DOMINANCE-BASED SOLUTIONS
FOR STRATEGIC FORM GAMES

John Duggan
Department of Political Science
and Department of Economics
University of Rochester

Michel Le Breton
Greqam-Leqam
Université d’Aix Marseille 2 and
Institut Universitaire de France
Route des Milles
13290, Les Milles
France

November, 1997
INTRODUCTION

WE DO NOT ASSUME:

- players use mixed strategies/formulate probabilistic beliefs about opponents’ strategies;
- expected utility maximization;
- common knowledge of mixed strategies;

WE DO ASSUME:

- players’ decisions can be modeled by choice sets, rather than mixed strategies;
- common knowledge of choice sets, rather than of mixed strategies;
- choice sets adhere to some notion of dominance, which may or may not involve expected utility maximization.

WE GET:

- extension of the classical theory of choice/consumer theory to strategic situations;
- broader scope of application, including non-Bayesian players;
- generalization of Shapley’s approach to two-player zero-sum games;
- unification of results on rationalizability;
- unified approach to the theory of tournaments.
SHAPLEY’S SADDLES

SET-UP:

• Let \((X_1, X_2, u_1, u_2)\) be a finite two-player zero-sum game.

• A **generalized saddle** is a subset \(Y_1 \times Y_2 \subseteq X_1 \times X_2\) such that, for each \(x_1 \notin Y_1\), there exists \(y_1 \in Y_1\) satisfying

\[
(\forall x_2 \in Y_2)(u_1(y_1, x_2) > u_1(x_1, x_2)),
\]

and likewise for player 2.

• A **saddle** is a generalized saddle that is minimal with respect to set-inclusion: if \(Z_1 \times Z_2\) is a generalized saddle with \(Z_1 \subseteq Y_1\) and \(Z_2 \subseteq Y_2\), then \(Z_1 = Y_1\) and \(Z_2 = Y_2\).

• A **generalized weak saddle** is a subset \(Y_1 \times Y_2 \subseteq X_1 \times X_2\) such that, for each \(x_1 \notin Y_1\), there exists \(y_1 \in Y_1\) satisfying

\[
(\forall x_2 \in Y_2)(u_1(y_1, x_2) \geq u_1(x_1, x_2))
\]

with strict inequality for some \(x_2 \in Y_2\), and likewise for player 2.

• A **weak saddle** is a minimal generalized weak saddle.
SHAPLEY’S SADDLES (CONT.)

THEOREM (Shapley): There is exactly one saddle.

REMARKS:

- The weak saddle is not generally unique.
- The saddle possesses “internal” as well as “external” stability: if \(Y_1 \times Y_2\) is a saddle, there do not exist distinct \(x_1, y_1 \in Y_1\) such that

\[
(\forall x_2 \in Y_2)(u_1(y_1, x_2) > u_1(x_1, x_2)),
\]

and likewise for player 2.
- The same is not true of the weak saddle.

DIRECTIONS:

- multi-player, non-zero-sum games,
- non-minimal pairs \(Y_1 \times Y_2\) possessing “external” and “internal” stability properties,
- other dominance concepts,
- infinite games.
STRATEGIC FORM GAMES

I
set of players (finite)

i, j
elements of I

X_i
i's strategy set (finite)

x_i, y_i, z_i
elements of X_i

$X = \prod_{i \in I} X_i$
set of strategy profiles

x, y, z
elements of X

Y_i, Z_i
subsets of X_i

$Y = \prod_{i \in I} Y_i$
product set

$Y_{-i} = \prod_{j \neq i} Y_j$
partial product set

x_{-i}, y_{-i}, z_{-i}
elements of Y_{-i}

$u_i(x)$
i's payoff from x

Q_i
binary relation on X_i
FORMULATION OF CHOICE SETS

DEFINITION: A set Y_i possesses the maximality property with respect to Q_i if

$$(x_i \in Y_i) \Leftrightarrow (\neg \exists y_i \in X_i)(y_i Q_i x_i \land \neg x_i Q_i y_i).$$

