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Abstract

We analyze sequential bargaining in general political and economic envi-
ronments, where proposers are recognized according to a random recognition
rule and a proposal is implemented if it passes under an arbitrary voting rule.
We prove existence of stationary equilibria, upper hemicontinuity of equilib-
rium proposals in structural and preference parameters, and core equivalence
under certain conditions.



1 Introduction

One of the central findings in the spatial model of social choice is that in two
or more dimensions the majority rule core, consisting of those alternatives
unbeaten in pairwise majority comparisons, is empty for “most” profiles of
individual preferences.1 This result extends beyond majority rule to include
almost all voting rules (short of ones such as dictatorship and unanimity),
depending on a critical dimension of the policy space.2 Non-emptiness can
be obtained by taking the transitive closure of the majority (or other) “social
preference” relation — the resulting choice set is called the “top cycle” and
consists of those alternatives that are socially preferred directly or indirectly,
through a chain of preferred alternatives, to all others. But the top cycle
often comprises the entire space of alternatives.3 As the basis for a general
positive model of collective decision making, therefore, simply invoking ma-
jority (or some other) rule is not sufficient to generate a useful prediction for
many situations; rather, additional description and analysis of the underlying
decision process is required.

In this paper, we assume that the decision process takes the form of bar-
gaining. Specifically, we analyze bargaining among two or more agents who
must select an alternative from a compact, convex subset of multidimen-
sional Euclidean space. Agents’ preferences are represented by continuous
and concave utility functions but are otherwise quite arbitrary; thus, besides
the classic spatial model of politics, we admit “divide the dollar” problems,
exchange economies, and public goods economies (with or without private
goods). In common with most of the bargaining literature, we model the
decision process as one of discrete time and infinite horizon, where each pe-
riod a single proposal is made and is either accepted (thereby stopping the
process) or rejected. Agents may or may not discount future utility, and
discount factors are allowed to vary among the agents. In contrast to the
models of Rubinstein (1982) and others, the identity of the proposer does
not alternate in a fixed sequence; rather, in the manner of Binmore (1987)
and Baron and Ferejohn (1989), the proposer is randomly selected, or “recog-
nized,” in each period. The recognition probabilities are time-invariant but

1Plott (1967), Davis, DeGroot, and Hinich (1972), Rubinstein (1979), Schofield (1983),
McKelvey and Schofield (1987), Cox (1984), Le Breton (1987).

2Greenberg (1979), Schofield (1984), Strnad (1985), Banks (1995), Saari (1997).
3Cohen (1979), McKelvey (1976, 1979), Austen-Smith and Banks (1997).
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otherwise unconstrained. In contrast to the models of Binmore, who assumes
unanimity rule, and Baron and Ferejohn, who assume majority rule, passage
of a proposal requires the assent of one from a collection of “decisive coali-
tions.” This collection is time-invariant and is arbitrary save for the minimal
conditions of non-emptiness and monotonicity.

We prove the existence of stationary “no delay” equilibria, in which pro-
posals and voting decisions are independent of the time period and history
of the game, and where the first proposal is always accepted. Further, we
show that when discount factors are all less than one, delay cannot occur
in any stationary equilibrium. Our existence result requires that agents be
allowed to mix over their proposals; however, for a restricted class of envi-
ronments we prove the existence of pure strategy stationary equilibria. The
sufficient conditions for pure strategy existence turn out to be well-known
conditions sufficient for non-emptiness of the core of the voting rule: we
can assume either that the policy space is one-dimensional (in which case,
under majority rule, the core consists of the median policy or policies) or
that there is a privileged group (an “oligarchy”) with the power to pass a
proposal, each member of which possesses a veto. As a special case of the
latter assumption, we obtain pure strategy equilibria under unanimity rule.
We also provide a two-dimensional, three-person, majority rule example with
impatient agents where multiple equilibrium payoffs arise, thereby precluding
any universal uniqueness result. Finally, we show that the set of equilibrium
outcomes varies upper hemicontinuously in the recognition probabilities and
the agents’ discount factors, as well as in various utility-specific parameters
(e.g., ideal points in the case of quadratic utilities).

We next turn to the relationship between the equilibrium outcomes in
the bargaining game and the core outcomes (if any) of the underlying voting
rule as described by the set of decisive coalitions. We show that when the
agents are perfectly patient and utility functions are strictly quasi-concave,
equivalence of stationary equilibrium outcomes and core outcomes obtains
if the policy space is one-dimensional or if some agent possesses a veto, a
condition weaker than the existence of an oligarchy but also known to be
sufficient for non-emptiness of the core. In both cases, our result gives a non-
cooperative story for how outcomes in the core can be realized; in the former
case, our bargaining model provides an alternative to Black’s (1958) model
of committee decision-making and to Downs’s (1957) model of competition
between political parties, both of which also predict the median policy. Using
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our upper hemicontinuity result, we conclude that if preferences are “close” to
admitting a core and agents are sufficiently patient, then the outcomes of the
bargaining process will be “close” to core outcomes; and if there is a unique
core outcome, then all equilibrium outcomes will be close to one another as
well. Thus, we offer a result on the robustness of core outcomes, an issue that
has not previously received rigorous treatment. On the other hand, we also
provide a two-dimensional, four-person, majority rule example in which non-
core outcomes exist despite the non-emptiness of the core, thereby precluding
any universal core equivalence result.

