the choice probability equations (4) and (5) into the log-likelihood (1). As in the
agent error model, the scale parameter σ cannot be estimated, so it is fixed to 1 by the fitting
functions.

2.2. The statistical ultimatum model

The ultimatum game is a workhorse model of bargaining in economics in political science, in
which one player makes a “take it or leave it” offer to the other. The equilibrium size of an
offer depends on the proposer’s expectations about what will be accepted, which standard
models like OLS fail to account for. To facilitate analysis of bargaining data, we implement
the statistical ultimatum game of Ramsay and Signorino (2009) via the ultimatum function.
The structure of the game is:

1. Player 1 makes an offer x ∈ [0, Q] to Player 2.

2. Player 2 can accept or reject the offer.

(a) If accepted, payoffs are Q− x for Player 1 and x for Player 2.

(b) If rejected, payoffs are R1 + ε1 and R2 + ε2 respectively, where ε1, ε2 are i.i.d.
logistic variables with scale parameters s1 and s2. The reservations Rm are common
knowledge, but the realized stochastic terms εm are privately known by the players.
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In applications, the reservation values are modeled as a function of covariates, Rmi = x>miβm,
and the goal is to estimate β1, β2, s1, and s2. For example, experimental economists have
investigated whether there are cross-cultural differences in play of the ultimatum game in lab
settings; e.g., if Americans make systematically lower offers (see Botelho, Harrison, Hirsch,
and Rutström 2005). To test this, one would include an indicator for nationality in the
equations for the players’ reservation values.

For a full derivation of the estimator and application to experimental bargaining data, see
Ramsay and Signorino (2009).

3. Specification and estimation

In this section and those below, we replicate Leblang’s (2003) analysis of speculative cur-
rency attacks to illustrate the package’s functionality. The dataset is available in games as
leblang2003.

R> data(leblang2003)

R> names(leblang2003)

[1] "outcome" "preelec" "postelec" "rightgov" "unifgov"

[6] "lreserves" "realinterest" "lexports" "capcont" "overval"

[11] "creditgrow" "service" "USinterest" "contagion" "prioratt"

[16] "nation" "month" "year"

Each observation is a country observed in a particular year. The assumed data-generating
process follows the egame12 model, with two players and three potential outcomes. Player 1
is “the market,” which decides whether or not to initiate a speculative attack on Player 2’s
(the country’s) currency. If the market decides not to attack, the game ends. If there is an
attack, the country decides whether to devalue the currency or defend its exchange-rate peg.
The observed distribution of outcomes is:

R> table(leblang2003$outcome)

no attack devaluation defense

7152 42 46

We assume that the market is strategic, incorporating its expectations of the country’s re-
sponse into its initial decision of whether to make a currency attack. The source of uncertainty
is assumed to be private information about payoffs, which yields outcome probabilities given
by equations (4) and (5). The market’s utility for the three possible outcomes, and each
country’s utility for defending the currency, is assumed to be a linear function of observed
covariates. For identification, the country’s utility for devaluation is fixed to 0.2 See the orig-
inal paper or the help page for leblang2003 for information on the covariates and specific
assignments to each utility equation.

2In the original study, Leblang estimates a constant for Player 2’s utility from devaluation and leaves a
constant out of utility for defense. Our approach here yields substantively identical results.
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3.1. Modeling player utilities

The typical use of a strategic model is to estimate the effect of observed factors on players’
utility for each possible outcome. To avoid an overabundance of parameters and potential
inefficiency, analysts will typically want to make some exclusion restrictions—i.e., to leave
some regressors out of some utility equations.3 This necessitates the use of multiple model
formulas, which we handle via the Formula package (Zeileis and Croissant 2010). The variables
to include in each utility are specified using the standard formula syntax, and each set is
separated by a vertical bar (|). For example, in the egame12 model, an analyst may want to
use the specification

U11 = β11,0 + β11,1x1

U13 = 0

U14 = β14,0 + β14,1x1 + β14,2x2

U24 = β24,0 + β24,2x2,

where x1 and x2 are observed variables. The appropriate Formula syntax is y ~ x1 | 0 |

x1 + x2 | x2.

