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1 Introduction

Elections, as the institution through which citizens choose their political agents,
are at the core of representative democracy. It is therefore appropriate that they
occupy a central position in the study of democratic politics. The formal anal-
ysis of elections traces back to the work of Hotelling (1929), Downs (1957),
and Black (1958), who apply mathematical methods to understand the equi-
librium outcomes of elections. This work, and the literature stemming from it,
has focused mainly on the positional aspects of electoral campaigns, where we
conceptualize candidates as adopting positions in a “space” of possible policies
prior to an election. We maintain this focus by considering the main results
for the canonical model of elections, in which candidates simultaneously adopt
policy platforms and the winner is committed to the platform on which he or
she ran. These models abstract from much of the structural detail of elections,
including party primary elections, campaign finance and advertising, the role of
interest groups, etc. Nevertheless, in order to achieve a deep understanding of
elections in their full complexity, it seems that we must address the equilibrium
effects of position-taking by candidates in elections.

In this article, I will cover known foundational results on spatial models of
elections, taking up issues of equilibrium existence, the distance (or lack thereof)
between the equilibrium policy positions of the candidates, and the characteri-
zation of equilibria in terms of social choice concepts such as the majority core

∗I thank David Epstein, Mark Fey, Cesar Martinelli, and Martin Osborne for helpful feed-
back.
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and the utilitarian social welfare function. The article is structured primarily
by assumptions on voting behavior. I first consider results for the case of de-
terministic voting, which I refer to as the “Downsian model,” where candidates
can essentially predict the votes of voters following policy choices. I then con-
sider two models of probabilistic voting, where voting behavior is modelled as
a random variable from the perspective of the candidates. Within each section,
I consider the most common objective functions used to model the electoral
incentives of different types of candidates, including candidates who seek only
to win the election, candidates who seek only to maximize their vote totals, and
candidates who seek the best policy outcome from the election.

Of several themes in the article, most prominent will be difficulties in ob-
taining existence of equilibrium, especially when the policy space is multidimen-
sional. While the median voter theorem establishes existence of an equilibrium
in the unidimensional Downsian model, models of probabilistic voting are com-
monly thought to mitigate existence problems in multiple dimensions. We will
see that this is true to an extent, but that probabilistic voting can actually
introduce existence problems in the unidimensional model.

As a point of reference for the equilibrium existence issue, early articles by
Debreu (1952), Fan (1952), and Glicksberg (1952) give useful sufficient condi-
tions for existence of equilibrium in the games we analyze.1 Their existence
result, which we will refer to as the “DFG theorem,” first assumes each player’s
set of strategies is a subset of ℜn that is non-empty, compact (so it is described
by a well-defined boundary in ℜn), and convex (so a player may move from one
strategy toward any other with no constraints). These regularity assumptions
that are easily satisfied in most models. Second, and key to our analysis, DFG
assumes that the objective function of each player is:

• jointly continuous in the strategies of all players (so small changes in the
strategies of the players lead to small changes in payoffs)

• quasi-concave in that player’s own strategy, given any strategies for the
other players (so any move toward a better strategy increases a player’s
payoff).

These continuity and convexity conditions are violated in a range of electoral
models. The possibility of discontinuities is well-known, and it is often blamed
for existence problems. Probabilistic voting models smooth the objective func-
tions of the candidates, preventing such discontinuities, but equilibrium exis-
tence can still be problematic due to convexity problems. Thus, while the issue
of convexity may receive less attention than continuity, it is equally critical in
obtaining existence of equilibria.

1Nash (1950) proves existence of mixed strategy equilibrium for finite games. Since our
games involve convex (and therefore infinite) policy spaces, his result does not apply here.
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Quasi-concavity of the candidates’ objective functions is only an issue, how-
ever, if we seek equilibria in pure strategies. More generally, we may allow the
candidates to use mixed strategies, which formalize the idea that neither candi-
date can precisely predict the campaign promises of the other. In this case, the
results of DFG can be used to drop quasi-concavity: continuity of the objective
functions is sufficient for existence of mixed strategy equilibria. In continuous
models, therefore, this offers one solution to the existence problem. In discontin-
uous models, which include most of those we cover, it is often possible to appeal
to even more general sets of sufficient conditions to obtain mixed strategy equi-
libria. In resorting to mixed strategies to solve the existence problem, we arrive
at a conclusion that contrasts Riker’s (1980) claim of the inherent instability of
democratic politics: rather than taking the absence of pure strategy equilibria
as evidence of instability, we acknowledge that the positional aspects of elections
give the candidates an incentive to be unpredictable, as is the case for players
in many other strategically complex games. This element of indeterminacy does
not, however, preclude a scientific approach to the analysis of elections, as it
is still possible to make statistical predictions, to give bounds on the possible
policy positions, and to perform comparative statics.

For further background on the electoral modelling literature, there are a
number of surveys, such as Wittman (1990), Coughlin (1990, 1992), and Austen-
Smith and Banks (2004). I do not touch on a number of interesting issues in
electoral modelling, such as multiple (three or more) candidates, entry and exit
of candidates, informational aspects of campaigns. See Calvert (1986), Shepsle
(1991), and Osborne (1995) for surveys of much of that work.

2 The Electoral Framework

We will focus on the spatial model of politics, as elaborated by Davis, Hinich,
and Ordeshook (1970), Ordeshook (1986), and Austen-Smith and Banks (1999).
Here, we assume that the policy space X is a subset of Euclidean space of some
finite dimension, d. Thus, a policy is a vector x = (x1, . . . , xd), where xk may
denote the amount of spending on some project or a position on some issue,
suitably quantified. We assume that X is non-empty, compact, and convex. We
consider an election with just two political candidates, A and B (sometimes
interpreted as parties), and we analyze an abstract model of campaigns: we
assume that the candidates simultaneously announce policy positions xA and
xB in the space X, and we assume that the winning candidate is committed
to his or her campaign promise. Following these announcements, a finite, odd
number n of voters, denoted i = 1, 2, . . . , n, cast their ballots bi ∈ {1, 0}, where
bi = 1 denotes a vote for candidate A and bi = 0 denotes a vote for B, the
winner being the candidate with the most votes. We do not allow abstention
by voters.
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For now, we model the objectives of the candidates and the behavior of
voters at a general level. Let UA(xA, xB , b1, . . . , bn) denote candidate A’s utility
when the candidates take positions xA and xB and the vector of ballots is
(b1, . . . , bn), and define the notation UB(xA, xB , b1, . . . , bn) similarly. At this
level of generality, we allow for the possibility that candidates seek only to win
the election, or that they seek only the most favorable policies possible, or a
mix of these ambitions. Before proceeding to describe these objective functions
precisely, let

Φ(b1, . . . , bn) =

{

1 if
∑

i bi > n
2

0 if
∑

i bi < n
2

indicate whether a majority of voters have voted for candidate A or B.

The first main approach to modelling candidate objectives is to view the
candidates as primarily concerned with their electoral prospects. This is re-
flected in our first objective function, which dictates that a candidate cares only
about whether he or she garners a majority of votes. In other words, only the
sign, rather than the magnitude, of the margin of victory matters.

Win motivation. The candidates receive utility equal to one from winning,
zero otherwise, so that

UA(xA, xB , b1, . . . , bn) = Φ(b1, . . . , bn),

with candidate B’s utility equal to one minus the above quantity. According to
the second version of office motivation, the candidates do indeed care about the
margin of victory.

The second objective function also captures the idea that candidates care
primarily about electoral success, but now measured in the number of votes for
the candidate.

Vote motivation. The candidates’ utilities take the simple linear form

UA(xA, xB , b1, . . . , bn) =
∑

i

bi,

with candidate B’s utility being n−
∑

i bi. Note that, since we rule out absten-
tion by voters, vote motivation is equivalent by a positive affine transformation
to plurality motivation: the margin of victory for candidate A, for example, is
just (2

∑

bi) − n.