In related work, Baron and Ferejohn (1989) analyze a model in which the
alternatives are divisions of a “dollar,” agents have selfish preferences, and
majority rule is used. Where they assume utility equal to amount of the dollar
received, Harrington (1989, 1990a,b) extends the model to allow for risk
aversion; and Calvert and Dietz (1996) allow for externalities in consumption
of the dollar. Baron (1991) examines the case of a two-dimensional set of
alternatives, three voters with quadratic preferences, and voting by majority
rule. Winter (1996) analyzes the divide the dollar problem assuming at least
one agent has a veto, focusing on the advantage of veto players over others;
McCarty (1998) takes up the same subject, allowing for variable veto power
across agents. Jackson and Moselle (1998) consider the case in which a
one-dimensional public decision is selected along with a division of a dollar
using majority rule; they investigate the nature of coalitions “formed” in
equilibrium. Merlo and Wilson (1995) study the divide the dollar problem
under unanimity rule, allowing the size of the dollar to change stochastically
over time and generating (efficient) equilibrium delay as a consequence. They
also prove the uniqueness of stationary equilibrium payoffs.

Other work on bargaining and the core stems from Selten’s (1981) model
in which a proposal to a coalition consists of a vector of payoffs “feasible”
for the coalition. Chatterjee, Dutta, Ray, and Sengupta (1993) analyze a
transferable utility game with discounting and a fixed “protocol” describing
the order of proposers and respondents, with the first “rejector” becoming
the new proposer. They show how delay is possible even in stationary equi-
libria, and they provide conditions under which no delay occurs. Moldovanu
and Winter (1995) analyze a non-transferable utility game with no discount-
ing and with a similar “rejector becomes proposer” feature, and they prove
an equivalence between the core and stationary “order independent” equi-
librium outcomes. Okada (1996) studies a transferable utility game with
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equal discount factors and a random recognition rule with equal recogni-
tion probabilities, showing that no delay occurs in equilibrium and providing
conditions sufficient for the existence of efficient equilibria as the common
discount factor goes to one.

2 The Model

Let X ⊆ <d denote a non-empty, compact, convex set of alternatives, with
d ≥ 1. Let N = {1, . . . , n} denote the set of agents, n ≥ 2, and assume
each i ∈ N has preferences described by a von Neumann-Morgenstern utility
function ui: X → <. We assume throughout that each ui is continuous and
concave and that ui(x) ≥ 0 for all x ∈ X; moreover, we assume there is
some x ∈ X such that, for all i ∈ N , ui(x) > 0. We describe an additional
restriction, required for some of our results, at the end of section. The voting
rule is given by a collection D ⊆ 2N \ {∅} of coalitions, called decisive.4 We
assume that D is non-empty and monotonic: C ∈ D and C ⊆ C ′ imply
C ′ ∈ D. (Together these two assumptions imply N ∈ D.) Save for Section
5, we do not assume that D is proper: C ∈ D implies N \ C /∈ D.

The timing of the interaction is as follows: (a) at t = 1, 2, . . ., agent
i ∈ N is recognized with probability ρi, where ρ = (ρ1, . . . , ρn) ∈ ∆, the
unit simplex in <n; (b) when recognized, i makes a proposal pt

i ∈ X; (c)
all j ∈ N simultaneously vote to either accept or reject the proposal; if
{j ∈ N | j accepts } ∈ D, then the proposal pt

i is the chosen alternative
and the game ends; otherwise, the process moves to period t + 1 and it
repeated. If x ∈ X is accepted in period t ∈ {1, 2, . . .}, i’s payoff is given
by δt−1

i ui(x), δi ∈ [0, 1], where we implicitly assume here that the status quo
(the outcome prevailing in the absence of agreement) has utility zero; and
by our normalization of utilities, it follows that the alternatives in X are
unanimously weakly preferred to the status quo.5 If no alternative is ever
accepted, each agent receives a utility of zero.

Complete information of preferences, the structure of the game form, etc.
is assumed throughout. A history of length l in the game describes all that

4In the terminology of cooperative game theory, this is a simple game and the elements
of D are winning coalitions.