In some of the more complex models, such as egame123 with its eight utility equations, writing
the model formulas manually may be daunting or prone to error. We provide two options to
ease the process. First, users may specify the model formulas as a list; the fitting functions
then use the internal function checkFormulas to convert it to the appropriate Formula object.

R> f1 <- list(u11 = y ~ x1, u13 = ~0, u14 = ~x1 + x2, u24 = ~x2)

R> games:::checkFormulas(f1)

y ~ x1 | 0 | x1 + x2 | x2

<environment: 0x21e7c10>

(Elements of the list need not be named; in fact, the names are ignored.) Second, the function
makeFormulas provides interactive prompts for constructing the model formulas step by step.
The user only needs to supply the name of the model he or she intends to fit and a character
vector containing outcome descriptions. For the Leblang data, the appropriate call would look
like makeFormulas(egame12, outcomes = c("no attack", "devaluation", "defense")).
The following menu will appear at the R console:

Equation for player 1's utility from no attack:

1: fix to 0

2: intercept only

3: regressors, no intercept

4: regressors with intercept

Selection:

3A necessary condition for identification in a strategic model is that no regressor, including the constant,
appear in all of a player’s utility equations for the outcomes reachable after her move (Lewis and Schultz 2003).
The fitting functions and makeFormulas enforce this condition. One way to accomplish it is to fix each player’s
utility to 0 for one outcome. This comes without loss of generality, since Von Neumann–Morgenstern utilities
are unique only up to a positive affine transformation.



Journal of Statistical Software 9

If 3 or 4 is selected, the user will be prompted to enter a space-separated list of variables to
include in the utility equation of interest. We use functions from stringr (Wickham 2010)
in parsing the input. The same menu will then be displayed for player 1’s utility from
devaluation, player 1’s utility from defense, and player 2’s utility from defense. The final
prompt will ask for the name of the variable (or variables; see Section 3.2 below) containing
information on the observed outcomes. The function will then return the Formula specification
corresponding to the given input, which can be supplied as the formulas argument of the
appropriate fitting function.

3.2. Dependent variable specification

For most of the models included in the games package, there are a few different ways that
the dependent variable might be stored in the dataset. For example, all of the following are
plausible representations of the outcome variable in the Leblang data:

• Numeric indicators for the final outcome, where 1 means no currency attack, 2 means
devaluation in response to an attack, and 3 means defense against an attack.

• Factor indicators for the final outcome, where the levels correspond to no attack, deval-
uation, and defense respectively.

• Binary variables representing each player’s action. The first would be coded 0 when
there is no attack and 1 when there is an attack. The second would be coded 0 when
the targeted country devalues and 1 when it defends the currency peg.

The games package allows for all of these types of specifications. To use a numeric or factor
indicator for the final outcome, the form of the specification is simply y ~ ., as in typical
model formulas. To use binary indicators, the names of the indicators should be separated with
+ signs on the left-hand side, as in y1 + y2 ~ .. When using binary indicators, unobserved
outcomes—in this case, the value of y2 when y1 == 0—should not be coded as NAs, as this
will typically result in their being removed from the dataset.

The method of specifying the dependent variable has no effect on the estimation results, as
shown in the next example.

R> leblang2003$attack <- as.numeric(leblang2003$outcome != "no attack")

R> leblang2003$defend <- as.numeric(leblang2003$outcome == "defense")

R> flb <- outcome ~ capcont + lreserves + overval + creditgrow +

+ USinterest + service + contagion + prioratt - 1 | 1 | 1 |

+ unifgov + lexports + preelec + postelec + rightgov + realinterest +

+ capcont + lreserves

R> flb1 <- as.Formula(flb)

R> flb2 <- update(flb1, attack + defend ~ .)