By the term office motivation, we refer to the situation in which either both
candidates are win-motivated or both are vote-motivated. The second main
approach to modelling candidate objectives is to assume that candidates care
only about the policy outcome of the election.
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Policy motivation. Assume the candidates have policy preferences repre-
sented by strictly concave, differentiable utility functions uA and uB . In words,
the graphs of these utility functions are smooth and “dome-shaped.” In par-
ticular, utilities are quasi-concave. Under these assumptions, each candidate
has an ideal policy, which yields a strictly higher utility than all other policies,
and we denote these as x̃A and x̃B. We assume these ideal policies are distinct,
and in the special case of a unidimensional policy space, we assume x̃A < x̃B

without loss of generality. Then candidate A’s utility from policy positions xA

and xB and ballots (b1, . . . , bn) is

UA(xA, xB , b1, . . . , bn)

= Φ(b1, . . . , bn)uA(xA) + (1 − Φ(b1, . . . , bn))uA(xB),

and likewise for candidate B.

Though I focus on pure office and policy motivation in this article, a third
approach which combines the above two has also been considered in the litera-
ture.

Mixed motivation. Assume that candidates have policy preferences as
above, and that the winner of the election receives a reward w > 0. Then
candidate A’s utility is

UA(xA, xB , b1, . . . , bn)

= Φ(b1, . . . , bn)(uA(xA) + w) + (1 − Φ(b1, . . . , bn))uA(xB),

and likewise for B.

In order to model voting behavior, let Pi(xA, xB) denote the probability that
voter i votes for candidate A, i.e., casts ballot bi = 1, given policy platforms xA

and xB. The probability of a vote for candidate B is then 1−Pi(xA, xB). This
representation of voting behavior allows for voters to vote in a deterministic
fashion or, perhaps reflecting a lack of information on the candidates’ parts,
in a probabilistic way. Finally, let P (xA, xB) denote the probability that can-
didate A wins the election, given the individual vote probabilities. Of course,
B’s probability of winning is one minus this amount. We assume that candi-
dates are expected utility maximizers, so that candidate A seeks to maximize
E[UA(xA, xB , b1, . . . , bn)], where the expectation is taken over vectors of ballots
(b1, . . . , bn) with respect to the distribution induced by the Pi(xA, xB) probabil-
ities, and likewise for candidate B. If we “integrate out” the vector of ballots,
we may write expected utilities as functions EUA(xA, xB) and EUB(xA, xB) of
the candidates’ policy positions alone.

Given these expected utilities, we may subject the electoral model to an
equilibrium analysis to illuminate the locational incentives of the candidates.
We say a pair (x∗

A, x∗

B) of policy platforms is an equilibrium if neither candidate
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can gain by unilaterally deviating, i.e., for all policies y, we have

EUA(y, x∗

B) ≤ EUA(x∗

A, x∗

B) and EUB(x∗

A, y) ≤ EUB(x∗

A, x∗

B).

A mixed strategy for a candidate is a probability distribution on X, represent-
ing the probabilities with which the candidate adopts various policy platforms.
Given mixed strategies for each candidate, candidate A’s payoff, for example,
can be calculated by integrating over xA with respect to A’s distribution and
over xB with respect to B’s distribution. A mixed strategy equilibrium is a pair
of probability distributions, reflecting the possibility that neither candidate may
be able to precisely predict his or her opponent, such that neither candidate can
gain by deviating unilaterally.

3 The Downsian Model

We now specify voting behavior, following Downs (1957) and others, by assum-
ing that voters vote in an essentially deterministic fashion as a function of the
candidates’ platforms: each voter simply votes for the candidate who offers the
best political platform, voting in a random way (by flipping a fair coin) only
when indifferent.

Downsian model. We assume that each voter i has preferences over poli-
cies represented by a strictly concave, differentiable utility function ui (so ui

satisfies the conditions imposed on candidate utilities under policy motivation).
Under these assumptions, voter i has a unique ideal policy, denoted x̃i, which
yields a strictly higher utility than any other policy. A common special case
is that of quadratic utility, in which a voter cares only about the distance of a
policy from his or her ideal policy, e.g., ui(x) = −||x − x̃i||

2 for all x (where
|| · || is the usual Euclidean norm). In this case, the voters’ indifference curves
take the form of concentric circles centered at the ideal policy. For convenience,
we assume that the ideal policies of the voters are distinct. We assume a voter
votes for the candidate with the preferred policy position, randomizing only in
case of indifference. This assumption is natural in this context and may be
interpreted as “sincere” voting. Assuming voting is costless, it is also consis-
tent with elimination of weakly dominated voting strategies in the voting game.
Thus, we assume

Pi(xA, xB) =







1 if ui(xA) > ui(xB)
0 if ui(xA) < ui(xB)
1
2 else.

We will say that policy x is majority-preferred to policy y when more voters
strictly prefer x than strictly prefer y. Writing x M y to express this relation,
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we then formally have

x M y ⇔ #{i | ui(x) > ui(y)} > #{i | ui(y) > ui(x)}.

A closely related idea is that of the core, which is the set of maximal elements
of this majority preference relation. That is, policy x̃ is in the core (or is a
“core point”) if there is no policy y such that y M x. Under our assumptions,
the latter condition can be strengthened somewhat: if policy x̃ is in the core,
then it is actually majority-preferred to every other policy y. Thus, there is at
most one core point. Such a point is defined by the interesting normative and
positive property that any move to a different policy will make some member
of each majority coalition worse off.

Unfortunately, the core may be empty. The formal analysis of this issue
relies on the concept of the gradient of a voter’s utility function, the vector

∇ui(x) =

(

∂ui

∂x1
(x), . . . ,

∂ui

∂xd

(x)

)

pointing in the direction of “steepest ascent” of the voter’s utility at the policy
x. Plott (1967) proved the following necessary and sufficient condition on voter
gradients for a policy to belong to the core: any core point must be the ideal
policy of some voter, and the gradients of the voters must be paired in such a
way that, for every voter whose gradient points in one direction from the core
point, there is a voter whose gradient points in the opposite direction. This
condition, which is referred to as “radial symmetry,” is satisfied in Figure 1,
and it follows that voter 3’s ideal point, x̃3, in the figure is the core point.

Theorem 1 (Plott) In the Downsian model, let policy x̃ be interior to the
policy space X. If x̃ is the core point, then it is the ideal policy of some voter k
and radial symmetry holds at x̃: each voter i 6= k can be associated with a voter
j 6= k (in a 1-1 way) so that ∇uj(x̃) points in the direction opposite ∇ui(x̃).

In accordance with this result, we refer to the voter k as the “core voter,”
and we denote the unique core point, when it exists, by x̃k. The most common
application of the Downsian model is the unidimensional model, where X is a
subset of the real line and policies represent positions on a single salient issue.
In this case, Theorem 1 implies that the only possible core point is the median of
the voters’ ideal policies, and since our assumptions imply that the preferences
of all voters are single-peaked, Black’s (1958) theorem implies that this median
ideal policy is, indeed, the core point. Thus, in one dimension, the core is always
non-empty and is characterized simply as the unique median ideal policy.

When the policy space is multidimensional, however, the necessary condition
of radial symmetry becomes extremely restrictive — so restrictive that we would
expect that the core is empty for almost all specifications of voter preferences.
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x̃3

∇u1(x̃3)

∇u2(x̃3)

∇u3(x̃3) = 0

Figure 1: Radial symmetry

x̃3

∇u1(x̃3)

∇u2(x̃3)

∇u3(x̃3) = 0

Figure 2: Violation of radial symmetry
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x̃1 x̃2

x̃3

x

x′

x′′

Figure 3: Discontinuity and non-convexity

Moreover, existence of a core point, if there is one, is a razor’s edge phenomenon:
if voter preferences were specified in such a way that the core was non-empty,
then arbitrarily small perturbations of preferences could annihilate it. This is
depicted in Figure 2, where the slightest move in voter 2’s gradient breaks radial
symmetry, making every policy in the shaded area majority-preferred to voter
3’s ideal policy x̃3. These ideas have been precisely formalized in the literature
on the spatial model of social choice.2

3.1 Office Motivation

Under the assumption of deterministic voting, win motivation takes the follow-
ing simple form:

EUA(xA, xB) =







1 if xA M xB

0 if xB M xA
1
2 else,

and likewise for candidate B, while the alternative of vote motivation is

EUA(xA, xB) = #{i | ui(xA) > ui(xB)} +
1

2
#{i | ui(xA) = ui(xB)},

and likewise for B.