5In Section 6, we explain that this restriction can be relaxed if the discount rates of
the agents are identical.
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has transpired in the first l periods (who the previous proposers were, what
they proposed, how agents voted) as well as whether in the current period
we stand prior to the proposer being recognized, after such recognition but
prior to the proposal being made, or after the proposal but prior to the vote.
Therefore, in general a strategy for an agent would be a mapping specify-
ing her intended action (what to propose, how to vote) as a function of all
histories of all lengths. Since our focus in this paper is only on equilibria
in stationary strategies, we avoid unneeded generality and provide a formal
definition only of such strategies. A (pure) stationary strategy for i ∈ N
consists of a proposal pi ∈ X offered anytime i is recognized; and a measur-
able decision rule ri: X → {accept, reject}, or equivalently an acceptance set
Ai = r−1

i (accept).
It turns out that mixtures over proposals are required for our most gen-

eral existence result, so let P(X) denote the set of Borel probability measures
on X and endow P(X) with the topology of weak convergence. Given mea-
surable Y ⊆ X, let P(Y ) denote the subset of probability measures on X
that place probability one on Y . Let πi ∈ P(X) denote a mixed stationary
proposal for i, and let π = (π1, . . . , πn) denote a profile of mixed stationary
proposals. A mixed stationary strategy for i is a pair σi = (πi, Ai), and we
let σ = (σ1, . . . , σn) denote a profile of mixed stationary strategies. It is
important to note that randomization takes place before voting: the agents
know which alternative has been proposed at the time they cast their votes.

Given a mixed stationary proposal πi for agent i, let S(πi) denote the
support of πi. For a profile σ in which agents use mixed stationary proposals
π = (π1, . . . , πn), let S(π) =

⋃n
i=1 S(πi). We say σ has finite support if S(π)

is finite. Let

x(π) =
∑

i∈N

ρi[
∫

X
xπi(dx)]

denote the ex ante expected value of the agents’ proposals. Given a profile
of mixed stationary proposals with acceptance sets (A1, . . . , An) and given
C ⊆ N , define the set

AC =
⋂

i∈C

Ai

of proposals acceptable to all members of C, and define the social acceptance
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set

A =
⋃

C∈D
AC ,

consisting of proposals passed in any and all periods. The profile is a no-delay
profile if πi(A) = 1 for all i ∈ N (implying, of course, that A 6= ∅).

Informally, a profile σ∗ constitutes a stationary equilibrium if, for all i ∈
N , (1) π∗i is optimal given the acceptance sets (A∗

1, . . . , A
∗
n) of the other

agents; and (2) A∗
i is optimal given that σ∗ describes what would happen if

current proposal were rejected. To formalize these conditions, note first that
any strategy profile σ defines in an obvious (if notationally dense) manner a
probability distribution over the outcome space (X × {1, 2, . . .}) ∪ {∅}, and
with it an expected utility vi(σ) for each i ∈ N as evaluated at the beginning
of the game; by stationarity this is also i’s continuation value throughout
the game, i.e., her expected utility as evaluated next period if the current
period’s proposal is rejected. In a no-delay stationary equilibrium, we can
write the agent i’s continuation value as

vi(π) =
∑

j∈N

ρj[
∫

X
ui(x)πj(dx)],

a continuous function of π.
Formally, we require that the agents’ proposals satisfy sequential ratio-

nality and that their acceptance sets satisfy weak dominance, with the latter
eliminating nasty equilibria in which, for instance, under majority rule every-
one accepts x ∈ X independently of preferences. The equilibrium condition
on the acceptance sets is that

[ui(x) > δivi(σ
∗) implies x ∈ A∗

i ] and [ui(x) < δivi(σ
∗) implies x /∈ A∗

i ]

for all i ∈ N .6 As for proposals, if A is non-empty then agent i, when recog-
nized as proposer, either chooses utility-maximizing outcomes from within A
or chooses an outcome that will be rejected, thereby generating a payoff of
δivi(σ). Thus, the equilibrium condition on proposals is that, for all i ∈ N ,

π∗i (arg max{ui(y) | y ∈ A∗}) = 1

6Baron and Kalai (1993) refer to such strategies as “stage-undominated.”
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when sup{ui(y) | y ∈ A∗} > δivi(σ
∗); that π∗i (X\A∗) = 1 when the inequality

is reversed; and that π∗i place positive mass only on the union of these two
sets when equality holds.

[Figure 1 about here.]

Figure 1, from Baron (1991), gives a visual example of no-delay stationary
equilibria, where n = 3, majority rule is used, X is the unit simplex in
<3, utility functions are quadratic with ideal points at the respective unit
coordinate vectors, and ρi = 1/3 and δi = 1 for all i ∈ N . One mixed
strategy equilibrium is given by π∗1(a) = π∗1(b) = 1/2, π∗2(c) = π∗2(d) = 1/2,
and π∗3(e) = π∗3(f) = 1/2, with acceptance sets given by the appropriate
weak upper contour sets; other distributions over these six alternatives work
as well. Indeed, one pure strategy equilibrium is π∗1(a) = π∗2(c) = π∗3(e) = 1;
another is π∗1(b) = π∗2(d) = π∗3(f) = 1.

