Mixed Strategy Equilibrium and Covering in Multidimensional Electoral Competition

John Duggan
University of Rochester

Matt Jackson
Caltech
Outline of talk

- Downsian Elections
- Background Literature
- Results
 - Existence
 - Deep Covering
 - Equilibrium Bounds
- Extensions
 - Existence with Mixed Motives
 - Multiple Candidates
 - General Voting Voting Behavior
 - Generalized Covering
 - Back to Bounds
Downsian Elections

• Candidates A and B simultaneously commit to x_A and x_B in $X \subseteq \mathbb{R}^d$.

• An odd number n of voters cast ballots (no abstention).

• Majority rule election (coin flip in case of tie). An outcome is (C, x_C).

• Office-motivated candidates and policy-oriented voters:

\[
u_A(C, x_C) = \begin{cases}
1 & \text{if } C = A \\
-1 & \text{else}
\end{cases}
\]

\[
u_i(C, x_C) = u_i(x_C).
\]
Downsian Elections (cont.)

- Focus on locational aspects of elections, ignoring
 - information aspects
 - temporal aspects
 - financial aspects

- But positions x_A and x_B can be interpreted more generally as “campaign strategies.” Analysis is still static.

- Unidimensional X and single-peakedness \Rightarrow Median Voter Theorem

- Multidimensional X
 \Rightarrow generic non-existence of pure strategy equilibrium.
Downsian Elections (cont.)

• Responses (within commitment paradigm):
 – probabilistic voting
 – policy-motivated candidates
 – repeated elections
 – mixed strategies

• Interpretations of mixed strategies:
 – candidate beliefs
 – incomplete information among candidates (?)
 – ambiguous speeches
Downsian Elections (cont.)

- Issues for mixed strategy equilibrium:
 - Existence: Not a problem for finite X, but discontinuities present difficulties in general case.
 - Characterization: Can we find bounds on supports of equilibrium strategies?
 - Robustness: If a pure strategy equilibrium exists, and we perturb preferences, will equilibrium outcomes move continuously?
Background: Existence

- Finite case (tournaments)
 - Laffond, Laslier, and Le Breton (1993)

- Distributive case
 - Borel (1921)
 - Gross and Wagner (1950)
 - Laslier and Picard (2002)

- Multidimensional spatial model
 - Kramer (1978), continuum of voters
 - Duggan (2003), three voters
Background (cont.)

• General games
 – Dasgupta and Maskin (1986)
 – Simon (1987)
 – Reny (1999)

• Reny’s (1999) diagonal better reply security (2-person, symmetric, z-sum game):
 – for all x and all ξ s.t. $u(x, \xi) > 0$, there exists ξ' and open G containing ξ such that
 \[
 \inf_{\hat{\xi} \in G} u(\xi', \hat{x}) > 0.
 \]

• These results all reduce to finite approximation arguments.
Background: Characterization

• **Strict** and **weak majority preference**:
 \[xPy \iff \#\{i \mid u_i(x) > u_i(y)\} > \frac{n}{2} \]
 \[xRy \iff \#\{i \mid u_i(x) \geq u_i(y)\} \geq \frac{n}{2} \]

• The **core**:
 \[K = \{x \mid \text{there is no } y \text{ s.t. } yPx\} \]

• **Facts**: Assume \(u_i \) strictly quasi-concave.

 – if there is a core point, it is unique

 – in every pure strategy equilibrium, candidates locate at the core point

 – in multiple dimensions, the core is generically empty
Background (cont.)

- The alternatives that strictly beat x:
 \[P(x) = \{ y \mid yPx \}, \]
 etc.

- Say x “covers” y iff...

 \[xPy \text{ and } P(x) \subseteq P(y) \]

 \[xPy \text{ and } R(x) \subseteq R(y) \]

 \[xPy \text{ and } P(x) \subseteq P(y) \text{ and } R(x) \subseteq R(y) \]
 ("McKelvey covering," MC)

- The “McKelvey uncovered set”:
 \[UMC = \{ y \mid \text{there is no } x \text{ s.t. } xMCyx \} \]
Background (cont.)