2See, e.g., Cox (1984), Banks (1995), and Saari (1997).
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It is easy to see that both objectives are marked by discontinuities and non-
convexities, so that both of the conditions needed for the DFG theorem are
violated. For example, Figure 3 depicts the indifference curves of three voters
through a policy x, along with their ideal policies. If candidate B, say, locates
at the policy x, then candidate A obtains a majority of votes by locating in
any of the three shaded “leaves.” The candidate’s utility under win motivation
from locating at x′ is zero, and it is one at x′′. Now consider A’s utility when
moving from x′ directly to x′′: when the candidate enters the shaded leaf, the
utility jumps up discontinuously to one (violating continuity); it then jumps
back down to zero and then back up to one (violating quasi-concavity) before
reaching x′′. Similar observations hold for vote motivation.

In the Downsian version of the electoral game, the distinction between the
two formalizations of office motivation becomes irrelevant. Equilibria are com-
pletely characterized by the following result, which connects the concept of
equilibrium from non-cooperative game theory to the notion of core from social
choice theory, described above.

Theorem 2 In the Downsian model, assume office motivation. There is an
equilibrium (x∗

A, x∗

B) if and only if the core is non-empty. In this case, the
equilibrium is unique, and the candidates locate at the core point: x∗

A = x∗

B = x̃k.

The argument for this result is elementary. As it is clear that both candidates
locating at the core point is an equilibrium, I will prove only uniqueness of this
equilibrium. Suppose (x∗

A, x∗

B) is an equilibrium, but one of the candidates, say
B, locates at a policy not in the core. Then there is a policy z that beats x∗

B in
a majority vote. Adopting z, candidate A can win the election with probability
one and, of course, win more than n/2 votes. Since x∗

A is a best response to x∗

B ,
A’s probability of winning at x∗

A must equal one under win motivation; likewise,
A’s expected vote must be greater than n/2 under plurality motivation. But
then candidate B can deviate by locating at x′

B = x∗

A, winning with probability
one half and obtaining an expected vote of n/2. Under either objective function,
this deviation is profitable for B, a contradiction.

Theorem 2 has several important implications. First, the candidates must
adopt identical policy positions in equilibrium. Second, this position is majority-
preferred to all other policies, and so it is appealing on normative and positive
grounds. Third, when the policy space is unidimensional, there is a unique
equilibrium, and in equilibrium the candidates both locate at the median ideal
policy. Known as the “median voter theorem,” this connection was made by
Hotelling (1929) in his model of spatial competition and by Downs (1957) in his
classic analysis of elections.

Corollary 1 (Hotelling; Downs) In the Downsian model, assume X is uni-

10



dimensional and office-motivation. There is a unique equilibrium, and in equi-
librium the candidates locate at the median ideal policy.

The pessimistic implication of Theorem 2, together with Theorem 1, is that
equilibria of the multidimensional Downsian electoral game fail to exist for al-
most all specifications of voter preferences. A typical situation is depicted in Fig-
ure 3, where given an arbitrary location for the either candidate may profitably
deviate to any policy in the three shaded leaves. And when voter preferences
are such that equilibrium existence is obtained, it is susceptible to arbitrarily
small perturbations of preferences. Returning to Figure 1, it is an equilibrium
for both candidates to locate at x̃3, where they each receive a payoff of one half.
Perturbing voter 2’s preferences, as in Figure 2, either candidate can deviate
profitably to any policy in the shaded area to obtain a payoff of one.

An alternative is to look for equilibria in mixed strategies, which are mod-
elled as probability distributions over the policy space and which allow for the
possibility that one candidate may not be able to precisely predict the policy
position of the other. Because the policy space is infinite in our model and the
objective functions of the candidates are discontinuous, it is not known whether
mixed strategy equilibria exist generally. One feature of the Downsian model
that exacerbates these discontinuities is the inflexibility of voting behavior when
a voter is indifferent between the positions of the candidates: the voter is as-
sumed to vote for each candidate with equal probability. Duggan and Jackson
(2005) show that, if we allow for indifferent voters to randomize with any prob-
ability between zero and one, then mixed strategy equilibria do indeed exist.3

Duggan and Jackson (2005) also show that in equilibrium, the support of
the candidates’ mixed strategies is contained in the “deep uncovered set,” a cen-
trally located subset of the policy space related to McKelvey’s (1986) uncovered
set. An implication of their results is that if voter preferences are specified so
that a core point exists, and if we perturb voter preferences slightly, then the
equilibrium mixed strategies of the candidates will put probability arbitrarily
close to one on policies near the original core point. Thus, while the existence
of pure strategy equilibria is knife-edge, mixed strategy equilibrium outcomes
change in a continuous way when voter preferences are perturbed.

3Duggan and Jackson (2005) do require that indifferent voters treat the candidates symmet-
rically. If voter i is indifferent between xA and xB and votes for candidate A with probability,
say α, then i must vote for A with probability 1 − α if the candidates switch positions.
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3.2 Policy Motivation

The objective function representing policy motivation takes the following form
under deterministic voting:

EUA(xA, xB) =







uA(xA) if xA M xB

uA(xB) if xB M xA
uA(xA)+uA(xB)

2 else.

The above objective function also suffers from discontinuities and non-convexities,
but it differs fundamentally from the case of office motivation in other ways.
Nevertheless, Roemer (1994) proves a median voter theorem for policy motiva-
tion, and Wittman (1977) and Calvert (1985), prove related results for multidi-
mensional policy spaces and Euclidean preferences that yield the median voter
result in the special case of one dimension. As with office motivation, there is
a unique equilibrium, and in equilibrium both candidates locate at the median
ideal policy.

Theorem 3 (Wittman; Calvert; Roemer) In the Downsian model, assume
X is unidimensional and policy motivation. If x̃A < x̃k < x̃B, then there is a
unique equilibrium (x∗

A, x∗

B). In equilibrium, the candidates locate at the median
ideal policy: x∗

A = x∗

B = x̃k.

Theorem 3 leaves open the question of whether equilibria exist when the pol-
icy space is multidimensional. There is some reason to believe that the negative
result of Theorem 2 might be attenuated in the case of pure policy motivation:
under win motivation, a candidate could benefit from a move to any policy
position that is majority-preferred to that of his or her opponent, creating a
large number of potential profitable deviations; under policy motivation, how-
ever, a candidate can only benefit from moving to a policy position that he
or she prefers to her opponent’s. This restricts the possibilities for profitable
deviations and improves the prospects for finding equilibria where none existed
under win motivation. This possibility is noted by Duggan and Fey (2005a) and
is depicted in Figure 4. In this example, the core is empty and there is no equi-
librium under win motivation, yet it is an equilibrium under policy motivation
for the candidates to locate at voter 3’s ideal policy. As the candidates’ indif-
ference curves suggest, neither can move to a position that is both preferable
to x̃3 and beats x̃3 in a majority vote. Moreover, existence of equilibrium in
this example is robust to small perturbations in the preferences of voters and
candidates.

In Figure 4, we specify that candidates A and B choose identical policy
positions. While this form of policy convergence is well-known from the uni-
dimensional model, Duggan and Fey (2005a) show that it is a near universal
feature of electoral competition with policy motivated candidates, regardless of
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x̃1

x̃2

x̃3

∇uA(x̃3)

∇uB(x̃3)

Figure 4: Equilibrium with policy motivation but not win motivation

the dimensionality of the policy space. Roemer (2001) also argues that equi-
libria in which the two candidates adopt distinct policy positions almost never
exist.

Theorem 4 (Duggan and Fey) In the Downsian model, assume policy mo-
tivation. If (x∗

A, x∗

B) is an equilibrium such that neither candidate locates at his
or her ideal policy, i.e., ∇uA(x∗

A) 6= 0 and ∇uB(x∗

B) 6= 0, then the candidates’
policy positions are identical: x∗

A = x∗

B = x∗.

The next result shows that the kind of positive result depicted in Figure
4 is limited to the two-dimensional case. The result, due to Duggan and Fey
(2005a), gives a strong necessary condition on equilibria at which the candidates’
gradients do not point in the same direction, as they do not in Figure 4. Like
radial symmetry from Plott’s theorem, this necessary condition requires that the
gradients of certain voters be diametrically opposed, though now the restriction
applies only to voters whose gradients do not lie on the plane spanned by the
gradients of the candidates.