R> leb1 <- egame12(flb1, data = leblang2003, link = "probit", type = "private")

R> leb2 <- egame12(flb2, data = leblang2003, link = "probit", type = "private")

R> all.equal(coef(leb1), coef(leb2), check.attributes = FALSE)

[1] TRUE



10 Estimating Models of Strategic Interaction in R

The only difference is in the construction of the names of the utility equations. When binary
action indicators are used, the outcome names are inferred from the names of the action
variables. When numeric or factor outcome variables are used, their values/levels are used as
the outcome names.

R> cbind(leb1$equations, leb2$equations)

[,1] [,2]

[1,] "u1(no attack)" "u1(~attack)"

[2,] "u1(devaluation)" "u1(attack,~defend)"

[3,] "u1(defense)" "u1(attack,defend)"

[4,] "u2(defense)" "u2(attack,defend)"

The methods for specifying the dependent variable differ slightly across models; see the help
page of each fitting function for a list of allowable specifications.

3.3. Model fitting

Once the formula has been constructed, it is straightforward to fit a strategic model. All
of the fitting functions contain the arguments data, subset, and na.action, which are
used in the typical way to construct the model frame. In addition, the method argument
is passed to maxLik (from the maxLik package; Toomet, Henningsen, with contributions from
Spencer Graves, and Croissant 2010) to select an optimization routine, and other parameters
to control the process (e.g., reltol, iterlim) can be passed as named arguments.

Each fitting function returns an object inheriting from two S3 classes. The first is the "game"

class, for which most of the methods of interest are defined, including print and summary.
The second is the name of the particular model that was fit; this is used by the predict

methods. For the most part, the elements of a "game" object are the same as those of "lm"
and "glm" objects (e.g., coefficients, vcov). Pertinent differences include:

• The log.likelihood element contains the vector of the n observationwise log-likelihoods
evaluated at the parameter estimate, for use in non-nested model tests (see Section 4.2
below).

• The y element contains the outcome variable represented as a factor whose levels are
the outcome names.

• The link and type elements store the link function and source of error respectively.

• The equations element contains the names of the utility equations and scale terms;
this is used by print.game and latexTable to group the parameters estimated.

Fitted ultimatum models contain some additional elements, which are discussed below.

The nonparametric bootstrap is implemented as part of the fitting process via the boot

argument of the model functions. To run the bootstrap on a model that has already been
estimated, use update as in the next example. A status bar is printed by default, but it can
be suppressed by setting bootreport = FALSE.
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R> set.seed(42)

R> leb1 <- update(leb1, boot = 100)

Running bootstrap iterations...

========================================================================

Bootstrap results are stored in the boot.matrix element of the fitted model object. When a
model has been bootstrapped, the default behavior of summary.game is to use the bootstrap
results to calculate standard error estimates.

R> summary(leb1)

Call:

egame12(formulas = flb1, data = leblang2003, link = "probit",

type = "private", boot = 100)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

u1(no attack):capcont -0.4525 0.3352 -1.35 0.17710

u1(no attack):lreserves 0.2292 0.0629 3.64 0.00027

u1(no attack):overval -0.4413 0.1400 -3.15 0.00162

u1(no attack):creditgrow -0.0648 0.0380 -1.71 0.08800

u1(no attack):USinterest -0.0505 0.0507 -1.00 0.31902

u1(no attack):service -0.0288 0.0401 -0.72 0.47291

u1(no attack):contagion -0.1159 0.0435 -2.66 0.00773

u1(no attack):prioratt -0.1218 0.0457 -2.66 0.00771

u1(devaluation):(Intercept) -3.6648 0.3855 -9.51 < 2e-16

u1(defense):(Intercept) -3.1385 0.4057 -7.74 1e-14

u2(defense):(Intercept) 0.4269 1.7442 0.24 0.80663

u2(defense):unifgov -0.3568 0.3862 -0.92 0.35559

u2(defense):lexports -0.1997 0.1891 -1.06 0.29085

u2(defense):preelec 1.6632 1.9215 0.87 0.38672

u2(defense):postelec 1.0623 0.9031 1.18 0.23947

u2(defense):rightgov -0.9358 0.5176 -1.81 0.07058

u2(defense):realinterest 1.7955 1.0693 1.68 0.09312

u2(defense):capcont 0.0656 1.7098 0.04 0.96940

u2(defense):lreserves 0.3099 0.2046 1.51 0.12985

Standard errors estimated from bootstrap results

Log-likelihood: -482.02

AIC: 1002

No. observations: 7240

To see the normal-theory standard errors instead, supply the option useboot = FALSE to the
summary call.
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The other arguments for the fitting functions depend on whether the model is one of the
discrete extensive form games or the statistical ultimatum game.