- Facts: Assume u_i is strictly quasi-concave.

 - UMC is non-empty

 - if the core is non-empty, then $UMC = K. . .$

 - and UMC expands continuously if preferences are perturbed
Background (cont.)

- Finite case
 - Laffond, Laslier, and Le Breton (1993)
 - Dutta and Laslier (1999)

- Multidimensional spatial model
 - McKelvey (1986)

- General case
 - Banks, Duggan, and Le Breton (2002)
Results: Equilibrium Existence

- X is compact, u_i is continuous

- Pure strategies for candidates: $x_A, x_B \in X$

- Mixed strategies: ξ_A, ξ_B

- Pure strategies for voters:

$$v_i : X \times X \rightarrow \{A, B\}$$

- Mixed strategies: μ_i
Existence (cont.)

- We consider subgame perfect equilibria where voting strategies are

 - **undominated:**
 \[u_i(x_A) > u_i(x_B) \Rightarrow \mu_i(A|x_A, x_B) = 1 \]

 - **symmetric:** \[\mu_i(C|x, y) = 1 - \mu_i(C|y, x) \]

 Such equilibria are SPEUV.

- Note:

 - If \(x_A P x_B \), there is a unique outcome, i.e., \(A \) wins.

 - The candidate location stage is symmetric, zero-sum.
Existence (cont.)

- **Theorem 1**: There exists a SPESUV.

- **Sketch**: Reduce to a “game with endogenous sharing rule” for the candidates, with payoff correspondence

 \[\Psi(x_A, x_B) = \begin{cases}
 (\alpha, -\alpha) & \text{if } x_APx_B \\
 \alpha = 1 & \text{if } x_BPx_A \\
 \alpha = -1 & \text{if } x_AIx_B \\
 \alpha \in [-1, 1] & \text{if } x_AIx_B
 \end{cases}. \]

 From JSSZ (2002), there is a symmetric payoff selection \(\psi \) that admits a m.s.e. Now put the voters back in and specify voting equilibrium strategies that generate \(\psi \).
• The classical approach considers only the selection ψ such that

$$
\psi(x_A, x_B) = \begin{cases}
1 & \text{if } x_A P x_B \\
-1 & \text{if } x_B P x_A \\
0 & \text{else.}
\end{cases}
$$

• This pins down the behavior of indifferent voters in advance.

• We endogenize the behavior of indifferent agents, as usual when searching for mixed strategy equilibria.

• Earlier results bounding equilibrium strategies by UMC do not apply.
Results: Deep Covering

• Say x deeply covers y, $xDCy$, iff

 $- R(x) \subseteq P(y)$.

• Note: If $xDCy$, then xPy.

• DC is asymmetric, transitive, and open.

• Proposition 1: $xDCy$ if and only if x weakly dominates y in the stage game (assuming symmetric, undominated voting strategies).
Deep Covering (cont.)

- The *deep uncovered set*:
 \[UDC = \{ x \mid \text{there is no } y \text{ s.t. } yDCx \} \]

- Facts:
 - *UDC* is non-empty, compact, and externally stable, characterized by 2-step principle
 - if \(u_i \) is strictly quasi-concave and majority core is non-empty, then \(UDC = K \).
 - *UDC* is u.h.c. as a function of voter preferences, i.e., it cannot expand discontinuously as preferences are varied.
Results: Equilibrium Bounds

- **Theorem 2:** In any SPESUV, ξ_A and ξ_B have support in UDC.

- Sketch: Suppose $\xi_A = \xi$ has support outside UDC. Note: (ξ, ξ) is an equilibrium. By supposition, there exists $Y \subseteq X \setminus UDC$ such that $\xi(Y) > 0$ and x' such that $x'DCY$.

Then A can deviate to x' and receive a higher payoff.
Results: Summary

• Existence: Yes.

• Characterization: Equilibrium platforms lie inside the deep uncovered set with probability one.