DEFINITION:

(i) A set Y_i possesses the inner solution property with respect to Q_i if

$$(x_i \in Y_i) \Rightarrow (\forall y_i \in Y_i \setminus \{x_i\})(\neg y_i Q_i x_i).$$

(ii) A set Y_i possesses the outer solution property with respect to Q_i if

$$(x_i \notin Y_i) \Rightarrow (\exists y_i \in Y_i \setminus \{x_i\})(y_i Q_i x_i).$$

(iii) A set Y_i possesses the solution property with respect to Q_i if

$$(x_i \in Y_i) \Leftrightarrow (\forall y_i \in Y_i \setminus \{x_i\})(\neg y_i Q_i x_i).$$

PROPOSITION 1: If Q_i is transitive and irreflexive, then Y_i possesses the solution property with respect to Q_i if and only if it possesses the maximality property with respect to Q_i.
DEFINITION: A dominance structure is a mapping Q from players i and partial product sets Y_{-i} to binary relations $Q_i(Y_{-i})$ on X_i.

DEFINITION: A set Y is a Q-solution if, for all i, Y_i possesses the solution property with respect to $Q_i(Y_{-i})$.

DEFINITION: Let Q be a dominance structure.

(i) Q satisfies irreflexivity if, for all i and all Y_{-i}, $Q_i(Y_{-i})$ is irreflexive.

(ii) Q satisfies transitivity if, for all i and all Y_{-i}, $Q_i(Y_{-i})$ is transitive.

(iii) Q satisfies monotonicity if, for all i, all $x_i, y_i \in X_i$, and all $Y_{-i} \subseteq Z_{-i}$,

$$x_iQ_i(Z_{-i})y_i \Rightarrow x_iQ_i(Y_{-i})y_i.$$

PROPOSITION 2: Let Q be transitive. A set Y is a Q-solution if and only if

(\star) for all i, Y_i is a minimal subset of X_i possessing the outer solution property with respect to $Q_i(Y_{-i})$.

SOME DOMINANCE STRUCTURES

Shapley Dominance

\[x_i S_i(Y_{-i}) y_i \iff (\forall x_{-i} \in Y_{-i})(u_i(x_i, x_{-i}) > u_i(y_i, x_{-i})) \]

Nash Dominance

\[x_i N_i(Y_{-i}) y_i \iff (\forall x_{-i} \in Y_{-i})(u_i(x_i, x_{-i}) \geq u_i(y_i, x_{-i})) \]

weak Shapley Dominance

\[x_i W_i(Y_{-i}) y_i \iff (x_i N_i(Y_{-i}) y_i) \wedge (\neg y_i N_i(Y_{-i}) x_i) \]

CLAIM:

- \(\{x\} \) is a \(N \)-solution if and only if \(x \) is a Nash equilibrium.

- \(\{x\} \) is a \(S \)-solution if and only if \(\{x\} \) is a \(W \)-solution if and only if \(x \) is a strict Nash equilibrium.

CLAIM:

- The dominance structures \(N, W, \) and \(S \) are transitive. \(W \) and \(S \) are irreflexive, while \(N \) is not.

- The dominance structures \(S \) and \(N \) are monotonic, while \(W \) is not.
DOMINANCE STRUCTURES (CONT.)

EXAMPLE (distinct solutions):

\[
\begin{array}{ccc}
\text{e} & \text{f} & \text{g} \\
\hline
\text{a} & (1,-1) & (-1,1) & (0,0) \\
\text{b} & (-1,1) & (1,-1) & (0,0) \\
\text{c} & (-1,1) & (1,-1) & (0,0) \\
\text{d} & (-1,1) & (0,0) & (0,0) \\
\end{array}
\]

CLAIM:

- \{a, b\} \times \{e, f, g\} is a \(N\)-solution but not a \(W\)-solution or a \(S\)-solution.

- \{a, b, c\} \times \{e, f, g\} is a \(W\)-solution but not a \(N\)-solution or a \(S\)-solution.

