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We consider the problem of choosing between rival statistical models that are non-nested in terms of their functional
forms.We assess the ability of two tests, one parametric and one distribution free, to discriminate between such models.
Our Monte Carlo simulations demonstrate that both tests are, to varying degrees, able to discriminate between
strategic and non-strategic discrete choice models. The distribution-free test appears to have greater relative power in
small samples.

The empirical study of political science has, in the last ten years, undergone something akin
to a sea change. Where it was once common for political scientists to employ a linear
functional form regardless of the theory being tested, we now see new attention being paid
to the connection between theory and model (Morton, 1999; Signorino, 1999; Signorino
and Yilmaz, 2003). The result of this attention has been an expansion in the number of
different functional forms being employed by quantitative political scientists.

This increase in the number of modeling choices available to researchers has brought with
it new challenges. For example, although Signorino (1999) demonstrates that traditional
specifications of statistical models are generally inconsistent with strategic theories of
political science, no rigorous framework has emerged for comparing strategic models
against one another, or against non-strategic models.While it is clear that strategic speci-
fications provide different answers from traditional specifications, it is not yet clear that these
strategic specifications are, in fact, superior.We therefore need a procedure to determine
whether one specification is ‘closer’ than another specification to the data generating
process (DGP).

A related problem stems from the fact that not all theory is detailed enough to allow the
derivation of a functional form suitable for testing. An empirical researcher faced with
choosing a statistical specification under these conditions needs guidance in choosing
between the many functional forms, some strategic and some not, that may be used to
model political phenomena.

In either of these cases, empirical researchers need tools that allow comparisons to be made
between models with different functional forms. Such models, however, are generally
non-nested (neither model is a special case of the other model).1 Discriminating between
non-nested models requires specialized tests that are rarely used in political science research.
Clarke (2001) introduced the issue of non-nested testing to political science, and Clarke
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(2003) introduced a simple distribution-free test for non-nested model discrimination.
These articles, however, consider only models that are non-nested in terms of their
covariates. Testing models that are non-nested in terms of their functional forms is a natural
extension of this line of research.

In this article, we demonstrate that discriminating between discrete choice models with
different functional forms is possible, even with small samples. In the next section, we
present a common crisis scenario and consider three functional forms a researcher might
choose when modeling it: a probit model, a selection model and a strategic model. The
natural question is the extent to which we can discriminate between these models, given
that the data are generated by a strategic process.We answer this question by conducting
a Monte Carlo experiment that assesses the relative power of the Vuong and distribution-
free tests.We find that both the Vuong and distribution-free tests are able to discriminate
between the models accurately. In large samples, the two tests are essentially equivalent. In
small samples, however, the distribution-free test outperforms the Vuong test.

Competing Discrete Choice Models

Consider a researcher who wants to model the conditions under which two states are likely
to go to war. Figure 1 displays a simple conflict scenario, which we use throughout the
article. In this crisis situation, state 1 must decide whether to attack (A) state 2 or not attack
(¬A). If attacked, state 2 must then choose whether to resist (R) or not resist (¬R). If state
1 does not attack, we assume that the status quo (SQ) is maintained. If state 1 attacks and
state 2 backs down, we assume that state 2 capitulates (Cap2). Finally, if state 1 attacks and
state 2 resists, we assume that war (War) is the result.2

Although we have already imposed certain constraints on the conflict scenario, there
remains a great deal of latitude for researchers who wish to model it. A simple point, but
one that is often overlooked, is that the statistical model a researcher employs depends on
his or her underlying theory of the process generating the data. Some researchers take an

Figure 1: Conflict Model

State 1 decides whether to attack (A) state 2 or not attack ( A). If attacked, state 2 decides whether to resist (R) or not resist ( R ).
The states’ actions lead to three outcomes: the Status Quo (SQ), Capitulation by state 2 (Cap2) or War (War)
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explicitly game-theoretic approach and derive their functional form directly from their
model. Others rely on the structure of the available data; researchers with binary data tend
to use different statistical models from researchers with sequential data. Given rival models
that represent two different data-generating processes, we need to be able to test which
model is better supported by the data.

To make this point more concretely, we turn to three different models a researcher might
choose when empirically analyzing the conflict scenario in Figure 1.We choose to high-
light these models as they appear throughout the international relations literature.We begin
with a probit model, follow with a selection model and end with the two variants (binary
and sequential) of a strategic model.

Probit Model

Due to the widespread availability of binary data – and the commensurate dearth of
sequential data – the most popular method of analyzing a conflict scenario such as in
Figure 1 has been the probit or logit model.3 Given this modeling choice, two of the
outcomes in the conflict scenario, status quo (SQ) and capitulation by state 2 (Cap2), are
aggregated into a single outcome, the absence of war (¬War).