To state our additional restriction on preferences, define i’s weak and
strict upper contour sets at x, respectively, as

Ri(x) = {y ∈ X | ui(y) ≥ ui(x)}
Pi(x) = {y ∈ X | ui(y) > ui(x)},

and define RC(x), PC(x), R(x), and P (x) following the conventions on ac-
ceptance sets. We say that limited shared weak preference (LSWP) holds if,
for all C ⊆ N and all x ∈ X,

|RC(x)| > 1 ⇒ RC(x) ⊆ PC(x).

That is, if y (distinct from x) weakly dominates x from the perspective of a
coalition C, it can be approximated by alternatives that strictly dominate x
for C. In Appendix A, we present two general models in which LSWP holds.
Special cases include the following familiar environments.

• Classical spatial model/Pure public goods. Each ui is strictly quasi-
concave, as when there exists xi such that ui(x) = −||x−xi|| or ui(x) =
−||x− xi||2. Or, if alternatives represent public goods, each ui may be
monotonic as well. If a restriction on shared indifference is imposed,
strict quasi-concavity may be dropped.

• Public decisions with transfers. X = Z × T , T ⊆ <n, and each ui is
quasi-linear: ui(z, t) = φi(z) + ti, φi strictly quasi-concave.
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• Exchange economy. Alternatives are allocations of private goods, and
each ui is strictly quasi-concave and strictly monotonic in i’s consump-
tion.

• Divide the dollar. X = ∆ and ui(x) = xi.

Though LSWP is satisfied in divide the dollar environments, it does not hold
for general linear ui: for example, let n = 2, X the unit ball in <2, where
one agent has gradient (1, 0) and the other has gradient (−1, 0).

3 Existence

Theorem 1 (i) If δi < 1 for all i ∈ N , then there exists a no-delay stationary
equilibrium, and every stationary equilibrium is a no-delay equilibrium. (ii)
If LSWP holds, then there exists a no-delay stationary equilibrium. (iii) If
each ui is strictly quasi-concave, then every no-delay stationary equilibrium
has finite support.

Proof: For all i ∈ N , define Ai(π) = {x ∈ X | ui(x) ≥ δivi(π)}. By concav-
ity of ui, by ui(x) ≥ 0 for all x ∈ X, and by δi ≤ 1, we have x(π) ∈ Ai(π),
and therefore Ai(π) is non-empty. It is compact by the continuity of ui, and
it is convex by the concavity of ui. For all C ∈ D, define AC(π) =

⋂
i∈C Ai(π),

also non-empty, compact, and convex; and define A(π) =
⋃

C∈D AC(π), which
is non-empty and compact, but not necessarily convex. Theorem 7, in Ap-
pendix B, establishes that A is continuous as a correspondence on [P(X)]n

if either δi < 1 for all i ∈ N or LSWP holds.
For all i ∈ N , define Mi(π) = arg max{ui(x) | x ∈ A(π)}. By the

Theorem of the Maximum (Aliprantis and Border, 1994, Theorem 14.30),
Mi : [P(X)]n →→ X has non-empty and compact values and is upper
hemicontinuous; however, it is not necessarily convex-valued since A(π) is
not necessarily convex. Let Bi(π) = P(Mi(π)) denote the set of mixtures
of optimal proposals, which defines a non-empty, compact- and convex-
valued, upper hemicontinuous correspondence (Aliprantis and Border, 1994,
Theorem 14.14). Define the correspondence B: [P(X)]n →→ [P(X)]n by
B(π) = (B1(π), . . . , Bn(π)); since [P(X)]n is compact and convex, by Glicks-
berg (1952) B has a fixed point, say π∗ = (π∗1, . . . , π

∗
n). Then π∗, together
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with acceptance sets A∗
i = Ai(π

∗), i = 1, . . . , n, constitutes an equilibrium.
This completes the proof of (ii).

To complete the proof of (i), let σ∗ be a stationary equilibrium. In step
(7) of the proof of Theorem 7, we prove the existence of x̂ ∈ X such that,
for all i ∈ N , ui(x̂) > δivi(π

∗). By weak dominance, x̂ ∈ A∗. Then

sup{ui(y) | y ∈ A∗} > δivi(π
∗),

and sequential rationality requires π∗i put probability one on arg max{ui(y) |
y ∈ A∗} for all i ∈ N . In particular, π∗i (A

∗) = 1 for all i ∈ N .
To prove (iii), let σ∗ be a no-delay stationary equilibrium. Each A∗

i is
convex by strict quasi-concavity and weak dominance, and therefore each
A∗

C is convex. Optimality of i’s proposals requires that π∗i put probability
one on arg max{ui(y) | y ∈ A∗}, which can be rewritten

arg max{arg max{ui(y) | y ∈ A∗
C} | C ∈ D}.