Extensive-form models

The stochastic structure of the extensive-form models is specified via the arguments link

and type. The link argument is used to specify the distributional form of the error terms:
"probit" for normal, "logit" for type I extreme value. The type argument specifies whether
the source of randomness is "agent" error or "private" information. Normal errors must
be used in the case of private information; if a model is specified with link = "logit" and
type = "private", a warning will be issued and a probit link will be enforced.

The error variance σ normally is not estimable on its own, as noted above in Section 2. This
is no longer the case if σ is modeled as function of known covariates:

σ = exp(γ1Z1 + γ2Z2 + . . .+ γkZk).

The argument sdformula is used to estimate γ for such a model. The formula should be
one-sided, with nothing to the left of the ~, as in the following example with the Leblang
data.

R> leb3 <- egame12(outcome ~ lreserves + overval - 1 | 1 | 1 | preelec +

+ realinterest, sdformula = ~prioratt - 1, data = leblang2003,

+ link = "probit", type = "private")

R> summary(leb3)

Call:

egame12(formulas = outcome ~ lreserves + overval - 1 | 1 | 1 |

preelec + realinterest, data = leblang2003, link = "probit",

type = "private", sdformula = ~prioratt - 1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

u1(no attack):lreserves 0.2264 0.0464 4.88 1.1e-06

u1(no attack):overval -0.4381 0.0836 -5.24 1.6e-07

u1(devaluation):(Intercept) -3.0137 0.2470 -12.20 < 2e-16

u1(defense):(Intercept) -2.8410 0.2275 -12.49 < 2e-16

u2(defense):(Intercept) -0.0190 0.1988 -0.10 0.9239

u2(defense):preelec 1.3690 0.6402 2.14 0.0325

u2(defense):realinterest 1.4943 0.5610 2.66 0.0077

log(sigma):prioratt 0.0427 0.0186 2.29 0.0221

Standard errors estimated from inverse Hessian

Log-likelihood: -495.37

AIC: 1006.7

No. observations: 7240
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The equation for the scale parameter coefficients is log(sigma); for models with a logit link, it
would be log(lambda). The positive coefficient on prior attacks indicates that outcomes are
less predictable (since the stochastic terms are larger relative to the systematic components)
for countries that have been victims of speculative currency attacks in the past. Note that
it is also possible to estimate separate scale-term equations for each player, by using the
argument sdByPlayer = TRUE and using an equation of the form sdformula = scale1vars

| scale2vars.

The extensive-form models also allow for estimation of the error variance when the average
payoffs are known to the analyst, such as in data from lab experiments. In this case, the
payoffs can be specified with the fixedUtils argument. The only information needed from
the model formula is the outcome variable, so the formulas argument can be written in the
form y ~ . or y ~ 1. When the argument fixedUtils is used, the default behavior is to
estimate a single common scale parameter, as in the next example.

R> lebfixed <- egame12(outcome ~ ., data = leblang2003, fixedUtils = c(1,

+ -1, 0, 1), link = "probit", type = "private")

R> summary(lebfixed)

Call:

egame12(formulas = outcome ~ ., data = leblang2003, link = "probit",

type = "private", fixedUtils = c(1, -1, 0, 1))

Coefficients:

Estimate Std. Error z value Pr(>|z|)

log(sigma) -1.0513 0.0199 -52.9 <2e-16

Standard errors estimated from inverse Hessian

Fixed terms:

u1(no attack) u1(devaluation) u1(defense) u2(defense)

1 -1 0 1

Log-likelihood: -646.54

AIC: 1295.1

No. observations: 7240

Loosely speaking, the higher the estimated scale parameter relative to the utility values, the
greater the role of uncertainty in each player’s decisions. As before, sdByPlayer can be used
to estimate a separate scale parameter for each player, and sdformulas to specify the scale
term(s) as a function of covariates.