Figure 2a provides graphical intuition about the data and the model. States 1 and 2 either
go to war or not. The propensity to go to war, yWar* , is a linear function of a set of regressors
pertaining to state 1 and of a set of regressors pertaining to state 2,

y X ZWar* .= + +β γ ε

X in the above equation represents state 1’s regressors,Z represents state 2’s regressors,b and
g are coefficient vectors on X and Z, respectively, and e is a random disturbance, assumed
to be normally distributed with mean zero and variance one.4

We do not observe the latent variable, yWar* , but only whether the joint propensity is above
or below the threshold for war,

y if y

otherwise
War

War= >⎧
⎨
⎩
1 0

0

, *

, .

Maximum likelihood estimation of the probit model is based on the resulting probabilities,

Pr ,y X Z X ZWar =( ) = − +( )0 1 Φ β γ (1)

Pr ,y X Z X ZWar =( ) = +( )1 Φ β γ (2)

where F(·) is the distribution function of the standard normal.

Throughout the remainder of the article, we motivate the statistical models by making
random utility assumptions, as opposed to relying on the structure of the data. It is
important to note that probit models may also be motivated by random utility assumptions
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( Judge et al., 1985). In random utility models, decision makers are assumed to have
preferences over outcomes,which are represented by their utilities for those outcomes.Each
decision maker chooses the option available to her for which she has the highest utility.
Because the empirical analyst does not fully observe the decision makers’ utilities, the
analyst models each player’s utility as having an observable component and a random
component.5

That said, it is doubtful that the probit version of the conflict scenario could be reasonably
motivated by random utility assumptions. The analyst would need to make one of two
assumptions: either (1) that states 1 and 2 jointly make a decision between War and ¬War;

Figure 2: Alternative Discrete Choice Specifications

Notes: (a) shows the common probit specification. In the selection model, (b), the War outcome results from a ‘selection’ equation,
y A* , and an ‘outcome’ equation, yR* , with the additional assumption that e1 and e2 are correlated. Finally, (c) displays a strategic model,
with each player’s pay-offs shown below the outcomes. In this case, War is also a result of state 1’s and 2’s decisions. However,
state 1’s decision, y A* , is based on an expected utility calculation, and the disturbances are assumed to be uncorrelated.

DISCRIMINATING METHODS 371

© 2010 The Authors. Journal compilation © 2010 Political Studies Association
POLITICAL STUDIES: 2010, 58(2)



or (2) that their individual actions somehow lead to either War or ¬War. Both assumptions
have obvious theoretical problems, since both ‘black box’ important components of the
decision-making process. Under the first assumption, we must assume the existence of an
unobserved decision aggregation rule that is consistent with considering the dyad as a single
decision-making unit. Under the second assumption, we must assume an unobserved
sequence of choices that are consistent with considering only the War vs.¬War outcomes.
With that said, we turn to two models that can be more directly motivated by random
utility assumptions.

Selection Model

Suppose now that a researcher has sequential data on state 1’s decision to attack and state
2’s decision to resist after being attacked. One random utility-based modeling option
available to the researcher is the Heckman selection model, which has become increasingly
popular in economics and in political science.6

The selection model displayed in Figure 2b retains the original sequential choice structure
depicted in Figure 1. State 1 decides whether to attack or not based on a comparison of its
utility for attacking,U1(A),with its utility for not attacking,U1(¬A). The‘selection equation’,

y XA* = + 1β ε (3)

represents state 1’s net utility for attacking, where Xb is the observable component of
its utility and e1 is the random term.7 As a utility maximizer, state 1 attacks when yA* > 0.
We observe,

y if y

otherwise
A

A= >⎧
⎨
⎩
1 0

0

, *

, .

If state 1 attacks (i.e. yA = 1), then state 2 must decide whether to resist or not. Again, this
decision is based on a comparison of state 2’s utility for going to war vs. capitulating. The
‘outcome equation’,

y ZR* ,= + 2γ ε

represents state 2’s net utility for resisting, where Zg is the observable component of
its utility and e2 is the random term. As a utilty maximizer, state 2 resists whenever yR* > 0.
We observe,

y if y

otherwise
R

R= >⎧
⎨
⎩
1 0

0

, *

, .

The final step in specifying the selection model concerns the disturbances, e1 and e2.
Following William Greene (2003), we assume the disturbances are distributed bivariate
normal with mean zero, variance one and correlation r. Given these assumptions, the
probability of observing each outcome is,
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Pr Pr ,SQ y X Z XA( ) = =( ) = − ( )0 1 Φ β

Pr Pr , , ,Cap y y X Z X ZA R2 21 0( ) = = =( ) = ,− −( )Φ β γ ρ

Pr Pr , , , ,War y y X Z X ZA R( ) = = =( ) = ,( )1 1 2Φ β γ ρ

where F(·) and F2(·) are the CDFs of the standard normal and standard bivariate normal,
respectively, and r is the correlation between the error terms for the two equations.