By convexity of A∗
C and strict quasi-concavity of ui, arg max{ui(y) | y ∈ A∗}

is a singleton. Since D is finite, the result is proved.

A few remarks are in order. By definition, in no-delay equilibria the first
proposal is always accepted, so there is no inefficiency due to delay. However,
if agents’ proposals differ and utility functions are strictly concave, there will
be ex ante inefficiency due to uncertainty.

The definitions of Section 2 and the proof of Theorem 1 would require only
notational changes if we generalized the voting rule to a collection {Di}i∈N ,
where Di is the non-empty, monotonic collection of coalitions that can pass a
proposal from agent i. We would let Ai =

⋃
C∈Di

AC consist of the proposals
i can pass. In the proof, we would define Ai(π) accordingly, and we would
define Mi(π) = arg max{ui(x) | x ∈ Ai(π)}, restricting i’s proposals to those
the agent can pass; we again find a fixed point of the correspondence B,
defined as before, giving us a no-delay stationary equilibrium.

The fixed points of B are all the stationary equilibrium proposals when
each δi < 1. Consider a stationary equilibrium with proposals given by profile
π◦ and acceptance sets {A◦

i }. By part (i) of Theorem 1, π◦i (A
◦) = 1 for all

i ∈ N ; by weak dominance, A◦
i ⊆ Ai(π

◦) for all i ∈ N , implying A◦ ⊆ A(π◦).
In equilibrium, agent i must put probability one on the utility maximizing
proposals in A◦, but it is conceivable that these proposals are not utility
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maximizing in A(π◦). Let x′ and C ′ satisfy x′ ∈ AC′(π
◦), C ′ ∈ D, and

ui(x
′) = max{ui(x) | x ∈ A(π◦)}. In step (7) of the proof of Theorem 7, in

Appendix B, we prove the existence of x̂ ∈ X such that uj(x̂) > δjvj(π
◦) for

all j ∈ N . That is, x̂ ∈ As
j(π

◦) = {x ∈ X | uj(x) > δjvj(π
◦)} for all j ∈ N ,

and therefore x̂ ∈ As
C′(π

◦) =
⋂

j∈C′ A
s
j(π

◦). By concavity, αx̂ + (1 − α)x′ ∈
As

C′(π
◦) for all α ∈ (0, 1). By weak dominance, αx̂ + (1 − α)x′ ∈ A◦

C′ . By
choosing α > 0 low enough, i can pass a proposal arbitrarily close to x′

and, by continuity of ui, with utility arbitrarily close to ui(x
′). Therefore, in

equilibrium, π◦i must put probability one on arg max{ui(x) | x ∈ A◦(π◦)}.
In contrast, when δi = 1 for some agents, there can exist stationary

equilibria with delay: n = 2, unanimity, x ∈ X Pareto optimal for agents
1 and 2, y ∈ X such that u2(x) > u2(y), ρ1 = 1. In each period agent 1
proposes x with probability 1/2, and y with probability 1/2; and agent 2
rejects any z ∈ X such that u2(z) < u2(x). Then since x is Pareto optimal
x is the best 1 can do given 2’s acceptance rule; and with probability one x
is proposed in finite time, so i receives utility of ui(x).

Because the set A of socially acceptable proposals need not be convex,
even in equilibrium (as in Figure 1), mixed strategies are required in the
proof of Theorem 1 to convexify an agent’s best responses. This is not a
problem if we impose certain restrictions on either the voting rule or the
dimension of the set of alternatives. Say that D is a filter (or is oligarchic)
if K(D) ≡ ⋂

C∈D C ∈ D: two polar examples are unanimity rule (D = {N})
and dictatorship (filter with K(D) = {i}).7

Theorem 2 Assume either that δi < 1 for all i ∈ N or that LSWP holds.
Then there exists a pure strategy no-delay stationary equilibrium if either D
is a filter or d = 1.

Proof: If D is a filter, then A(π), defined in the proof of Theorem 1, is just⋂
i∈K(D) Ai(π), a convex set. Therefore, revising the argument there using

only pure strategies, we find that Mi(π) is convex-valued for all i ∈ N , so
there exists a pure strategy stationary equilibrium.

We claim A(π) is also convex if d = 1. Let x = max A(π) and x =
min A(π), which exist by compactness of X and continuity of the ui, and let
C and C satisfy x ∈ AC(π) and x ∈ AC(π). Clearly x(π) ∈ [x, x] = convA(π)
and, by concavity, x(π) ∈ AC(π)∩AC(π). Take any y ∈ convA(π). Suppose

7See Section 5, footnote 8, for other examples of filters.
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y ∈ [x, x(π)]. Since AC(π) is convex, by concavity, we have y ∈ AC(π) ⊆
A(π). A symmetric argument addresses the case y ∈ [x(π), x′]. Therefore,
the proof of Theorem 1, revised for pure strategies, establishes a pure strategy
equilibrium.