The ultimatum model

In the ultimatum model, each observation consists of the value of the offer made by Player
1 and whether Player 2 accepted it. By assumption, there is an exogenous upper bound on
the size of the offer, which is specified via maxOffer. The lower bound is always 0. It is
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important to be able to identify which offers were at one of these boundary points, since the
log-likelihood of an observation depends on whether the offer was interior. If offers are stored
as floating-point numbers, naive equality tests may misclassify some boundary observations
as interior. To mitigate this, we use the argument offertol and code an offer x as meeting
the lower bound if x < offertol and the upper bound if x > maxOffer− offertol. Unless
there are extremely slight differences between observed offers, on the order of 1 × 10−8, the
default value of offertol should suffice for most analyses.

The arguments s1 and s2 are for fixing the scale parameters of the stochastic component
of the players’ reservation values. If either of these is left unspecified, it is estimated. We
recommend fixing s2, since attempts to estimate it often run into numerical stability issues
(Ramsay and Signorino 2009).

The model formula for ultimatum should be written in the form offer + accept ~ R1 |

R2, where R1 and R2 contain the variables for Player 1’s and 2’s reservation values respectively.
Some researchers may only have access to data on offer size, but not whether the offer was
accepted. For such datasets, run ultimatum with the argument outcome = "offer" and
specify the model formula as offer ~ R1 | R2. Parameters for Player 2’s reservation value
are still estimable in this case, since the optimal offer for Player 1 depends on his or her
expectations of the probability of acceptance. Even when acceptance data are available, the
option outcome = "offer" may be useful for making formal comparisons of the statistical
ultimatum model to OLS models of offer size, as in Ramsay and Signorino (2009). For more
on model comparison, see Section 4.2 below.

We illustrate the statistical ultimatum game with data from a classroom experiment. Each
gender variable is an indicator for whether the proposer (1) or receiver (2) is female. We
investigate whether players’ reservation values—the amount they get if the offer is rejected—is
a function of their gender.

R> load("ultimatum2010.rda")

R> ult1 <- ultimatum(offer + accept ~ gender1 | gender2, maxOffer = 100,

+ data = ultimatum2010, s2 = 3)

R> summary(ult1)

Call:

ultimatum(formulas = offer + accept ~ gender1 | gender2, data = ultimatum2010,

maxOffer = 100, s2 = 3)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

R1:(Intercept) 62.198 18.734 3.32 0.0009

R1:gender1 -25.409 39.290 -0.65 0.5178

R2:(Intercept) 37.684 1.616 23.31 <2e-16

R2:gender2 -0.897 1.150 -0.78 0.4355

log(s1) 3.934 0.430 9.14 <2e-16

Standard errors estimated from inverse Hessian
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Fixed terms:

log(s2)

1.0986

Log-likelihood: -292.14

AIC: 594.27

No. observations: 32

The results indicate that the female students have lower reservation values, meaning they are
more likely to make high offers (as the proposer) or accept low ones (as the receiver). However,
neither gender coefficient is statistically significant, so this may just be due to sampling error.

3.4. Convergence

The log-likelihood functions for strategic models are not globally concave, so convergence to a
global maximum is not guaranteed. We provide two methods to avert convergence problems:
well-chosen default starting values and a likelihood profiling method.

In all of the egame models, the default starting values come from statistical backward induction
(SBI), an equation-by-equation method that uses ordinary probit or logistic regression models
to obtain consistent estimates of the parameters (Bas et al. 2007).4 For example, in an
egame12 model with logit link, the procedure is as follows. Let Yi be an indicator for whether
Player i chooses R.

1. Obtain the estimate β̂24 by running a logistic regression of Y2 on X24 within the subset
of observations for which Y1 = 1 (i.e., Player 2’s choice is observed).