Theorem 5 (Duggan and Fey) In the Downsian model, assume policy moti-
vation. If (x∗

A, x∗

B) is an equilibrium of the electoral game such that x∗

A = x∗

B =
x∗, and if the candidates’ gradients at x∗ do not point in the same direction,
then x∗ is the ideal policy of some voter k, i.e., x∗ = x̃k; and each voter i 6= k
whose gradient does not lie on the plane spanned by the candidates’ gradients
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can be associated with a voter j 6= k (in a 1-1 way) so that ∇uj(x
∗) points in

the direction opposite ∇ui(x
∗).

The implications of this theorem are sharpest when the policy space has
dimension at least three: then the plane spanned by the candidates’ gradients is
lower-dimensional, and there will typically be at least one voter whose gradient
does not lie on this plane; and this voter must be exactly opposed by another.
We conclude that equilibria will almost never exist, and if there is an equilibrium,
then existence will necessarily be susceptible to even small perturbations of voter
or candidate preferences. Thus, while policy motivation restricts the set of
potential profitable moves, multidimensional policy spaces offer the candidates
sufficient scope for deviations that equilibria will typically fail to exist. As in
the case of office motivation, however, the result of Duggan and Jackson (2005)
yields existence of a mixed strategy equilibrium when we allow indifferent voters
to randomize in a more flexible way.

4 Probabilistic Voting: The Stochastic Parti-

sanship Model

In the Downsian model, we assume that voters behave in a deterministic fashion
(unless indifferent between the candidates) and that the candidates can predict
voting behavior precisely. The literature on probabilistic voting relaxes these
assumptions, viewing the ballots of voters as random variables. While this class
of models may capture indeterminacy inherent in the behavior of voters, it is
also consistent with the rational choice approach: it may be that the decision
of a voter as ultimately determined by the voter’s preferences, but we allow
for the possibility that the candidates do not perfectly observe the preferences
of voters; instead, candidates have beliefs about the preferences of voters, and
therefore their behavior, and we model these beliefs probabilistically.

In contrast to the Downsian model, it now becomes important to distinguish
between the two types of office motivation, as reflected in the results surveyed
below. In addition, we must be explicit about the structure of the voters’
decision problems and the source of randomness in the model. The approach we
consider in this section endows voters with policy preferences that are known to
the candidates (and therefore taken as given), but it assumes that the voters also
have partisan preferences over the candidates unrelated to their policy positions.
The intensities of these partisan preferences are unknown to the candidates.

Stochastic partisanship model. Assume that each voter i has a strictly
concave, differentiable utility function ui, as in the deterministic voting model,
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but now assume a “utility bias” βi in favor of candidate B.4 We incorporate
these biases into our model of voting behavior by assuming that i votes for A
if and only if the utility of candidate A’s platform exceeds that of B’s platform
by at least βi. That is, i votes for A if and only if ui(xA) ≥ ui(xB) + βi, i.e.,
βi ≤ ui(xA) − ui(xB). We assume that the profile (β1, . . . , βn) of biases is a
random variable from the candidates’ perspective, and we assume that each βi

is distributed (not necessarily independently) according to the distribution Fi.
We assume that each Fi is continuous and strictly increasing on an interval
that includes all possible utility differences ui(x) − ui(y), as x and y range
over all of X,5 so that the probability that voter i votes for candidate A given
platforms xA and xB is Fi(ui(xA) − ui(xB)). We do not assume biases are
identically distributed, but we impose a weak symmetry assumption. Letting
fi denote the density of Fi, we assume for simplicity that the likelihood that a
voter is unbiased is the same for all voters: fi(0) = fj(0) for all voters i and
j. A convenient special case is that in which the Fi are uniform with identical
supports. We refer to this as the uniform partisanship model.

We first consider the known results on equilibrium existence and characteri-
zation under the assumption of vote-motivated candidates, and we then examine
the results for win motivation.

4.1 Vote Motivation

In the general probabilistic voting framework, vote motivation for the candidates
can be written

EUA(xA, xB) =
∑

i

Pi(xA, xB),

with EUB(xA, xB) equal to n minus the above quantity. Because Fi and ui are
assumed continuous, it follows that candidate A’s utility,

∑

i Fi(ui(xA)−ui(xB))
is continuous, and likewise for B. Furthermore, as we will see, the linear form of
the candidates utilities in terms of individual vote probabilities invites a simple
sufficient condition under which quasi-concavity, the second condition of the
DFG theorem, holds.

In the stochastic partisanship model, denote the unique maximizer of the
sum of voter utilities by

x = arg max
x∈X

∑

i

ui(x).

4In case βi is negative, we can think of this as a bias for candidate A. We maintain the
terminology with candidate B as the point of reference.

5An implication is that, given any two platforms for the candidates, there is some chance
(perhaps very small) that the voter’s bias outweighs any policy considerations.
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This policy is often referred to as the “utilitarian optimum,” though this term
suggests welfare connotations that are difficult to justify.6 We use the somewhat
more neutral term utilitarian point. When voter utilities are quadratic, it is
well-known that the utilitarian point is equal to the mean of the voters’ ideal
policies.

Our first result establishes that, in equilibrium, the candidates must offer
voters the same policy position. This policy is exactly the utilitarian point,
implying that the candidates must adopt the same central position in the policy
space in equilibrium, regardless of the dimensionality of the policy space. Ver-
sions of this result have appeared in several places, notably in the work of Hinich
(1977, 1978) and Lindbeck and Weibull (1987, 1993).7 The general statement
here is due to Banks and Duggan (2005).8 When voter utilities are quadratic,
an implication is Hinich’s “mean voter” theorem.

Theorem 6 (Hinich; Lindbeck and Weibull; Banks and Duggan) In the
stochastic partisanship model, assume vote motivation. If (x∗

A, x∗

B) is an interior
equilibrium, then both candidates locate at the utilitarian point: x∗

A = x∗

B = x.

To prove the result, consider any interior equilibrium (x∗

A, x∗

B). By Theorem
8 of Banks and Duggan (2005), the candidates must adopt identical platforms,
i.e., x∗

A = x∗

B = x∗ for some policy x∗. Candidate A’s maximization problem is
then

max
x∈X

∑

i

Fi(ui(x) − ui(x
∗)),

and the first order condition at the equilibrium platform x = x∗ is

∑

i

fi(0)∇ui(x
∗) = 0.

Since we assume equal likelihoods of zero bias for the voters, this reduces to
∇

∑

i ui(x
∗) = 0. Since

∑

i ui, as the sum of strictly concave functions, is
strictly concave, it follows that x∗ maximizes

∑

i ui, i.e., x∗ = x.

The next result states known conditions for existence of an equilibrium.
Since the objective functions of the candidates are continuous, the key is to
ensure that quasi-concavity is satisfied. The sufficient conditions we give are

6Note that an individual’s vote probability Pi and a distribution Fi pin down a unique
utility function ui in the stochastic partisanship model. Our symmetry requirement that
fi(0) = fj(0) then allows us to compare voter utilities, but there is no special normative basis
for this.

7See also Coughlin (1992). Ledyard (1984) derives a similar utilitarian result from a model
of costly and strategic voting.

8Hinich (1978) assumes that, given the same utility difference for the candidates, any two
voters will have the same marginal vote propensities. Lindbeck and Weibull (1993) assume
strict quasi-concavity of candidate payoffs and, implicitly, symmetry of the electoral game.

16



fulfilled, for example, if the bias terms of the voters are uniformly distributed,
or if the distributions Fi are “close enough” to uniform. Thus, in contrast to
Theorem 2, which implies the generic non-existence of equilibria in multiple di-
mensions under deterministic voting, Theorem 7 offers reasonable (if somewhat
restrictive) conditions that guarantee an equilibrium under probabilistic voting.
Hinich, Ledyard, and Ordeshook (1972, 1973) give similar sufficient conditions
in a model that allows for abstention by voters, and Enelow and Hinich (1989)
and Lindbeck and Weibull (1993) make similar observations.9 By Theorem 6,
if there is an equilibrium, then it is unique, and both candidates locate at the
utilitarian point.

Theorem 7 (Hinich, Ledyard, and Ordeshook; Lindbeck and Weibull)
In the stochastic partisanship model, assume vote motivation, and assume the
following for each voter i:

• Fi(ui(x)) is concave in x

• Fi(−ui(x)) is convex in x.