If n = 2, then all proper voting rules are filters: either unanimity or
dictatorship. Thus, from Theorem 2 we obtain the existence of pure strategy
stationary equilibria for the case of two-agent bargaining under all proper
voting rules.

Finally, the high degree of symmetry in the example of Figure 1 generates
a multiplicity of equilibria, as Baron (1991) notes, but the equilibria are pay-
off equivalent. This raises the issue of uniqueness of stationary equilibrium
payoffs. While this property may hold in special environments, it does not
hold generally: in Section 5, we give an example with each δi = 1 in which
equilibria are not payoff equivalent; and we will now show that non-unique
equilibrium payoffs may occur even when the agents’ discount rates are be-
low one. Assume n = 3, majority rule, X the unit simplex in <3, ρi = 1/3
and δi = .95 for all i ∈ N . We give agent i an ideal point at ei, the ith
unit vector, and we define ui by a monotonic transformation of Euclidean
distance from ei. Specifically, define the piecewise linear function f by

f(0) = 14, 900 f(.25) = 14, 894 f(.2762) = 14, 890
f(1.138) = 12, 100 f(1.1642) = 12, 000 f(1.2983) = 11, 220
f(1.3072) = 11, 000 f(1.4142) = 0,

as in Figure 2, and define ui(x) = f(||ei − x||), which is concave, strictly
quasi-concave, and continuous.

[Figure 2 about here.]

Consider a strategy profile where agent 1 proposes a = (.8232, .1768, 0),
2 proposes b = (0, .8232, .1768), and 3 proposes c = (.1768, 0, .8232). Note
that

u1(a) = f(.25) = 14, 894
u1(b) = f(1.3072) = 11, 000
u1(c) = f(1.1642) = 12, 000

and that, by symmetry, the payoffs of agents 2 and 3 are merely permutations
of those for agent 1. Agent 1’s continuation value is

v1 =
1

3
(14, 894) +

1

3
(11, 000) +

1

3
(12, 000) = 12, 631,
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and, by symmetry, v1 = v2 = v3. Noting that δ1v1 = 12, 000, we define agent
1’s acceptance set as

A1 = {x ∈ X | u1(x) ≥ 12, 000},

with A2 and A3 defined symmetrically. Proposal a gives agent 2 a payoff of
exactly 12, 000, which is the minimum needed to acquire 2’s approval. Thus,
agent 1’s strategy is a best response, as are 2’s and 3’s.

Now consider a strategy profile where agent 1 proposes a′ = (.8047, .1953, 0),
2 proposes b′ = (0, .8047, .1953), and 3 proposes c′ = (.1953, 0, .8047). Note
that

u1(a
′) = f(.2762) = 14, 890

u1(b
′) = f(1.2983) = 11, 220

u1(c
′) = f(1.138) = 12, 100

and that, again, the payoffs of agents 2 and 3 are merely permutations of
those for agent 1. Agent 1’s continuation value is

v′1 =
1

3
(14, 890) +

1

3
(11, 220) +

1

3
(12, 100) = 12, 737,

and v′1 = v′2 = v′3. Noting that δ1v
′
1 = 12, 100, we define agent 1’s acceptance

set as

A′
1 = {x ∈ X | u1(x) ≥ 12, 100},

with A′
2 and A′

3 defined symmetrically. Proposal a′ gives agent 2 a payoff of
exactly 12, 100, which is the minimum needed to acquire 2’s approval. Thus,
agent 1’s strategy is a best response, as are 2’s and 3’s, giving us a stationary
equilibrium with continuation payoffs distinct from those in the preceding
example.

4 Continuity

The equilibria identified in Theorem 1 are parametrized by the agents’ recog-
nition probabilities, ρ = (ρ1, . . . , ρn) ∈ ∆, and their discount factors, δ =
(δ1, . . . , δn) ∈ [0, 1]n. To these we add information about their utility func-
tions: let Λ ⊂ <k be a set parameterizing profiles of utility functions, so
that agent i’s preferences can be represented as ui(x) = ui(x, λ) for some
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λ ∈ Λ. For instance, we could have Λ ⊆ <nd, λ = (λ1, . . . , λn) ∈ Λ, each
λi representing the ideal point of a quadratic utility function for agent i; or
more generally, λi might be the matrix defining weighted Euclidean distance
utilities (cf. Hinich and Munger, 1997); alternatively, preferences could be
represented in a general separable form (cf. Caplin and Nalebuff, 1991)

ui(x, λ) =
m∑

h=1

λh
i t

h(x) + tm+1(x),

where th: X → < for h = 1, 2, . . . ,m + 1. Assume ui is jointly continuous;
for all λ ∈ Λ, assume ui(·, λ) is concave and non-negative; moreover, assume
there is some x ∈ X such that, for all j ∈ N , uj(x, λ) > 0. For parameters
ρ, δ, and λ, let E(ρ, δ, λ) denote the set of no-delay stationary equilibrium
proposals given by the fixed points of the correspondence B, defined in the
proof of Theorem 1. As discussed in the previous section, when discount
rates are less than one E(ρ, δ, λ) consists of all stationary equilibrium profiles
of proposals; when some discount rates are equal to one, E may exclude
some profiles that cannot be obtained as limits of equilibria as discount rates
approach one.