2. Estimate β̂11, β̂13, and β̂14 as follows:

(a) Use β̂24 to generate predicted probabilities p̂4 and p̂3 for Player 2’s action.

(b) Obtain the estimates by running a logistic regression of Y1 on the expectation-
transformed data matrix

[
−X11 p̂3X13 p̂4X14

]
. The estimated coefficient vector

is
(
β̂11 β̂13 β̂14

)>
.

3. Multiply the obtained estimates by
√

2 to obtain starting values for the full-information
procedure.5

The applications of SBI to egame122 and egame123 are similar. It is less straightforward to
generate starting values for the ultimatum model. We use a similar two-step procedure, but
it has not been verified as consistent and sometimes yields non-finite likelihoods, in which
case starting values of zero (except for the intercept) are used.

4SBI is based on the assumption of agent error, so the estimates technically are not consistent for private-
information models. However, for strategic models of relatively low complexity like those available in the
games package, the assumption of agent error or private information makes little difference to the parameter
estimates (Signorino 2003b).

5This step is not necessary when SBI is used on its own, rather than to generate starting values. The
correction is for the additional dispersion induced by the agent error model. Logistic regression uses a dispersion
parameter of 1, but equations (2) and (3) along with the assumption σ = 1 imply a dispersion parameter of√

2. The change makes no substantive difference for the results.
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To assess convergence of an already-fitted model, we implement likelihood profiling via the
profile.game method. As in the MASS package’s (Venables and Ripley 2002) profile.glm
method, this entails refitting the model numerous times, each time holding a single parameter
at some value other than the original estimate. In the case of generalized linear models, this
profiling procedure is typically used to estimate likelihood-ratio confidence regions (McCullagh
and Nelder 1989, 254). However, it can also serve as a rough global convergence check: if
the log-likelihood of any of the refit models is greater than that of the original fit, then by
definition the original procedure did not converge to a global maximum. When this is the
case, as in the following example, profile.game issues a warning.

R> data(student_offers)

R> stu1 <- ultimatum(offer + accept ~ gender1 | gender2, data = student_offers,

+ maxOffer = 100, s2 = 1)

R> profstu1 <- profile(stu1, which = 1:4)

Warning message:

In profile.game(stu1, which = 1:4) :

some profiled fits have higher log-likelihood than original fit;

refit the model using "profile" option

The returned object, inheriting from class "profile.game", contains the estimates and log-
likelihoods from each refitted model. For visualization of the profile log-likelihood, we provide
the plot.profile.game method, which displays a spline approximation.

R> plot(profstu1)

See Figure 2 for the output from this example. Slightly lower values of both the intercept and
the gender coefficient for Player 1 appear to yield better-fitting models.

When profile.game finds parameters that yield a higher log-likelihood than the original fit,
these can be used as starting values in re-estimation of the model via the profile argument
of the fitting function.

R> stu2 <- update(stu1, profile = profstu1)

R> logLik(stu1)

'log Lik.' -663.45 (df=5)

R> logLik(stu2)

'log Lik.' -663 (df=5)

3.5. Reporting results

A natural form to present the results of a fitted strategic model is in a table where each row
is a covariate and each column is a utility equation. We provide the function latexTable to
automatically generate LATEX code for such tables. Table 1 was generated with the following
code:
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u1(no attack) u1(devaluation) u1(defense) u2(defense)

(Intercept)
−3.6648 −3.1385 0.4269
(0.3855) (0.4057) (1.7442)

capcont
−0.4525 0.0656
(0.3352) (1.7098)

lreserves
0.2292 0.3099

(0.0629) (0.2046)

overval
−0.4413
(0.1400)

creditgrow
−0.0648
(0.0380)

USinterest
−0.0505
(0.0507)

service
−0.0288
(0.0401)

contagion
−0.1159
(0.0435)

prioratt
−0.1218
(0.0457)

unifgov
−0.3568
(0.3862)

lexports
−0.1997
(0.1891)

preelec
1.6632

(1.9215)

postelec
1.0623

(0.9031)

rightgov
−0.9358
(0.5176)

realinterest
1.7955

(1.0693)

Log-likelihood −482.0155
N 7240

Table 1: Replication of Leblang’s (2003) results.
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Figure 2: Output of plot.profile.