Strategic Choice Model

A third modeling choice available to the researcher analyzing the conflict scenario is to
assume that the choices both states make occur not only sequentially, but strategically. For
example, in the selection model discussed in the previous section, state 1’s decision to attack
or not (equation 3) is a linear function and does not take into account what state 2 is likely
to do. In contrast, assume that state 1 chooses between the status quo and attacking state 2,
taking into consideration whether it believes that state 2 will capitulate or choose war.
Given that state 1 chooses to attack, state 2 then decides between capitulation and war based
on a straightforward utility maximization.

Figure 2c displays such a strategic choice model of the crisis scenario. As in Figure 1, we
assume that state 1 attacks (A), or does not attack (¬A). If attacked, state 2 must decide
whether to resist (R) or not resist (¬R). The pay-offs to each state are given below the
outcomes in Figure 2c.We normalize the status quo pay-off for state 1 to zero.Whereas in
the previous models we combined the factors that influenced state 1’s decision into Xb, we
now separate them into (1) those that affect state 1’s pay-off for the capitulation outcome
(XCbC) and (2) those that affect state 1’s pay-off for the war outcome (XWbW). As before,
we normalize state 2’s pay-off for the status quo at zero, and we let its pay-off for war be
Zg.We assume that a disturbance is associated with the expected utilities at each informa-
tion set, and that the disturbances are independently distributed standard normal.8

To derive the strategic probability model, we work ‘up the game’, starting with state 2’s
decision. If attacked, state 2 considers only whether to resist or not. As in the selection
model,

y ZR* ,= + 2γ ε

represents state 2’s net utility for resisting. Zg is the observable component of the utility, and
e2 is the random term. As a utility maximizer, state 2 resists whenever yR* > 0.We observe,

y if y

otherwise
R

R= >⎧
⎨
⎩
1 0

0

, *

, .

Given the distributional assumption for e2, state 2’s choice probabilities are,

p y X Z ZR R= =( ) = ( )Pr ,1 Φ γ
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p y X Z ZR R¬ = =( ) = − ( )Pr , .0 1 Φ γ

Now consider state 1’s decision. As before, state 1’s decision whether to attack is based on a
comparison of its utility for attacking vs.its utility for the status quo.In contrast to the selection
model, however, we now assume that state 1 conditions its behavior on what it expects state
2 to do.Because state 1 does not perfectly observe state 2’s utilities, state 1 can only estimate
the probability that state 2 will resist or not. Therefore, state 1’s utility for attacking is an
expected utility, based on the lottery representing whether state 2 will resist or not.

Since we normalize state 1’s utility for the status quo to zero,

y p X p XA R C C R W W* ,= ⋅ + ⋅ +¬ 1β β ε (4)

represents state 1’s net expected utility for attacking. p X p XR C C R W W¬ ⋅ + ⋅β β is the
observable component of the expected utility, and e1 is the random utility component. State
1 attacks when yA* > 0.We observe,

y if y

otherwise
A

A= >⎧
⎨
⎩
1 0

0

, *

, .

State 1’s equilibrium choice probabilities are then,

p y X Z p X p XA A R C C R W W= =( ) = ⋅ + ⋅( )¬Pr ,1 Φ β β

p y X Z p X p XA A R C C R W W¬ ¬= =( ) = − ⋅ + ⋅( )Pr , .0 1 Φ β β

Because the disturbances are independently distributed, the equilibrium outcome prob-
abilities are the product of the choice probabilities along the path,

Pr Pr ,SQ y X Z pA A( ) = =( ) = ¬0 (5)

Pr Pr , ,Cap y y X Z p pA R A R2 1 0( ) = = =( ) = ⋅ ¬ (6)

Pr Pr , , .War y y X Z p pA R A R( ) = = =( ) = ⋅1 1 (7)

Maximum likelihood estimation of the effect parameters, bC, bW and g, is based on these
equilibrium probabilities assuming that the dependent variable denotes which of the three
outcomes occurred for each observation.

A Binary Data Version of the Strategic Choice Model

The two discrimination tests discussed in the next section require that both rival models have
precisely the same dependent variable. This requirement is problematic for researchers who
wish to discriminate between the ubiquitous probit model and the more recent strategic
model. The reason is that the strategic model has three outcomes, and the probit model has
only two. The problem is easily solved, however. For a valid comparison of the two models,
we simply need a version of the strategic model that has been aggregated for binary data.
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Recall from Figures 1 and 2a that the binary data represent War vs.¬War.Where the probit
model ignores the different outcomes that comprise ¬War, the strategic model forces us to
confront them. Thus the ¬War outcome, in the binary version of the strategic model,
is equivalent to the occurrence of either the status quo (SQ) or capitulation (Cap2). The
probability of ¬War is therefore the probability of the status quo plus the probability of
capitulation. The probabilities for the binary data version of the strategic model are then,

Pr ¬( ) = + ⋅¬ ¬War p p PA A R (8)

Pr ,War p pA R( ) = ⋅ (9)

where the choice probabilities are those previously derived for the full strategic model. The
War outcome is the same in both versions of the model; therefore the probability of war is
the same in both models. These probabilities form the basis for maximum likelihood
estimation of the effect parameters given binary data.