There exists an equilibrium.

The proof of Theorem 7 is straightforward. Continuity of the candidates’
expected utilities has already been noted. By the assumptions of the proposi-
tion, Pi(xA, xB) = Fi(ui(xA) − ui(xB)) is a concave function of xA. Therefore,
as the sum of concave functions, EUA(xA, xB) is a concave function of xA, and
a similar argument holds for candidate B. Thus, existence of an equilibrium
follows from the DFG theorem.

Theorems 6 and 7 taken together may suggest a puzzling discrepancy be-
tween the Downsian and stochastic partisanship models. Consider the possibil-
ity of modifying the Downsian model by introducing a “small” amount of bias,
i.e., consider distributions Fi of biases that converge to the point mass on zero.10

In this way, we can satisfy the assumptions of the stochastic partisanship model
in models arbitrarily close to the Downsian model. By Theorem 6, the equilibria
of these stochastic partisanship models must be at the utilitarian point, and it
may therefore appear that the equilibrium moves from the median ideal policy
in the Downsian model to the utilitarian point in the presence of the slightest
noise in voting behavior. Or, to use Hinich’s (1977) terminology, it may appear
that the median is an “artifact.”

9Note that Lindbeck and Weibull (1993) implicitly rely on the assumption that the electoral
game is symmetric in their Theorem 1, an assumption not made here.

10Here, “convergence” is in the sense of weak* convergence, a convention we maintain when
referring to probability distributions.
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In fact, however, Theorem 6 only gives a necessary condition for equilibria in
the stochastic partisanship model: it says that if there is an equilibrium, then
both candidates must locate at the utilitarian point, leaving the possibility that
there is no equilibrium. Banks and Duggan (2005) and Laussel and Le Breton
(2002) show that this is necessarily the case: when voting behavior is close
to deterministic in the stochastic partisanship model, there is no equilibrium
in pure strategies.11 Thus, the introduction of probabilistic voting into the
Downsian model can actually create equilibrium existence problems, even in
the unidimensional model, where the median voter theorem holds.

In contrast, since only continuity of the candidates’ utilities is required for
existence of a mixed strategy equilibrium, we have general existence of mixed
strategy equilibria in the stochastic partisanship model under no additional
assumptions.

Theorem 8 In the stochastic partisanship model, assume vote motivation. There
is a mixed strategy equilibrium.

Although pure strategy equilibria will not exist when we add a small amount
of noise to voting behavior in the Downsian model, Theorem 8 implies that there
will be mixed strategy equilibria. Moreover, Banks and Duggan (2005) prove
that these mixed strategy equilibria must converge to the median ideal policy
as the amount of noise goes to zero, and we conclude that when a small amount
of noise is added to voting behavior in the Downsian model, the equilibrium
does not suddenly move to the utilitarian point. Pure strategy equilibria cease
to exist, but mixed strategy equilibria do exist, and policies close to the median
will be played with probability arbitrarily close to one in these equilibria.

Our results for the stochastic partisanship model have immediate conse-
quences for a closely related model in which voter biases enter into voting be-
havior in a multiplicative way.

Stochastic multiplicative bias model. Assume each voter i has a posi-
tive, strictly log-concave, smooth utility function ui and a positive utility bias
βi in favor of candidate B. In contrast to the stochastic partisanship model,
assume that i votes for A if and only if ui(xA) ≥ ui(xB)βi. As before, each βi is
distributed according to a distribution Fi. We assume each Fi is continuous and
strictly increasing on an interval that includes all ratios of utilities ui(x)/ui(y),
so that the probability voter i votes for candidate A is Fi(ui(xA)/ui(xB)). Fol-
lowing the partisanship model, assume fi(1) = fj(1) for all voters i and j.
Let

x̂ = arg max
x∈X

∏

i

ui(x)

11This overturns Theorem 2 of Hinich (1978). See Banks and Duggan (2005) for an extended
discussion.
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maximize the product of voter utilities. This welfare function is known as the
“Nash welfare” function, and we refer to x̂ as the Nash point.

The next result is proved by Coughlin and Nitzan (1982) for the special case
of the binary Luce model. The general statement here is due to Banks and
Duggan (2005).

Corollary 2 (Coughlin and Nitzan; Banks and Duggan) In the stochas-
tic multiplicative bias model, assume vote motivation. If (x∗

A, x∗

B) is an interior
equilibrium, then both candidates locate at the Nash point: x∗

A = x∗

B = x̂.

The proof follows directly from Theorem 6, after an appropriate transforma-
tion of the stochastic multiplicative bias model. Given a model satisfying the
assumptions of the corollary, define an associated partisanship model as follows:

u̇i(x) = ln(ui(x))

Ḟi(u) = Fi(e
u).

Note that the individual vote probabilities in the two models are identical, as

Ṗi(xA, xB) = Ḟi(u̇i(xA) − u̇i(xB)) = Ḟi(ln(ui(xA)/ui(xB)))

= Fi(ui(xA)/ui(xB)) = Pi(xA, xB).

and so, therefore, the candidates’ objective functions are identical as well. If
(x∗

A, x∗

B) is an equilibrium in the stochastic multiplicative bias model, it follows
that it is an equilibrium in the associated partisanship model. By Theorem 6,
applied to the associated partisanship model, we therefore have

x∗

A = x∗

B = arg max
x∈X

∑

i

u̇i(x) = arg max
x∈X

∏

i

ui(x) = x̂,

as required.

By a similar logic, we can extend Theorem 7 to the stochastic multiplicative
bias model as well, deriving sufficient conditions for existence of an equilibrium
of the corresponding electoral game: it is enough if the distributions Fi, com-
posed with the exponential function, possess the appropriate convexity proper-
ties. Note the expositional tradeoff apparent in Corollaries 2 and 3: we use only
log-concavity of voter utility functions for the characterization of equilibrium at
the Nash point, weakening the assumption of concavity in Theorem 6, but the
conditions on distributions needed for equilibrium existence in the stochastic
multiplicative bias model are more restrictive than those of Theorem 7.

Corollary 3 (Coughlin and Nitzan) In the stochastic multiplicative bias model,
assume vote motivation, and assume the following for each voter i:
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• Fi(e
ui(x)) is concave

• Fi(e
−ui(x)) is convex.

There exists an equilibrium.

For an example of a distribution fulfilling the requirements of Corollary 3,
consider the binary Luce model used by Coughlin and Nitzan (1981), where

Pi(xA, xB) =
ui(xA)

ui(xA) + ui(xB)
.

This is the special case of the stochastic multiplicative bias model with Fi(u) =
u

u+1 , and it is then apparent that

Fi(e
ui(x)) =

1

1 + e−ui(x)

is concave in x. These arguments illustrate that the stochastic partisanship and
multiplicative bias models are equivalent, up to a simple transformation. We
could just as well have begun with Corollaries 2 and 3 and derived Theorems 6
and 7 for the stochastic partisanship model.

4.2 Win Motivation

In the general probabilistic voting framework, win motivation for the candidates
takes the form

EUA(xA, xB) = P (xA, xB),

with candidate B’s utility equal to one minus the above quantity. Because
the candidates’ probability of winning is the probability of a particular event
(receiving more votes than the opponent) with respect to a binomial probability
distribution, this objective function lacks the nice linear form of vote motivation.

As under vote motivation, the objective functions of the candidates are con-
tinuous. We will see that quasi-concavity is more difficult to maintain under
win motivation, but there is, nevertheless, a close connection between the equi-
libria generated by the two objective functions. Our first result, due to Duggan
(2000a), establishes that there is only one possible equilibrium under win moti-
vation: the utilitarian point, familiar from the analysis of vote motivation. Thus,
again, equilibrium incentives drive the candidates to take identical positions at
a central point in the policy space.

Theorem 9 (Duggan) In the stochastic partisanship model, assume win mo-
tivation, and assume the following for each voter i:
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• Fi(0) = 1/2

• Fi(ui(x)) is concave in x

• Fi(−ui(x)) is convex in x.

If (x∗

A, x∗

B) is an interior equilibrium, then both candidates locate at the utili-
tarian point: x∗

A = x∗

B = x.