- \{a, b, c, d\} \times \{e, f, g\} is a \(S\)-solution, but not a \(N\)-solution or a \(W\)-solution.
EXISTENCE OF Q-SOLUTIONS

DEFINITION: A set Y is an **outer Q-solution** if, for all i, Y_i possesses the outer solution property with respect to $Q_i(Y_{-i})$.

DEFINITION: A set Y is **minimal** among a class of sets if, for all Z in that class, $Z \subseteq Y$ implies $Z = Y$. It is **maximal** if, for all Z in that class, $Z \supseteq Y$ implies $Z = Y$.

PROPOSITION 3: Let Q be transitive and monotonic. If Y is a minimal outer Q-solution then it is a (minimal) Q-solution.

PROOF: It suffices to show that a minimal outer Q-solution satisfies

\[(\star) \text{ for all } i, \ Y_i \text{ is a minimal subset of } X_i \text{ possessing the outer solution property with respect to } Q_i(Y_{-i}).\]

Suppose there is some i and $Z_i \subset \subset Y_i$ such that Z_i possesses the outer solution property with respect to $Q_i(Y_{-i})$. Consider $j \neq i$ and $x_j \notin Y_j$. The outer solution property with respect to $Q_j(Y_{-j})$ implies the existence of $y_j \in Y_j$ such that $y_jQ_j(Y_{-j})x_j$. Then monotonicity implies $y_jQ_j(Z_i \times Y_{-i,j})x_j$, and $Z_i \times Y_{-i}$ is an outer Q-solution, contradicting minimality of Y. //
EXISTENCE (CONT.)

PROPOSITION 4: If Q is transitive and monotonic then there is at least one Q-solution.

PROOF: X is an outer Q-solution. Since X is finite, a minimal outer Q-solution exists. //

COROLLARY 1: There exist a S-solution and a N-solution.

EXAMPLE (non-existence of W-solution):

<table>
<thead>
<tr>
<th></th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(2,1)</td>
<td>(1,2)</td>
</tr>
<tr>
<td>b</td>
<td>(1,2)</td>
<td>(1,1)</td>
</tr>
</tbody>
</table>

Note that $aW_1\{c,d\}b$ and $dW_2\{a\}c$, so player 2 cannot choose $\{c,d\}$; $aW_1\{c\}b$ and $dW_2\{a\}c$, so 2 cannot choose $\{c\}$; etc.
COMPARISONS OF Q-SOLUTIONS

DEFINITION: Q is **stronger** than Q' if, for all i, x_i, y_i, and Y_{-i}, $x_iQ_i(Y_{-i})y_i \Rightarrow x_iQ'_i(Y_{-i})y_i$.

RELATIONSHIPS FOR ABOVE Q’S:

PROPOSITION 5: Let Q be stronger than Q'.

(i) If Q' is transitive and monotonic then every Q-solution includes a Q'-solution.

(ii) If Q is transitive and monotonic then every Q'-solution is included in a Q-solution.*

RELATIONSHIPS FOR ABOVE Q’S:
COMPARISONS (CONT.)

EXAMPLE (N-solution vs. Nash equilibrium):

\[
\begin{array}{cccc}
| & c & d & e & f \\
|---|---|---|---|
| a | (1,0) & (1,10) & (1,11) & (1,-1) \\
| b | (1,10) & (1,0) & (1,-1) & (1,11) \\
\end{array}
\]

The mixed strategies \((1/2, 1/2)\) and \((1/2, 1/2, 0, 0)\) form an equilibrium with minimal support, \(\{a, b\} \times \{c, d\}\). But the only \(N\)-solutions are \(\{a\} \times \{e\}\) and \(\{b\} \times \{f\}\).
MIXED STRATEGY NASH EQUILIBRIUM

NOTATION: If $p = (p_i)_{i \in I}$ is a profile of mixed strategies, let

$$\sigma(p) = \{x \in X | \Pi_{i \in I} p_i(x_i) > 0\}$$

denote the support of p.