Non-nested Model Testing

The models in the previous section are non-nested in terms of their functional forms.9

Determining which of these functional forms is closest to the true, but unknown, speci-
fication requires the use of discrimination tests that are still new to the vast majority of
political scientists. Two of the easiest and least controversial of these tests are theVuong test
(Vuong, 1989) and a distribution-free test introduced by Clarke (2003).

Both tests are based on the Kullback-Leibler information criteria (KLIC) (Kullback and
Leibler, 1951). Quang Vuong (1989) defines the KLIC as,

KLIC E h Y X E f Y Xi i i i≡ ( )[ ] − ( )[ ]0 0 0ln ln ; * ,β

where h0(.|.) is the true conditional density of Yi given Xi (that is, the true but unknown
model), E0 is the expectation under the true model and b* are the pseudo-true values of b
(the estimates of b when f(Yi|Xi) is not the true model). The best model is the model that
minimizes the KLIC, for the best model is the one that is closest to the true specification.
We should therefore choose the model that maximizes E0[lnf(Yi|Xi;b*)]. In other words,
one model should be selected over another if the individual log-likelihoods of that model
are significantly larger than the individual log-likelihoods of the rival model.

The Vuong Test

The null hypothesis of Vuong’s test is,

H E
f Y X

g Y Z
i i

i i
0 0 0: ln

; *
; *

,
β
γ

( )
( )

⎡
⎣⎢

⎤
⎦⎥
=

which states that the two models are equally close to the true specification.10
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The expected value in the above hypothesis is unknown. Vuong demonstrates that under
fairly general conditions,

1
0

n
LR

a s
E

f Y X

g Y Z
n n n

i i

i i

ˆ , ˆ . .
ln

; *
; *

,β γ
β
γ( )⎯ →⎯⎯

( )
( )

⎡
⎣⎢

⎤
⎦⎥

which means that the expected value can be consistently estimated by 1

n( ) times the

likelihood ratio statistic. The actual test is then,

ˆˆ

ˆ
under H

LR

n

D
Nn n n

n

0 0 1:
,

, ,
β γ
ω

( )

( ) ⎯ →⎯ ( )

where

LR L Ln n n n
f

n n
g

n
ˆ , ˆ ˆ ˆβ γ β γ( ) ≡ ( ) − ( )

and

ˆ ln
; ˆ

; ˆ
ln

; ˆ
ω

β

γ

β
n

i i n

i i n
i

n i i

n

f Y X

g Y Z n

f Y X
2

1

2

1 1≡
( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
−

=∑
nn

i i n
i

n

g Y Z

( )
( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥=∑ ; ˆ

.
γ1

2

TheVuong test can be described in simple terms. If the null hypothesis is true, the average
value of the log-likelihood ratio should be zero. If Hf is true, the average value of the
log-likelihood ratio should be significantly greater than zero. If the reverse is true, the
average value of the log-likelihood ratio should be significantly less than zero. In other
words, theVuong test statistic is simply the average log-likelihood ratio suitably normalized.

The log-likelihoods used in the Vuong test are affected if the number of coefficients in
the two models being estimated is different, and therefore the test must be corrected for
the degrees of freedom.Vuong (1989) suggests using a correction that corresponds to either
Hirotsugu Akaike’s (1973) information criteria or Gideon Schwarz’s (1978) Bayesian
information criteria. In the simulations that follow, we use the latter, making the adjusted
statistic,11

LR LR
p

n
q

nn n n n n n
� ˆ , ˆ ˆ , ˆ ln ln ,β γ β γ( ) ≡ ( ) − ( ) − ( )⎡

⎣⎢
⎤
⎦⎥2 2

where p and q are the number of estimated coefficients in models f and g, respectively.

The Distribution-Free Test

The Vuong test is not an exact test; it is normally distributed asymptotically. Simulations
demonstrate that the relatively small sample sizes used in some international relations
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research present a problem for the power of the test (Clarke, 2003). A brief explanation
provides some intuition.12 As stated above, under the null hypothesis, the Vuong statistic is
distributed as a standard normal,

LR

n

D
N

n n n

n

ˆ , ˆ

ˆ
, .

β γ

ω
( )

( ) ⎯ →⎯ ( )0 1

An equivalent asymptotic result (Greene, 2003) is that the mean log-likelihood ratio
converges almost surely to a normal distribution with mean 0 and asymptotic variance
ω̂n n2 ,

1
0

2

n
LR

a s
N

n
n n n

nˆ , ˆ . .
,

ˆ
.β γ ω( )⎯ →⎯⎯ ⎛

⎝
⎞
⎠

This convergence, however, is quite slow. For sample sizes under 500, the distribution is
highly leptokurtic – very much like a double-exponential distribution. As Erich Lehmann
(1986) points out, the sign test is the LMP test for testing q � 0 against q > 0 when the
sample is drawn from a double-exponential distribution. The sign test therefore seems to
be the obvious solution for situations in which only small-to-modest sample sizes are
available.