Of the conditions imposed on individual vote probabilities, the first merely
assumes a weak form of symmetry, so that neither candidate is ex ante advan-
taged. The second and third conditions are those used in Theorem 7 to ensure
the existence of an equilibrium under vote motivation. Here, those conditions
serve a related purpose, which is depicted graphically in Figure 5 for the case
of two voters. Fixing candidate B’s policy at the utilitarian point, xB = x, a
choice of xA will determine a vector

(P1(xA, x), P2(xA, x), . . . , Pn(xA, x))

of individual vote probabilities for candidate A. Varying xA within the policy
space X, this generates the set of probability vectors “achievable” by candidate
A, the shaded area in Figure 5. Note that, by the symmetry assumption of
Theorem 9, candidate A wins with probability one half if the candidate chooses
xA = x, and so the vector (1/2, 1/2) lies in this set. The second and third
assumptions in Theorem 9 imply that this set of achievable probability vectors
is convex.

A consequence of Theorem 9 is that, in order to obtain a full understanding
of equilibria under win motivation, we need only understand the conditions
under which it is indeed an equilibrium for the candidates to locate at the
utilitarian point. Clearly, under the conditions of Theorem 7, locating at the
utilitarian point is an equilibrium under vote motivation: this is apparent in
Figure 5, as the tangency at probability vector (1/2, 1/2) shows that there is no
other achievable vector of probabilities lying on a higher level set for expected
vote. In contrast, the probability-of-winning objective is not linear in vote
probabilities, and its convexity properties are generally poor. This is illustrated
figuratively in Figure 5 by the “dip” in the probability-of-winning level set,
which creates the possibility for a deviation by candidate A that is profitable
under win motivation.

The next result gives a simple condition in terms of the second derivatives
of voters’ utility functions that rules out the problem illustrated in Figure 5.
Assuming, for simplicity, that individual bias terms are uniformly distributed,
it is sufficient to assume that the Hessian matrix of at least one voter’s utility
function is negative definite at the utilitarian point. Since we maintain the as-
sumption that utilities are concave, the Hessian is already negative semi-definite,
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Figure 5: Difficulty with win motivation

so the added restriction of negative definiteness seems hardly objectionable. The
result does not deliver the existence of a global equilibrium, but only one that
is immune to small deviations by one of the candidates. The statement here
is in the context of the uniform partisanship model used in Duggan (2000a),
whereas Patty (2003) provides an extension to a more general model of voting
and to multiple candidates.12 Note that the result does not deliver the existence
of a (global) equilibrium, but only a “local” equilibrium, which is immune to
small deviations by one of the candidates. Thus, it leaves the possibility that
one candidate could increase his or her probability of winning by positioning far
from the utilitarian point.

Theorem 10 (Duggan; Patty) In the uniform partisanship model, assume
win motivation. If the Hessian matrix of ui at x is negative definite for some
voter i, then (x, x) is a local equilibrium.

Interestingly, the added restriction of negative definiteness is needed for The-
orem 10: the assumption of strict concavity alone is not enough for the result.
Duggan (2000a) gives the following three-voter, unidimensional example of the
uniform partisanship model in which the utilitarian point is not a local equilib-

12See Aranson, Hinich, and Ordeshook (1974) for earlier results on the equivalence of vote
and win motivation.
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rium:

u1(x) = −2x − 4(x − 1/2)4

u2(x) = x − 2(x − 1/2)4

u3(x) = u2(x).

It is straightforward to verify that 1’s, 2’s, and 3’s ideal points are 0, 1, and 1,
respectively, and that x = 1/2. Thus, (1/2, 1/2) is the unique equilibrium under
vote motivation. These utility functions are all strictly concave, but we have
u′′

1(x) = u′′

2(x) = u′′

3(x) = 0, violating the negative definiteness requirement in
Theorem 10. In fact, arbitrarily small increases in A’s platform will produce a
probability of winning greater than one half, and we conclude that (1/2, 1/2) is
not a local equilibrium under probability of winning.

In contrast, since the candidates’ objective functions are continuous in the
stochastic partisanship model, the DFG theorem yields the general existence of
a mixed strategy equilibrium.

Theorem 11 In the stochastic partisanship model, assume win motivation.
There is a mixed strategy equilibrium.

Furthermore, results of Kramer (1978) and Duggan and Jackson (2005) show
that the mixed strategy equilibria in models close to the Downsian model must
put probability arbitrarily close to one on policies close to the median ideal pol-
icy. As with vote motivation, the equilibrium policy locations of the candidates
change in a continuous way when noise is added to the Downsian model.

5 Probabilistic Voting: The Stochastic Prefer-

ence Model

The second main approach to modelling probabilistic voting focuses only on
policy considerations (dropping considerations of partisanship) and allows for
the possibility that the candidates do not perfectly observe the policy preferences
of voters.

Stochastic preference model. Assume each voter i has a strictly concave,
differentiable utility function ui(·, θi), where θi is a preference parameter lying
in a Euclidean space Θ. We assume that the vector (θ1, . . . , θn) of parameters
is a random variable from the candidates’ perspective, and we assume that each
θi is distributed according to a distribution function Gi. We do not assume that
these random variables are independent, but we assume that the distribution of
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preferences is sufficiently “dispersed” for each voter, in the following sense: for
every voter i and all distinct policies x and y, we have

Pr({θi | ui(z, θi) > ui(y, θi) > ui(x, θi)}) > 0,

where z is the midpoint between x and y, and we also have

Pr({θi | ui(x, θi) = ui(y, θi)}) = 0.

Given parameter θi, our assumptions imply that voter i has a unique ideal
policy, and we let Hi denote the distribution of voter i’s ideal policy. In the
case of a unidimensional policy space, for example, Hi(x) is the probability that
i’s ideal policy is less than or equal to x, and by our dispersion assumption it is
continuous and strictly increasing. It is common to identify θi with voter i’s ideal
policy and to assume that ui(·, θi) is quadratic, and our dispersion condition is
then satisfied under the uncontroversial assumption that the distribution of ideal
policies is continuous with full support.

When all voters appear ex ante identical to the candidates, we drop the i
index on u and G, and we assume without loss of generality that there is a
single voter. We refer to this as the representative voter stochastic preference
model. In the quadratic model with a unidimensional policy space, we may
focus on the representative voter model without loss of generality. To see this,
given a realization (θ1, . . . , θn) of ideal policies, let θk denote the median ideal
policy. It is well-known that the median voter k is “decisive,” in the sense that
a candidate wins a majority of the vote if and only if his or her policy position
is preferred by voter k to the other candidate’s position. Thus, we have

P (xA, xB |θ1, . . . , θn) =







1 if |xA − θk| < |xB − θk|
0 if |xB − θk| < |xA − θk|
1
2 else.

We can capture this formally by assuming a single voter and letting G be the
distribution of the median ideal policy in the n-voter model, a special case we
call the quadratic stochastic preference model.

Paralleling the previous section, we first consider the objective of vote moti-
vation, and we then consider win motivation, both objectives defined as before.
We end with the analysis of policy motivation, which has been considered pri-
marily in the context of the stochastic preference model.

5.1 Vote Motivation

An immediate technical difference between the stochastic preference and stochas-
tic partisanship models is that we now lose full continuity of the candidates’
expected votes, as discontinuities appear along the “diagonal,” where xA = xB .
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To see this, consider the quadratic stochastic preference model in the context
of a unidimensional policy space. Fix xB to the right of the median of G, and
let xA approach xB from the left. Then candidate A’s expected utility con-
verges to G(xB) > 1/2, but at xA = xB, A’s expected utility is 1/2. The only
value of xB where such a discontinuity does not occur is at the median of G.
Thus, the stochastic preference model generally exhibits discontinuities when
one candidate “crosses over” the other.

Despite the presence of these discontinuities, there is a unique equilibrium
when the policy space is unidimensional, and it is easily characterized. Let Hα

be the distribution defined by Hα(x) = 1
n

∑

i Hi(x), and let xα be the unique
median of this average distribution. The next result, which is proved in Duggan
(2005), establishes that in equilibrium the candidates must locate at the same
policy, the median xα of the average distribution. Thus, we are back to a
“median-like” result, but now the equilibrium is at the median of the average
distribution.

Theorem 12 (Duggan) In the stochastic preference model, assume X is uni-
dimensional and vote motivation. There is a unique equilibrium (x∗

A, x∗

B). In
equilibrium, both candidates locate at the median of the average distribution:
x∗

A = x∗

B = xα.