Theorem 3 If either δi < 1 for all i ∈ N or LSWP holds at λ, then E is
upper hemicontinuous at (ρ, δ, λ).

Proof: Given parameters ρ, δ, and λ satisfying the assumptions of the the-
orem and given a profile π of mixed stationary proposals, let θ denote the
vector (ρ, δ, λ, π). Define

Ai(θ) = {x ∈ X | ui(x, λ) ≥ δivi(π, ρ, λ)},

where vi(π, ρ, λ) is i’s continuation value, defined as in Section 2 but using
ui(·, λ). Theorem 7, in Appendix B, establishes that A is continuous as a
correspondence at θ. Hence, by the Theorem of the Maximum,

Mi(θ) ≡ arg max{ui(x, λ) | x ∈ A(θ)}

is upper hemicontinuous at θ, and therefore so is Bi(θ) ≡ P(Mi(θ)). Since
Bi has closed values and regular range as well, it has closed graph (Aliprantis
and Border, 1994, Theorem 14.11). Now, let (ρm, δm, λm) → (ρ◦, δ◦, λ◦), and
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take any sequence {πm} such that πm ∈ E(ρm, δm, λm) for all m. Suppose
πm → π◦. Since πm

i ∈ Bi(θ
m) for all m and since Bi has closed graph, we

see that π◦i ∈ Bi(θ
◦) for all i ∈ N . Therefore, π◦ ∈ E(ρ◦, δ◦, λ◦), and we

conclude that E has closed graph at θ. Since it has compact Hausdorff range
space as well, it is upper hemicontinuous at θ (Aliprantis and Border, 1994,
Theorem 14.12).

As applications, note that when δi = 0 for all i ∈ N , the agents will
propose their (unique, say) ideal points when recognized; by Theorem 3,
therefore, when discount factors are all close to zero, each proposal will be
close to the proposer’s ideal point. Similarly, when ρi = 1, as in the model
of Romer and Rosenthal (1978a,b), we can easily solve for the equilibrium
proposals for i; and when ρi is close to one the agent’s proposals will be close
to that when ρi equals one and hence the expected outcome will be close to
the original. Finally, suppose all equilibrium proposals actually coincide at
the point x∗ for some λ∗; then for all values of λ close to λ∗ all equilibrium
proposals will be close to x∗.

5 Core Equivalence

In this section, we asume throughout that each ui is strictly quasi-concave,
so LSWP holds; ρi > 0, implying that all agents have some chance of being
recognized; and δi = 1, implying that all agents are perfectly patient. In
addition, we assume that D is proper. Let C(D) ⊆ X denote the set of core
outcomes associated with the decisive coalitions D:

C(D) = {x ∈ X | y ∈ PC(x) for no C ∈ D, y ∈ X}.

In what follows we will denote pure strategy profiles of proposals by p =
(p1, . . . , pn). Note that the next lemma requires strict quasi-concavity only
for one direction.

Lemma 1 p∗1 = · · · = p∗n = x∗ are no-delay stationary equilibrium proposals
if and only if x∗ ∈ C(D).

Proof: Assume p∗1 = · · · = p∗n = x∗ are no-delay stationary equilibrium
proposals. If x∗ /∈ C(D) then there exists C ∈ D and y ∈ PC(x∗), implying
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ui(y) > ui(x
∗) = δivi(π

∗) for all i ∈ C. By weak dominance, y ∈ A∗
i for

all i ∈ C, and hence y ∈ A∗. Thus, when i ∈ C is the proposer she gets a
strictly higher payoff from proposing y than she does from proposing x∗, a
contradiction.

Assume x∗ ∈ C(D). Setting A∗
i = Ai(x

∗), we claim that ((A∗
1, p

∗
1), . . . ,

(A∗
n, p

∗
n)), where p∗1 = · · · = p∗n = x∗, is a no-delay stationary equilibrium.

The acceptance sets clearly satisfy weak dominance, so if this is not an
equilibrium, there must exist an agent with a better acceptable proposal.
But if there exists z 6= x∗ ∈ X such that z ∈ A∗

C for some C ∈ D, then
1
2
x∗ + 1

2
z ∈ PC(x∗) by strict quasi-concavity, contradicting x∗ ∈ C(D).