Clarke’s (2007) distribution-free test applies a modified paired sign test to the differences in
the individual log-likelihoods from two non-nested models. While the Vuong test deter-
mines whether or not the average log-likelihood ratio is statistically different from zero, the
proposed test determines whether or not the median log-likelihood ratio is statistically
different from zero. If the models are equally close to the true specification, half the
individual log-likelihood ratios should be greater than zero and half should be less than zero.
If model f is ‘better’ than model g, more than half the individual log-likelihood ratios should
be greater than zero. Conversely, if model g is ‘better’ than model f, more than half the
individual log-likelihood ratios should be less than zero.

Utilizing Vuong’s notation, the null hypothesis of the distribution-free test is:

H f Y X g Y Zi i i i0 0 5: Pr ln ; * ln ; * .β γ( ) > ( )( ) =

Pr ln ; * ln ; * .f Y X g Y Zi i i iβ γ( ) < ( )( ) = 0 5

or, equivalently,

H f Y X g Y Zi i i i0 0 0 5: Pr ln ; * ln ; * .β γ( ) − ( ) >( ) =

Pr ln ; * ln ; * .f Y X g Y Zi i i iβ γ( ) − ( ) <( ) =0 0 5

The assumptions of the test are unsurprising and quite general. First, the differences,

ln
; *
; *

f Y X

g Y Z
i i

i i

β
γ

( )
( )

, are mutually independent.13 Second, each ln
; *
; *

f Y X

g Y Z
i i

i i

β
γ

( )
( )

comes from

a continuous population (not necessarily the same) that has a common median q.14 The
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consistency of the test is established simply by strengthening the second assumption to
require that each difference has the same continuous population with median q (Hollander
and Wolfe, 1999). Proofs of consistency and unbiasedness for the distribution-free test are
in the Appendix.

Letting Z f Y X g Y Zi i i n i i n= ( ) − ( )ln ; ln ;β γˆ ˆ , and

Ψi
i

i

if Z

if Z
=

>
<{1 0

0 0,

the test statistic is

B ii

n
=

=∑ Ψ
1

.
15

One of the great strengths of this procedure is that implementation is remarkably simple;
the test can be produced by any mainstream statistical software package using the following
algorithm:16

(1) Run model f, saving the individual log-likelihoods, ln ;f Y Xi i nβ( )ˆ ;
(2) run model g, saving the individual log-likelihoods, ln ;g Y Zi i nγ( )ˆ ;
(3) compute the differences, Zi, and count the number of positive values, Yi;
(4) the number of positive differences, B, is distributed binomial (n, 0.5).

This test, like the Vuong test, may be affected if the number of coefficients in the two
models being estimated is different. Once again, we need a correction for the degrees of
freedom. The Schwarz correction is,

p
n

q
n

2 2( ) − ( )⎡
⎣⎢

⎤
⎦⎥

ln ln ,

where p and q are the number of estimated coefficients in models f and g, respectively. As
we are working with the individual log-likelihood ratios, we cannot apply this correction
to the ‘summed’ log-likelihood ratio as we did for the Vuong test.We can, however, apply
the average correction to the individual log-likelihood ratios. That is, we correct the
individual log-likelihoods for model f by a factor of:

p

n
n

2( ) ln
and the individual log-likelihoods for model g by a factor of:

q

n
n

2( ) ln .

While we cannot justify any particular correction, we can broadly justify the approach by
appealing to Vuong’s justification for his correction. Vuong notes that as long as the
correction factor divided by the square root of n has a stochastic order of 1,

n K F G on p
− ( ) = ( )1 2 1θ γ, ,
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the adjusted statistic has the same asymptotic properties of the unadjusted statistic.

Vuong’s justification amounts to pointing out that the asymptotic properties of the adjusted
statistic are the same as the asymptotic properties of the unadjusted statistic. If we consider
the normal approximation to the distribution-free test detailed above,17 we can see that the
asymptotic properties of the test are unaffected by the correction.

Monte Carlo Simulations

We wish to determine if we can discriminate (1) between the strategic model and
the selection model, and (2) between the binary data version of the strategic model and
the probit model. To that end, we performed a suite of Monte Carlo simulations. In
addition to answering our main question, the results also indicate under what conditions
we can expect either the Vuong test or the distribution-free test to have greater relative
power.

Experimental Design

The data generating process (DGP) for the experiment is the strategic model. The utilities
for states 1 and 2 are specified as in Figure 2c with the exception that each utility is now
a function of a single variable denoted by xC, xW, and z. State 1’s latent variable equation
is thus,

y p x p xA R C C R W W* ,= + +¬ 1β β ε

and state 2’s latent variable equation is

y zR* .= + 2γ ε

For each Monte Carlo replication, xC, xW and z are drawn anew from uniform distributions
with means of -0.5 and variances of one.18 The stochastic components e1 and e2 are drawn
anew from independent normal distributions with means of zero and variances of σε2 . All
coefficients, bC, bW and g, are set to 1.