It is relatively easy to prove that it is an equilibrium for both candidates
to locate at xα, so I will prove only uniqueness. Suppose that in equilibrium
some candidate locates at a policy x∗ other than xα. Without loss of generality,
assume x∗ < xα, so that Hα(x) < 1/2. Since the electoral game is symmetric
and zero-sum, a standard interchangeability argument shows that it must be an
equilibrium for both candidates to locate at x∗, where the expected utility of
each candidate is n/2. But allow candidate A to deviate by moving slightly to
the right of x∗ to a position x∗ + ǫ < xα. Since a voter with an ideal policy to
the right of x∗ + ǫ will vote for A, we have

EUA(x∗ + ǫ, x∗) ≥
∑

i

[1 − Hi (x∗ + ǫ)]

= n −
∑

i

Hi (x∗ + ǫ) .

By the assumption that x∗+ǫ < xα, this quantity is greater than n/2. Therefore,
candidate A can achieve an expected vote greater than n/2 by deviating from
x∗, a contradiction. This argument shows that the only possible equilibrium is
for both candidates to locate at xα.

Now consider a stochastic preference model close to the Downsian model,
in the sense that each distribution Gi piles probability mass near some value of
θi. Assuming a unidimensional policy space, the median voter theorem implies
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that, in the Downsian model where voters’ preferences are given by ui(·, θi), the
unique equilibrium is for both candidates to locate at the median ideal policy. By
Theorem 12, the stochastic preference model admits a unique equilibrium, and
in equilibrium the candidates locate at the median of the average distribution.
As the model gets close to Downsian, the average distributions will approach the
distribution of ideal policies in the Downsian model, and the equilibrium points
xα will approach the median ideal policy. Therefore, when we add a small
amount of noise to voting behavior in the Downsian model, the equilibrium
changes in a continuous way.

When the policy space is multidimensional, the task of equilibrium char-
acterization is more difficult, and we simplify matters by specializing to the
representative voter stochastic preference model. We say a policy x is a gener-
alized median in all directions if, compared to every other policy y, the voter is
more likely to prefer x to y than the converse: for every policy y, we have

Pr({θ | u(y, θ) > u(x, θ)}) ≤
1

2
.

By strict concavity and our dispersion condition, if there is a generalized me-
dian in all directions, then there is exactly one, which we denote xγ .13 In the
quadratic version of the model, xγ is equivalent to a median in all directions,
in the usual sense.14 When the policy space is multidimensional, such a policy
exists, for example, if G has a radially symmetric density function, such as the
normal distribution. This can be weakened, but existence of a median in all
directions is generally quite restrictive when the policy space has dimension at
least two.

The next result provides a characterization of equilibria in the stochastic
preference model: in equilibrium, the candidates must locate at the generalized
median in all directions. Under our maintained assumptions, a generalized
median in all directions is essentially an “estimated median,” so the next result
is very close to a result due to Calvert (1985), and it is similar in spirit to
results of Davis and Hinich (1968) and Hoyer and Mayer (1974). As we have
seen before, strategic incentives drive the candidates to take identical positions
in equilibrium, but the implication for equilibrium existence in multidimensional
policy spaces is negative, as existence of a generalized median in all directions
is extremely restrictive.

13Suppose there were distinct generalized medians in all directions, x and y, with midpoint
z. By strict concavity, if u(x, θ) > u(y, θ), then u(z, θ) > u(y, θ). Therefore, since x is a
generalized median in all directions, the probability the voter strictly prefers z to y is at
least one half. By dispersion, there is also positive probability that u(z, θ) > u(y, θ) > u(x, θ).
Therefore, the probability the voter strictly prefers z to y is greater than one half, contradicting
the assumption that y is a generalized median in all directions.

14In two dimensions, this means that every line through xγ divides the space in half: the
probability that the representative voter’s ideal policy is to one side of the line is equal to one
half.
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Theorem 13 (Calvert) In the representative voter stochastic preference model,
assume vote motivation. There is an equilibrium (x∗

A, x∗

B) if and only if there
is a generalized median in all directions. In this case, the equilibrium is unique,
and the candidates locate at the generalized median point: x∗

A = x∗

B = xγ .

To prove the theorem, suppose (x∗

A, x∗

B) is an equilibrium, but one of the
candidates, say B, does not locate at the generalized median policy. Then there
is some policy z such that each voter prefers z to xB with probability strictly
greater than one half. Thus, adopting z, candidate A can win the election
with probability greater than one half, and since x∗

A is a best response to x∗

B ,
A’s probability of winning at x∗

A can be no less. But then candidate B can
deviate by locating at x′

B = x∗

A, matching A and winning with probability one
half. Since this increases B’s probability of winning, the initial pair of policy
positions cannot be an equilibrium, a contradiction.

Because discontinuities in the stochastic preference model are restricted to
the diagonal, where the candidates choose identical platforms, existence of mixed
strategy equilibria is more easily obtained than in the Downsian model. In
this case, the results of Duggan and Jackson (2005) yield an equilibrium with
no modifications of the probabilistic voting model regarding the behavior of
indifferent voters.

5.2 Win Motivation

Under win motivation in the stochastic preference model, we again have disconti-
nuities along the diagonal, posing potential difficulties for equilibrium existence.
Despite the presence of these discontinuities, there is still a unique equilibrium
when the policy space is unidimensional, as with vote motivation, though now
the characterization is changed. Let Hµ denote the distribution of median ideal
policy, i.e., Hµ(x) is the probability that the median voter’s ideal policy is less
than or equal to x. By our dispersion assumption, Hµ is strictly increasing and
has a unique median, denoted xµ. The next result, due to Calvert (1985), es-
tablishes that in equilibrium the candidates must locate at the same policy, the
median of xµ. Thus, in the unidimensional version of the stochastic preference
model, we are back to a median-like result, but now the equilibrium is at the
median of the distribution of medians.

Theorem 14 (Calvert) In the stochastic preference model, assume X is uni-
dimensional and win motivation. There is a unique equilibrium (x∗

A, x∗

B). In
equilibrium, the candidates locate at the median of the distribution of median
ideal policies: x∗

A = x∗

B = xµ.

27



It is relatively easy to show that it is an equilibrium for both candidates
to locate at the median of medians xµ. The uniqueness argument proceeds
along the lines of the proof of Theorem 12. If both candidates locate at policy
x∗ < xµ, for example, they each win with probability one half. But if candidate
A deviates slightly to the right to x∗ + ǫ < xµ, then with probability greater
than one half the median voter will be to the right of x∗ + ǫ and strictly prefer
candidate A. By single-peakedness of the voters’ utility functions, in such cases
candidate A will win a majority of votes, and so A’s probability of winning after
deviating is greater than one half, a contradiction. As with vote motivation, it
is clear that the equilibrium policies in the stochastic preference model converge
to the median ideal policy when we consider models approaching deterministic
voting in the Downsian model.

For multidimensional policy spaces, the equilibrium result in Theorem 13
for the representative voter model carries over directly, for in this model the
objectives of vote motivation and win motivation coincide. Thus, similar nega-
tive conclusions hold for equilibrium existence in multiple dimensions. As with
vote motivation, however, Duggan and Jackson (2005) prove existence of mixed
strategy equilibria.

5.3 Policy Motivation

In the general probabilistic voting framework, policy motivation for the candi-
dates takes the form

EUA(xA, xB) = P (xA, xB)uA(xA) + (1 − P (xA, xB))uA(xB),

and likewise for candidate B. We maintain the focus of our analysis on the
stochastic preference model, except for our first result, which gives an easy
necessary condition for equilibria that holds for both probabilistic voting models.
The result, which is proved by Wittman (1983, 1990),15 Hansson and Stuart
(1984), Calvert (1985), and Roemer (1994), shows that the candidates can never
locate at identical positions in equilibrium.

Theorem 15 (Wittman; Hansson and Stuart; Calvert; Roemer) In the
stochastic partisanship or stochastic preference models, assume policy motiva-
tion. If (x∗

A, x∗

B) is an equilibrium, then the candidates do not locate at the same
policy position: x∗

A 6= x∗

B.