DEFINITION:

(i) A set Y_i possesses the **inner maximality property** with respect to Q_i if

$$(x_i \in Y_i) \Rightarrow (\neg \exists y_i \in X_i)(y_i Q_i x_i \land \neg x_i Q_i y_i).$$

(ii) A set Y is an **inner Q-maximum** if, for all i, Y_i possesses the inner maximality property with respect to $Q_i(Y_{-i})$.

NOTATION: Given a mixed strategy profile p, write $x_i Q_i^p(Y_{-i}) y_i$ if the expected payoff of x_i is greater than that of y_i, calculated with respect to $\Pi_i p_i$ conditional on Y.

THEOREM *: Mixed strategy profile p is an equilibrium if and only if $\sigma(p)$ is an inner Q^p-maximum.
THE RATIONALIZABILITY LITERATURE

DEFINITION:

(i) x_i is **ordinally rationalizable** if there is some monotonic transformation of u_i such that it is a best response to some profile of pure strategies; for each such strategy there is a monotonic transformation of payoffs that makes it a best response to some profile of pure strategies; and so on.

(ii) x_i is **correlated rationalizable** if it is a best response to some profile of (possibly correlated) mixed strategies; every strategy played with positive probability is a best response to a profile of (possibly correlated) mixed strategies; and so on.

(iii) x_i is **rationalizable** if it is a best response to some profile of (independent) mixed strategies; every strategy played with positive probability is a best response to a profile of (independent) mixed strategies; and so on.

(iv) x_i is **point rationalizable** if it is a best response to some profile of pure strategies; each such strategy is a best response to some profile of pure strategies; and so on.
PROPOSITION 6: Under each criterion, a set \(Y \) consists of the rationalizable strategy profiles if and only if it is the unique maximal solution for a corresponding dominance structure . . .

Börgers Dominance

\[x_iB_i(Y_{-i})y_i \iff \text{for all } Z_{-i} \subseteq Y_{-i} \text{ there is some } z_i \text{ such that } x_iW_i(Z_{-i})y_i. \]

Mixed Shapley Dominance

\[x_iS^*_i(Y_{-i})y_i \iff y_i \text{ is strictly dominated over } Y_{-i} \text{ by some mixed strategy}. \]

Rationalizable Dominance

\[x_iR_i(Y_{-i})y_i \iff y_i \text{ is a best response to no mixed strategy profile with support in } Y_{-i}. \]

Point Rationalizable Dominance

\[x_iP_i(Y_{-i})y_i \iff y_i \text{ is a best response to no pure strategy profile in } Y_{-i}. \]
COMMON FEATURES:

- The rationalizable strategy profiles can be found by iterative deletion of dominated strategies.
- Order of elimination is irrelevant.

DEFINITION: Q is **weakly irreflexive** if, for all i, all $x_i, y_i \in X_i$, and all Y_{-i}, $x_i Q_i (Y_{-i}) x_i$ implies $y_i Q_i (Y_{-i}) x_i$.

PROPOSITION 6: If Q is weakly irreflexive, transitive, monotonic, and hard*, then

(i) the maximal Q-solution is unique;

(ii) it can be found by iterative deletion of Q-dominated strategies;

(iii) the order of elimination is irrelevant.

COROLLARY 2: There is exactly one maximal S-solution, the strategy profiles remaining after iterative deletion of strictly dominated strategies. Similarly for B, S^*, R, and P.
SHAPLEY SETS

DEFINITION: Y is a Q-set if it is a minimal Q-solution.

DEFINITION: A game is **equilibrium safe** if there exists a mixed strategy Nash equilibrium $p^* = (p_1^*, \ldots, p_n^*)$ such that, for all mixed strategy equilibria $p = (p_1, \ldots, p_n)$ and all i, p_i^* is a best response to p_{-i}.

CLAIM: A game is equilibrium safe if
- there is a unique mixed strategy Nash equilibrium;
- there is a dominant strategy equilibrium;
- mixed strategy equilibria are interchangeable;
- it is a two-player zero-sum game.

PROPOSITION 7:

(i) If the R-set is unique then so are the S-set and S^*-set.