The values taken by the two latent variables, yA* and yR* , determine the actions taken
by both states in the simulated data. State 1 attacks when yA* > 0, and state 2 resists when
yR* > 0 . For each replication, two versions of the dependent variable are generated: one
contains the actions of both states and the other is aggregated to war and no war as noted
in the second section. In this way, we can discriminate between the strategic and selection
models and between the strategic and probit models using the same simulated independent
variables and error terms.

The strategic, selection and probit models are estimated for each generated data set. The
specification of the strategic model matches the DGP. The selection model is specified with
the following selection and outcome equations,

y x x zA C C W W* = + + ′ + 1β β γ ε
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y zR* .= + 2γ ε

The z regressor is added to the selection equation in order that the model might stand a
better chance of approximating the strategic DGP.19

The probit model is specified as,

y x x zWar C C W W* .= + + +β β γ ε

To compare the strategic model to the probit model, log-likelihoods for the strategic model
are constructed using the estimated model’s parameters and aggregating the probabilities
appropriately as in equations 8 and 9.

Our ability to discriminate between these rival models is likely to depend upon the size
of the sample and the ‘signal-to-noise ratio’ of the DGP (the ratio of the variance of the
systematic portion of the DGP to the variance of the error term). Discrimination should be
easier as both the size of the sample and the ‘signal-to-noise ratio’ increase. To assess these
effects, we varied the size of the sample between 50 and 500, and varied the ‘signal-to-noise
ratio’ by changing the error variance between 0.5 and 2. Eight thousand replications were
performed.

The following summarizes the experiments:

• Data generating process: strategic (all coefficients set to 1)
• Sample sizes: N ∈ {50,100,200,300,500}
• Error variance: se ∈ {0.5,1,2}
• Comparisons: probit vs. strategic, selection vs. strategic20

• Tests:Vuong and distribution-free
• Replications: 8,000

In total, the results of fifteen simulations are reported.

The experimental design raises two interesting issues. First, given the design of the
simulations, we cannot discuss the size of the tests because the null hypothesis is false in
every experiment (the models are never equally close to the true DGP). Rejecting the null
hypothesis when it is true is therefore not possible.We can, however, discuss the power of
the tests in both the correct direction (toward the strategic model) and the wrong direction
(away from the strategic model).Note that this latter category includes not only picking the
wrong model, but also picking neither model.

Second, we are comparing a continuous test statistic, theVuong, with a discrete test statistic,
the number of positive differences. The problem with this comparison is that for any finite
number of observations, the exact significance level of the discrete test statistic is unlikely
to match the nominal significance level selected for the simulation. For example, we would
like to assess the statistics based on a 0.05 significance level. However, the discrete test
statistic has a limited number of probabilities (the number of ‘jump points’ in the CDF) that
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can serve as a. Absent identical exact significance levels, power comparisons may be quite
misleading (Gibbons and Chakraborti, 1992).

One way to avoid this problem is to employ a randomized decision rule (Lehmann, 1986).
However,as Morris DeGroot (1989) points out, it seems odd for a researcher to decide which
hypothesis to accept by tossing a coin or using some other method of randomization.In place
of a randomized procedure, then, we chose critical values for the Vuong test such that the
significance level of theVuongwouldmatch the exact significance level of thedistribution-free
test for the desired a. For example,with a sample size of 200, there is no critical value for the
binomial that will produce a significance level of 0.05. Using 58 as a critical value produces
a significance level of 0.0666. The appropriate critical value for theVuong test, then, is one
that also produces a significance level of 0.0666,which in this case is 1.5015606. The power
levels we report, therefore, are for equivalent nominal and exact significance levels.

Results

The results for the discrimination of the strategic model against the selection model are
displayed in Table 1, and the results for the discrimination of the binary strategic model
against the probit model are shown in Table 2. Each table reports in what proportion
of replications the Vuong and distribution-free (Clarke) tests correctly chose the strategic
model.21 These results are shown for sample sizes ranging from 50 to 500 and for
disturbance standard deviations of 0.5, 1 and 2.

Table 1: Discrimination between the Strategic vs.
Selection Models

Size Test

Standard deviation of the error

0.5 1 2

50 Clarke 1 0.919 0.728
Vuong 0.979 0.775 0.688

100 Clarke 1 0.969 0.806
Vuong 0.996 0.856 0.788

200 Clarke 1 0.984 0.855
Vuong 1 0.926 0.835

300 Clarke 1 0.994 0.882
Vuong 1 0.974 0.873

500 Clarke 1 0.999 0.889
Vuong 1 0.995 0.885

Notes: The table displays the proportion of times the strategic model was correctly
chosen by the Clarke and Vuong tests. The experiments were conducted for sample
sizes ranging from N = 50 to N = 500, and for disturbance standard deviations ranging
from 0.5 to 2.
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Tables 1 and 2 clearly show that both tests are able to discriminate between the models,
depending on the sample size and signal-to-noise ratio. In general, the power of both tests
increases as the sample size increases and as the signal-to-noise ratio increases. The former
is not surprising as both tests are consistent and will choose the correct model more often
for larger sample sizes. The latter is hardly surprising as the discrimination tests perform
better in the absence of noise.