To prove this result, simply note that whenever the two candidates locate
at the same position, at least one candidate can deviate profitably by moving

15Wittman’s (1983, 1990) model is slightly different from the one here, as he assumes a
hybrid of vote and policy motivation.
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toward his or her ideal policy. By our assumption on the support of Fi in
the stochastic partisanship model, and by our dispersion assumption in the
stochastic preference model, that candidate will win with positive probability
after moving, increasing his or her expected utility.

By Theorem 15, if we consider a stochastic preference model close to the
Downsian model, then the candidates will adopt distinct policies in equilibrium.
Assuming a unidimensional policy space, the median voter theorem implies that,
in the Downsian model, the unique equilibrium is for both candidates to locate
at the median ideal policy. Calvert (1985) and Roemer (1994) show that, as
the stochastic preference model gets close to Downsian, the wedge between the
candidates’ equilibrium policies goes to zero, and the equilibrium policies of
both candidates’, if equilibria exist, must converge to the median ideal policy.
Thus, equilibria appear to change in a continuous way when we add noise to
the behavior of voters in the Downsian model, as we have seen under vote and
win motivation.

Theorem 15 leaves open the question of whether an equilibrium exists in the
first place. Under our maintained assumptions, measure-theoretic arguments
can be used to show that each voter i’s probability Pi(xA, xB) is continuous
in the positions of the candidates whenever xA and xB are distinct, and, as
discontinuities no longer occur when one candidate crosses over another, the
candidates’ objective functions under policy motivation are therefore continu-
ous. Thus, one of the main conditions in the DFG theorem is fulfilled. But the
candidates’ objective functions may not be quasi-concave, making equilibrium
existence a non-trivial issue. Duggan and Fey (2005a) show that if the distri-
bution of vectors (θ1, . . . , θn) piles probability mass near a particular vector of
parameters, and if the core is empty for those parameters, then there does not
exist an equilibrium in the probabilistic voting model. This result is relevant
when the policy space is multidimensional and candidates have a large amount
of information about voter preferences.

In the quadratic stochastic preference model with a unidimensional policy
space, assuming the distribution G of ideal policies is uniform over an interval
containing [x̃A, x̃B ], the candidates’ objective functions are strictly concave over
[x̃A, x̃B ]. This allows us to apply the DFG theorem, a simple observation noted
by Duggan and Fey (2005b). Though the result is stated only for a uniform
distribution, it holds as well for distributions close enough to uniform.

Theorem 16 (Duggan and Fey) In the quadratic stochastic preference model,
assume X is unidimensional, policy motivation, and G is uniform on an interval
containing [x̃A, x̃B ]. There is an equilibrium.

In case uA and uB are quadratic and G is uniform with mean at the midpoint
of x̃A and x̃B , there is a unique equilibrium, and we can calculate it explicitly.
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Assume for simplicity that G is uniform on [x̃A, x̃B ] = [0, 1]. The first order
condition for candidate A reduces to the simple quadratic equation,

−3x2
A − 2xBxA + x2

B = 0,

with the solution xA = xB/3. This is indeed a best response to xB , and a
similar calculation for candidate B yields xB = (xA/3) + (2/3). Solving these
equations yields xA = 1/4 and xB = 3/4, giving us the unique equilibrium for
this special case.

What if we depart from the assumption of uniformly distributed voter ideal
policies in Theorem 16? Perhaps surprisingly, equilibria can fail to exist due to
convexity problems, even in the unidimensional model. Duggan and Fey (2005b)
show that this failure of existence can occur even in highly structured settings
— with quadratic utilities for the candidates and a symmetric, single-peaked
density for the distribution of ideal policies.16 They assume quadratic utilities
with x̃A = 0 and x̃B = 1 and use a piece-wise linear distribution G that puts
probability arbitrarily close to one near 1/2. The problem created by the lack of
quasi-concavity is that the candidates’ best responses are not uniquely defined,
creating the possibility of a “jump” in their reaction functions. In Figure 6, this
occurs for candidate A at approximately xB = .6. In response to this policy
position, A is indifferent between adopting a relatively desirable policy (about
.2), but winning with a lower probability, and adopting a less appealing policy
(about .4), but winning with a higher probability. This is also true of candidate
B. As a result, in this example, the reaction functions of the candidates do not
cross, and an equilibrium fails to exist.17

As a consequence, we see that the continuity result of Calvert (1985) and
Roemer (1994) can be vacuous for some stochastic preference models: it may
be that, when we add arbitrarily small amounts of noise to voting behavior in
the Downsian model, pure strategy equilibria simply do not exist. Because the
objective functions of the candidates are continuous in the stochastic preference
model under policy motivation, however, the DFG theorem yields a general
existence result for mixed strategy equilibrium, regardless of the dimensionality
of the policy space.

Theorem 17 In the stochastic preference model, assume policy motivation.
There exists a mixed strategy equilibrium.

16Ball (1999) presents an example of equilibrium non-existence in the model of mixed moti-
vations. His example exploits the discontinuity in that model introduced by a positive weight
on holding office.

17Hansson and Stuart (1984) claim that the an equilibrium exists if each candidate’s prob-
ability of winning is concave in the candidate’s own position, but their claim rests on the
incorrect assumption that the candidates’ objective functions are then concave. Thus, the
question of general sufficient conditions for existence is open.
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Figure 6: Equilibrium non-existence with policy motivation

Finally, consider a stochastic preference models close to the Downsian model.
Assuming a unidimensional policy space, Theorem 3 implies that in the Down-
sian model the unique equilibrium under policy motivation is for both candidates
to locate at the median ideal policy. As we add a small amount of noise to the
behavior of voters in the Downsian model, we have seen that pure strategy equi-
libria can fail to exist. By Theorem 17, there will be mixed strategy equilibria,
however, and Duggan and Jackson (2005) show that, as the model gets close to
Downsian, the mixed strategy equilibria must put probability arbitrarily close
to one on policies close to the median ideal policy. Thus, equilibria change in a
continuous way when we add noise to the Downsian model.

6 Conclusion

Of many themes throughout this article, the most prominent has been the diffi-
culty in ensuring existence of equilibria. This is especially true for the Downsian
model when the policy space is multidimensional. Probabilistic voting models
eliminate some of the discontinuities of the Downsian model, and the analysis
of these models has yielded reasonable (if somewhat restrictive) sufficient con-
ditions for equilibrium existence under vote motivation, ensuring that the can-
didates’ objective functions have the appropriate convexity properties. These
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conditions do not always hold under win motivation or policy motivation or
when voting behavior is close to Downsian. As a consequence equilibria may
fail to exist, even when the policy space is unidimensional.

I have pursued one approach to solving the existence problem, namely, an-
alyzing mixed strategy equilibria. We have seen that these exist very generally,
and that they often possess continuity properties that are desirable in a formal
modelling approach: when we add a small amount of noise to voting behavior
in the Downsian model, the equilibrium mixed strategies of the candidates are
close to the median ideal policy. This assures us that the predictions of the
Downsian median voter theorem are not unduly sensitive to the specifications
of the model.

Other approaches have been pursued in the literature, though I do not cover
them at length in this article. One approach, taken by Roemer (2001), is to
modify the objectives of the candidates to demand more of a deviation to be
profitable. Roemer endows parties (rather than individual candidates) with
multiple objectives of office and policy motivation, as well as an interest in
“publicity,” whereby a party seeks to announce policy platforms consonant with
its general stance, regardless of whether these platforms win. Roemer shows
that, if we assume a deviation must satisfy all three of these objectives to be
profitable, then an equilibrium exists in some two-dimensional environments.

A second approach, referred to as “citizen candidate” models, is pursued by
Osborne and Slivinski (1996) and Besley and Coate (1997). They model candi-
dates as policy motivated and assume candidates cannot commit to campaign
promises, removing all positional aspects from the electoral model. Instead, the
strategic variable is whether to run in the election, and equilibria are guaranteed
to exist. A related approach, referred to as “electoral accountability” models,
views elections as repeated over time and takes up informational aspects of
elections. Work in this vein, such as Ferejohn (1986), Banks and Sundaram
(1993, 1998), Duggan (2000b), and Banks and Duggan (2002), again abstracts
away from campaigns. Politicians do make meaningful choices while in office,
however, as candidates must consider the information (about preferences or abil-
ities) their choices convey to voters. Equilibria of a simple (stationary) form
can often be shown to exist quite generally in these models.
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