(ii) In an equilibrium safe game, the R-set is unique.

EXTENSION: If a game is order equivalent to an equilibrium safe game, it has a unique S-set.
EXAMPLE (order equivalence):

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(5,1)</td>
<td>(1,5)</td>
<td>(2,2)</td>
<td>(2,2)</td>
</tr>
<tr>
<td>b</td>
<td>(1,5)</td>
<td>(5,1)</td>
<td>(2,2)</td>
<td>(2,2)</td>
</tr>
<tr>
<td>c</td>
<td>(2,2)</td>
<td>(2,2)</td>
<td>(5,1)</td>
<td>(1,5)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2)</td>
<td>(2,2)</td>
<td>(1,5)</td>
<td>(5,1)</td>
</tr>
</tbody>
</table>

This game has multiple R-sets and is not equilibrium safe, but it is order equivalent to an equilibrium safe game. (Change 2’s to 3’s.) Therefore, it has a unique S-set.

PROPOSITION 8: In a two-player game with weakly Pareto optimal payoffs, the S-set is unique.
APPLICATION TO TOURNAMENTS

SET-UP:

• Two parties, 1 and 2, choose policy platforms from a finite set, \(A \).

• A vote between the two platforms is taken, the winner given by the majority relation, \(M \).

• \(M \) is asymmetric and total: if \(a \neq b \) then \(aMb \) or \(bMa \).

• Parties care only about winning the election.

DEFINITION:

(i) A policy \(a \) is a **Condorcet winner** if, for all \(b \neq a \), \(aMb \).

(ii) A **topcycle set** is a minimal set \(B \) such that, for all \(a \in B \) and all \(b \notin B \), \(aMb \).

(iii) For \(B \subseteq A \) and \(a,b \in B \), \(a \) **covers** \(b \) over \(B \) if \(aMb \) and, for all \(c \in B \), \(bMc \) implies \(aMc \). Let \(UC(B) \) denote the elements of \(B \) that are not covered over \(B \) by any other elements of \(B \).

(iv) \(B \) is a **covering set** if \(UC(B) = B \) and, for all \(a \in A \setminus B \), \(a \notin UC(B \cup \{a\}) \).
Q-SETS IN TOURNAMENTS:

<table>
<thead>
<tr>
<th></th>
<th>exist</th>
<th>unique max.</th>
<th>unique min.</th>
<th>tourn.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>big</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td>min. cov. set</td>
</tr>
<tr>
<td>N</td>
<td>x</td>
<td></td>
<td></td>
<td>min. cov. set</td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>topcycle</td>
</tr>
<tr>
<td>S^*</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>topcycle</td>
</tr>
<tr>
<td>R</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>topcycle</td>
</tr>
<tr>
<td>P</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>topcycle</td>
</tr>
</tbody>
</table>
EXISTENCE IN INFINITE GAMES

FORMALITIES:

(i) Let N be an arbitrary set.

(ii) Let X_i be a compact space.

(iii) Let X and X_{-i} have the product topologies.

DEFINITION:

(i) A set Y is a Q-solution if, for all i, Y_i is a minimal compact subset of X_i possessing the outer solution property with respect to $Q_i(Y_{-i})$.

(ii) Q is transitive-continuous if, for all $i \in N$, all $x_i, y_i, z_i \in X_i$, all nets $x_i^\alpha \to x_i$, and all compact subsets $Y_{-i} \subseteq X_{-i}$,

$$
(y_i Q_i(Y_{-i}) z_i) \land (\forall \alpha)(x_i^\alpha Q_i(Y_{-i}) y_i) \Rightarrow (x_i Q_i(Y_{-i}) z_i).
$$

PROPOSITION 9: B, S^*, R, and P are transitive-continuous. If each u_i is upper semi-continuous in x_i then S, W, and N are transitive-continuous.
EXISTENCE (CONT.)

PROPOSITION 10: If Q is transitive-continuous and monotonic then there exists at least one Q-solution.

COROLLARY 3: There exist S, N, B, S^*, R, and P-solutions.