The tests perform at their worst when the sample size is small (N = 50) and the uncertainty
is large (se = 2). In this situation, the distribution-free test correctly selects the strategic
model 72.8 per cent of the time, while theVuong test correctly selects the strategic model
68.8 per cent of the time. The results are even less impressive when we turn to the binary
model comparison. Here, the distribution-free test correctly chooses the strategic model
63.1 per cent of the time, while theVuong test only selects the correct model in 35.1 per
cent of the iterations.

Large sample sizes, however, are not always required for accurate model discrimination. For
example, Table 1 shows that the distribution-free test is highly accurate when the uncer-
tainty is low to moderate, even for very small samples.

Clarke (2003) demonstrates that the distribution-free test generally outperforms theVuong
test for small samples, and performs equally well as samples become relatively large. Tables 1
and 2 provide further evidence of this result. In every case, the distribution-free test
performs at least as well as theVuong test. For small samples, it often performs much better.
The greater relative power of the distribution-free test does not, however, come without a

Table 2: Discrimination between the Strategic vs.
Probit Models

Size Test

Standard Deviation of the error

0.5 1 2

50 Clarke 0.860 0.713 0.631
Vuong 0.699 0.484 0.351

100 Clarke 0.961 0.863 0.835
Vuong 0.916 0.765 0.626

200 Clarke 0.996 0.967 0.952
Vuong 0.993 0.942 0.868

300 Clarke 0.999 0.993 0.992
Vuong 0.999 0.993 0.972

500 Clarke 1 0.999 0.999
Vuong 1 0.999 0.998

Notes: The table displays the proportion of times the strategic model was correctly
chosen by the Clarke and Vuong tests. The experiments were conducted for sample
sizes ranging from N = 50 to N = 500, and for disturbance standard deviations ranging
from 0.5 to 2.
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price. If we disaggregate the ‘incorrect’ categories in both tables into ‘chose incorrectly’ and
‘made no choice’ (not presented here), we see that the distribution-free test has a slightly
higher probability of choosing the wrong model, while theVuong test, on the other hand,
has a slightly higher probability of choosing neither model. We believe that the benefits
gained from the greater power of the distribution-free test outweigh the slightly higher
probability of rejecting the null in favor of the incorrect model.22

The simulation results should be of great interest to substantive scholars. The results are
important in that small sample studies, though not the majority, are common in interna-
tional relations research. For example, seven recent small-n studies in conflict studies are
Huth (1988), which has an n of 58; Huth et al. (1993), which has an n of 97; Reiter and
Stam (1998), which has an n of 197; Signorino and Tarar (2006), which has an n of 58;
Bennett and Stam (1996), which has an n of 169; Benoit (1996), which has an n of 97; and
Pollins (1996), which has an n of 161. A test that works under conditions where discrimi-
nation is difficult is surely welcome.

Conclusion

The purpose of this article is to demonstrate that discrimination between discrete choice
models with different functional forms is possible, even with small samples.We provide a
framework in which it is possible to compare strategic models to non-strategic alternatives,
or even strategic models against one another. At the same time, we extend non-nested
model testing in political science to situations where the rival models are non-nested in
terms of their functional forms.

We demonstrate that discriminating between strategic choice models and various alterna-
tive non-strategic choice models is feasible even under adverse conditions. While the
distribution-free test has greater relative power in many of the experiments, both tests
perform well and are easy to implement. There is therefore no reason why a substantively
oriented scholar should need simply to assume whether or not that functional form is
strategic.We hope that future scholars will use these results and techniques for increasingly
rigorous comparative model testing.

Appendix: Properties of the Non-parametric Test

Two very intuitive and desirable properties that any useful hypothesis test should possess are
consistency and unbiasedness. In the following two sections, these properties are proved for
the non-parametric test. The assumptions noted in the third section of the article are
assumed to hold.

Consistency

A consistent test is one that rejects a false null hypothesis with probability one asymptotically.

Definition A.1 (Fraser, 1957). If Tm,n denotes a sequence of size-a tests of H0 : q ∈ w vs.
H1 : q ∈ W - w, then the sequence is said to be consistent for z ⊂ W - omega if

lim ,
n

Tp m n→∞
( ) =θ 1
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for q � z.

To prove consistency, we can make use of the following theorem.