R> latexTable(leb1, caption = "Replication of \\citeauthor{Leblang2003}'s \\citeyearpar{Leblang2003} results.",

+ label = "tab:leb1", floatplace = "p")

Additional arguments include digits for the number of digits printed, rowsep for the point
spacing between rows, and useboot for the use of bootstrap vs. normal-theory standard errors.

4. Analyzing fitted models

4.1. Predicted probabilities

The raw output from the model fitting functions in games describes the effect of each covariate
on players’ utilities for different outcomes. Some analysts may instead be interested in how
each variable affects the probability of a particular outcome occurring. Such probabilities are
nonlinear functions of the covariates; for example, they are given by equations (2) and (3)
for egame12 models with agent error. Following popular developments in the political science
literature (King, Tomz, and Wittenberg 2000), we provide the function predProbs to analyze
how the predicted probability of each outcome changes as a function of certain covariates.
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Figure 3: Output of plot.predProbs.

The general procedure is:

1. Select a “covariate of interest,”Xj .

2. Hold all other variables at their central values — means for continuous variables, medians
for binary or ordinal variables, modes for others — or some other pre-specified “profile”
X−j = (Xj′)j′ 6=j .

3. Using the estimated model, find the predicted probability of each potential outcome
over the observed range of Xj , while holding X−j fixed.

4. Calculate confidence intervals for the predicted values using a parametric or nonpara-
metric bootstrap.

5. Plot the results.

The only mandatory arguments for predProbs are model, for the fitted model object, and
x, a character string containing the name of the variable of interest (partial matches are
allowed). If x is numeric, then the default behavior is to evaluate predicted probabilities at
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100 grid points along the range observed for x in the data used to fit the model (i.e., the data
frame model$model). The number of grid points and range of values can be controlled via
the arguments n and xlim respectively. If x is a factor variable, all available levels are used.

Additional named arguments can be used to change the default profile of values for the
covariates other than x. These arguments should be specified as varname = value, where
varname exactly matches the name of the variable in the data frame used to fit the model and
value is an expression that is evaluated within the model frame, model$model. For example,
to set a variable y to its observed 10th percentile, use the argument y = quantile(y, probs

= 0.1).

Confidence intervals for the predictions are calculated by resampling. If model has a boot.matrix
element containing nonparametric bootstrap results, these are used. Otherwise, a matrix of
parametric bootstrap results is constructed by taking 1,000 samples from a multivariate nor-
mal distribution whose mean is β̂ and whose variance matrix is the inverse of the negative
Hessian of the estimates. The default is to compute a 95% confidence interval; this can be
controlled by the ci argument. It normally takes a few seconds to compute the fitted values
for all of the bootstrapped coefficients, so a status bar is displayed. This can be suppressed
by setting report = FALSE.

We illustrate with an example from Leblang’s data. Suppose we are interested in the estimated
effect of currency reserves on the outcome probabilities when contagion is high (currency
attacks are occurring elsewhere) but all other variables are held at their central values. We
would use predProbs as follows.

R> predleb1 <- predProbs(leb1, x = "lreserves", contagion = max(contagion))

Calculating confidence intervals...

========================================================================

The return value is an object inheriting from classes "predProbs" and "data.frame". This
is a data frame with n (or nlevels(x), if x is a factor) rows, each containing a profile,
the predicted probabilities for each outcome, and the confidence bands on each predicted
probability.

The method plot.predProbs can be used for visualization of the output. The number of
plots that can be produced from predProbs output is equal to the number of outcomes in
the corresponding fitted model (e.g., three for an egame12 model). To deal with this, we have
written plot.predProbs to behave similarly to plot.gam in the gam package (Hastie 2011),
in which each fitted model corresponds to as many plots as there are covariates.