• Robustness: Yes.
Extension: Mixed Motives

- Instead of office-motivated candidates, let $u_A(C, x_C)$ be any continuous function, e.g.,

 $$u_A(C, x_C) = u_A(x_C) + w_C,$$

 where $w_A \geq w_B$.

- **Theorem 1'**: There exists a SPESUV.
Extension: Multiple Candidates

- Let the candidates be A, B, \ldots, M.

- Voting strategies are \textit{undominated*} if no voter votes for her strictly worst candidate.

- An equilibrium is \textit{Duvergerian} if there are two candidates such that, for every (x_A, \ldots, x_M), only those two receive votes.

- \textbf{Theorem 1′′}: Assume there are at least four voters or there are only two candidates. There exists a Duvergian SPESU*V.
Extension: General Voting Behavior

- Let $\Pi: X \times X \rightarrow [0, 1]$ denote A's probability of winning correspondence. Assume Π has closed graph and convex values.

- Interpret $\Pi(x_A, x_B)$ as capturing equilibrium outcomes from the voting subgame.

- Examples:
 - Voters may care about names: $u_i(C, x_C) = u_i(x_C) + b_C$.
 - Voters may be probabilistic, e.g., bias term b_C may be stochastic.
 - Abstention due to alienation, etc.

- **Theorem 1"":** There exists a Π-equilibrium.
Extension: Generalized Deep Covering

• In the Downsian model, $xDCy$ means: for all z, $zRx \Rightarrow zPy$.

<table>
<thead>
<tr>
<th></th>
<th>xPz</th>
<th>zPx</th>
<th>zIx</th>
<th>$z=x$</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>1</td>
<td>-1</td>
<td>[−1, 1]</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td></td>
<td>-1</td>
<td>-1</td>
<td>-1</td>
</tr>
</tbody>
</table>

• Let $U^\Pi_A(x_A, x_B)$ be the set of possible payoffs for candidate A generated by voting equilibria:

$$U^\Pi_A(x_A, x_B) = \left\{ pu_A(A, x_A) + (1 - p)u_A(B, x_B) \mid p \in \Pi(x_A, x_B) \right\}.$$
Deep Covering (cont.)

- Say $x \Pi$-covers y for A, $xC_A^\Pi y$, iff

 (i) for all z, $\min U_A^\Pi(x, z) \geq \max U_A^\Pi(y, z)$

 (ii) $\min U_A^\Pi(x, y) > \max U_A^\Pi(y, y)$.

- The Π-uncovered set for A is

 $$UC_A^\Pi = \{x \mid \text{there is no } y \text{ s.t. } yC_A^\Pi x\}.$$

- Facts:

 - UC_A^Π is non-empty.

 - In Downsian model, $UC_A^\Pi = UDC$.

 - In non-Downsian models, it doesn’t have great continuity properties.
Extension: Back to Bounds

- General bounds are very difficult in non-Downsian models.

- Let u^*_C and Π^* be as in the Downsian model. Consider a sequence of models converging to Downsian:

 $$(u_A^m, u_B^m, \Pi^m) \to (u_A^*, u_B^*, \Pi^*).$$

 Let (ξ_A^m, ξ_B^m) be a sequence of Π^m-equilibria from these games.

- **Claim:** If (ξ_A^m, ξ_B^m) converges to (ξ_A^*, ξ_B^*) in the weak* topology, then (ξ_A^*, ξ_B^*) is a Π^*-equilibrium in the Downsian model.

- Implication: If we perturb candidate pay-offs or voting behavior in the Downsian model, resulting equilibria will be “close” to the deep uncovered set.
Conclusion

- We offer a game-theoretic solution to equilibrium existence problem by endogenizing behavior of indifferent voters.
 - Mixed strategy equilibria exist generally.
 - Policy platforms lie in the deep uncovered set.
 - Pure strategy equilibria, when they exist, are robust.

- Completes analysis of Downsian model, but leaves open question of general bounds for non-Downsian models.

- Approach can be extended to richer models of politics in which discontinuities arise from multiplicity of equilibria.