Theorem A.1 (Lehmann, 1951). Let q = f(F,G) be a real valued function such that
f(F,F) = q0 for all (F,F) in a class C0. Let Tm,n = tm,n(X1,...,Xm,Y1,...,Yn) be a sequence of
real valued statistics such that Tm,n tends to q in probability as min(m,n) → •. Suppose that
f(F,G) > q0(�q0) for all (F,G) in a class C1. Then the sequence of tests that reject when
Tm,n - q0 > Cm,n (when T Cm n m n, ,− > ′θ0 ) is consistent for testing H : C0 at every fixed level
of significance against the alternatives C1.

To review, the null hypothesis of the test is that,

H0 0: .θ θ=

Letting Z f Y X g Y Zi i i n i i n= ( ) − ( )ln ; ln ;β γˆ ˆ , and

Ψi
i

i

if Z

if Z
=

>
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0 0
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B ii

n
=

=∑ Ψ
1

.
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The variance is,
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which goes to 0 as n → •.We can therefore conclude that B is a consistent test statistic.

Unbiasedness

An unbiased test is one where the probability of rejection under the null hypothesis is never
larger than the probability of rejection under the alternative.

DefinitionA.2 (Fraser, 1957). A test Tm,n of H0 : q � w vs.H1q � W - w is unbiased of size-a
if

PTm n, θ α( ) ≥

for all q � W - w.

We prove unbiasedness by noting that the non-parametric test reaches its exact significance
level for all distributions and that its power function is monotonic.We prove the latter point
using the following theorem.

Theorem A.2 (Randles andWolfe, 1979). Suppose that for testing H0 vs. H1 we reject H0 for
large (small) values of a test statistic T(X1,...,Xn) that satisfies

T x k x k T x xn n1 1+ +( ) ≥ ≤( ) ( ), , , ,… …

for every K � 0 and (x1,...,xn). Then the test has a monotone power function in q for the
one-sample location problem; that is,

P PT TF F forθ θ θ θ, , ,( ) ≤ ′( ) ≤ ′

and any continuous distribution with CDF F(·).

The non-parametric test rejects for large (small) values of

B Z Zi n ii

n
, ,…( ) = >⎡⎣ ⎤⎦=∑ Ψ θ01
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where Zi and Yi are defined as in the first section of the Appendix.When k > 0,
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The non-parametric is therefore an unbiased test of H0 : q = q0 against H1 : q > (<) q0.
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1 See Clarke (2001) for a technical definition of ‘non-nested’.

2 The scenario could just as well represent an extended deterrence situation where state 1 is threatening to attack a protégé of state
2. If the protégé is attacked, state 2 must decide whether to defend its protégé (see Huth, 1988; Signorino and Tarar, 2006).

3 We focus solely on the probit model as logit and probit are almost perfect substitutes for one another.

4 This last assumption is made in order to identify the model and is innocuous (Greene, 2003).

5 For examples of strategic and non-strategic random utility models, see Signorino (2003).

6 See Greene, 2003; Reed, 2000; Signorino, 2002.

7 Equation 3 represents the difference in state 1’s utilities for attacking vs. not attacking. Equivalently, if we normalize state 1’s utility
for the status quo to zero, then it represents its utility for attacking.

8 This is the probit agent error model discussed in more detail in Signorino (2003). For a logit version, see McKelvey and Palfrey
(1998); Signorino (1999).

9 See Clarke (2001) for a definition of non-nested and methods of determining whether rival models are non-nested.

10 g* and zi in model g are analogous to b* and Xi in model f.

11 Which correction factor is used makes no difference to this analysis.

12 See Clarke (2007) for an in-depth explanation.

13 This assumption does not mean that the individual likelihoods themselves must be independent, only that their differences be
mutually independent.
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14 Hollander and Wolfe (1999) note that when testing q = 0, this assumption can be weakened to
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15 To test whether the rival models are different by some non-zero constant, C, simply subtract C from each of the differences and
then compute the test statistic (Bradley, 1968).

16 In what follows, steps 1 and 2 are in the process of being implemented by STATA. Step 3 already exists in STATA because we
are making use of the paired sign test. The command is simply ‘signtest ll1 = ll2’ where lli are the individual log-likelihoods from
one model.

17 The same assumption that provides consistency guarantees asymptotic normality.

18 Using uniform distributions with slightly negative means ensures that war is a relatively rare event in the simulated data. In this
way, the data more closely approximate what we find in real-world applications.

19 It also seemed likely to us that some researchers might try to model state 1’s conditioning on state 2’s behavior by including z
in state 1’s regression equation.

20 As both the probit and selection models are mis-specified given the DGP, how well they fare against each other is not a concern
of this article.

21 The strategic and probit models almost always converged. Therefore, the results reported for the binary data model comparisons
are generally based on a full 8,000 iterations,or at least very close to it.Unfortunately, the selection model had difficulty converging
at times for smaller sample sizes and smaller error variances. In these cases, we report the results of only those iterations that
converged without problem.

22 See Clarke (2007) for a formal comparison of the trade-offs between these errors.
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