R> par(mfrow = c(2, 2))

R> plot(predleb1)

See Figure 3 for the output. If no additional arguments are specified to plot.predProbs(x),
all of the plots are printed in sequence. If ask = TRUE is specified, then an interactive menu
is used for plot selection:

R> plot(predleb1, ask = TRUE)

Make a plot selection (or 0 to exit):
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1: plot: Pr(no attack)

2: plot: Pr(devaluation)

3: plot: Pr(defense)

4: plot all terms

The argument which can be used to select one of these without bringing up the menu; e.g.,
plot(predleb1, which = 2) will produce only the plot for the devaluation outcome. In each
case, all of the standard plotting arguments can be used to control the output. To change the
line type used for the confidence bands, use the argument lty.ci.

4.2. Non-nested model comparisons

It is not possible to express traditional discrete-choice models like logistic regression as “re-
stricted” strategic models, or vice versa. Therefore, standard likelihood ratio tests are inap-
propriate for comparing the fit of a strategic model to that of a generalized linear model; a
non-nested model comparison is necessary (Clarke and Signorino 2010). The games package
implements the tests of Vuong (1989) and Clarke (2006) via the vuong and clarke functions
respectively. Each test compares two models, under the null hypothesis that the two have an
equal Kullback-Leibler distance from the true model. Both use test statistics formed from
the log-likelihood contributions of each individual observation. The main difference is that
Clarke’s test is unbiased in finite samples, whereas Vuong’s depends on asymptotic prop-
erties. We implement both tests with the recommended BIC-based correction to penalize
overparameterization.

The simplest use of the non-nested test functions is to compare two strategic models to each
other. For example, we can use them to determine whether agent error or private information
is more appropriate for Leblang’s data.

R> lebagent <- update(leb1, type = "agent", boot = 0)

R> vuong(leb1, lebagent)

Vuong test for non-nested models

Model 1 log-likelihood: -482

Model 2 log-likelihood: -482

Observations: 7240

Test statistic: -0.15

Neither model is significantly preferred (p = 0.88)

Neither stochastic structure appears to be significantly preferred over the other.

It is somewhat less straightforward to compare strategic to non-strategic models. Vuong’s and
Clarke’s tests can be applied only to pairs of models for which the dependent variable is exactly
the same. In a strategic model lik egame12, the dependent variable for each observation is
the outcome reached—i.e., the vector of all decisions made by each player. By contrast,
in a standard (binary) logistic regression model, the dependent variable is an indicator for
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whether one particular outcome was reached. To allow for comparisons in such cases, the
vuong and clarke functions have outcome arguments. For example, we could compare the
strategic model of Leblang’s data to a logistic regression in terms of their ability to predict
the occurrence of speculative attacks as follows.

R> leblang2003$noattack <- 1 - leblang2003$attack

R> logit1 <- glm(noattack ~ lreserves + overval + creditgrow + contagion +

+ prioratt + rightgov + realinterest, data = leblang2003, family = binomial)

R> vuong(model1 = leb1, outcome1 = 1, model2 = logit1)

Vuong test for non-nested models

Model 1 log-likelihood: -430

Model 2 log-likelihood: -431

Observations: 7240

Test statistic: -9.8

Model 2 is preferred (p < 2e-16)

The logistic regression is preferred despite having a lower log-likelihood, since it fits 8 param-
eters compared to the strategic model’s 19. The argument outcome1 = 1 is used to indicate
that the strategic model should be evaluated in terms of its fit with the market’s decision not
to initiate a currency attack. We would have used outcome1 = 2 to consider the outcome
of a speculative attack followed by devaluation, and outcome1 = 3 for an attack followed by
defense. Of course, these could not have been compared to logit1, and vuong or clarke

would stop with an error after detecting models with different dependent variables.

5. Conclusion

We have provided new software, the games package, for estimation of strategic statistical
models in R. We argue that such models are appropriate for the analysis of data where agents’
expectations of each other’s actions determine their choices. The new software implements
multiple strategic models, including a statistical bargaining game. The software is easy to
use and includes post-estimation features such as non-nested comparison tests and plots of
fitted values with measures of uncertainty. We show that the software can be used to easily
replicate one well-known analysis of a strategic statistical model (Leblang 2003).
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