The next lemma reveals a connection between the structure of the set
of no-delay stationary equilibrium proposals and the structure of the voting
rule. Say that D is a pre-filter (or is collegial) if K(D) 6= ∅, i.e., if at least one
agent possesses a veto. Note that a filter is necessarily a pre-filter.8 Define
the Nakamura number of D, denoted N (D), as

N (D) = min{|S| | S ⊆ D, K(S) = ∅}
if D is not collegial, and define N (D) = ∞ if it is. In words, when D is not
collegial the Nakamura number of D is the size of the smallest collection of
decisive coalitions having empty intersection; when D is collegial, it suffices
here to assign it any infinite cardinality. If D is proper, as we now assume,
N (D) ≥ 3; and if D is non-collegial, N (D) ≤ n.

Given a subset Y ⊆ X and x ∈ Y , say that x is an extreme point of
Y if there do not exist y, z ∈ Y (distinct from x) and α ∈ (0, 1) such that
x = αy + (1− α)z.

Lemma 2 Let σ∗ = ((A∗
1, π

∗
1), . . . , (A

∗
n, π∗n)) be a no-delay stationary equi-

librium. If S(π∗) has more than one extreme point, then the set of extreme
points of S(π∗) has cardinality at least N (D).

8 For a “one parameter” example of the difference between pre-filters and filters, let
n = 5, and consider a weighted q-rule with the following weights assigned to the agents:
w1 = w2 = .35, w3 = w4 = w5 = .1. The set of decisive coalitions is then D(q) = {C ⊆
N | ∑i∈C wi ≥ q}, where q ranges from .5 to 1. For q ∈ [.65, .70] the rule is a filter, since
a decisive coalition requires both large agents to be members, and these agents together
constitute a decisive coalition. Similarly, for q ∈ (.90, 1] the rule is a filter, since the only
decisive coalition is N . Finally, for q ∈ (.70, .90) the rule is a pre-filter, as the presence of
the two large agents is necessary for a coalition to be decisive, but is not sufficient. When
q ∈ (.5, .65) the rule is neither.
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Proof: Suppose that S(π∗) has more than one extreme point yet the car-
dinality of the set of extreme points is less than N (D). From Theorem 1,
strict quasi-concavity implies that S(π∗) is finite and, therefore, has a finite
number of extreme points. Denumerate the set of extreme points of S(π∗)
as x1, x2, . . . , xm, and define Ch = {i ∈ N | xh ∈ A∗

i }, h = 1, . . . , m. Since
σ∗ is a no-delay equilibrium, we have Ch ∈ D for all h. Then, by definition
of the Nakamura number, there is some j ∈ ⋂m

h=1 Ch. That is, there is some
j such that xh ∈ A∗

j for all h.
We claim that uj(x) = uj(y) for all x, y ∈ S(π∗). Otherwise,

u = max{uj(x) | x ∈ S(π∗)} > min{uj(x) | x ∈ S(π∗)} = u,

and furthermore, by the Bauer Maximum Principle (Aliprantis and Border,
1994, Theorem 4.104), u is achieved at an extreme point of S(π∗), say xk.
But, since δj = 1, this means that j’s acceptance set violates weak dominance:
ρi > 0 for all i ∈ N implies u < vj(π

∗), so in equilibrium we must have
xk /∈ A∗

j . This contradiction establishes the claim.
Note that, by concavity of the ui, ui(x(π∗)) ≥ vi(π

∗). Since x1 ∈ A∗
C1

,
strict quasi-concavity and the weak dominance condition on A∗

C1
imply that

the convex hull of {x1, x(π∗)} is included in A∗
C1

. Then, because π∗j is a best
response proposal strategy for j, continuity of uj implies that there exists
x∗ ∈ A∗ such that uj(x

∗) ≥ uj(x(π∗)).
By the Krein-Milman Theorem (Aliprantis and Border, 1994, Theorem

4.103), we know that x(π∗), since it is an element of the convex hull of S(π∗),
can be written as a convex combination of the extreme points of S(π∗), which,
we may suppose, places positive weight on the first h extreme points. Since
S(π∗) contains more than one element, x(π∗) cannot itself be an extreme
point, so h > 1. Then strict quasi-concavity and uj(x1) = · · · = uj(xh)
yield uj(x(π∗)) > uj(x1). In equilibrium, j must propose alternatives with
utility at least uj(x

∗) ≥ uj(x(π∗)) > uj(x1). But ρj > 0, so j’s proposals
are elements of S(π∗), contradicting the claim that j’s utility is constant on
S(π∗).

Nakamura (1979) introduces the concept of the Nakamura number in his
analysis of core non-emptiness in the absence of convexity restrictions, while
Schofield (1984) and Strnad (1985) assume convexity of X and impose a weak
convexity condition on preferences: they prove that the core is non-empty
if d ≤ N (D) − 2; and that, otherwise, there exist profiles of preferences for
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which the core is empty. As special cases, the core is non-empty if d = 1
(since N (D) ≥ 3) or if D is a pre-filter (since then N (D) = ∞). These
two cases play analogous roles in the analysis of this section, providing suf-
ficient structure for the existence of pure strategy stationary equilibria and
equivalence with core outcomes.

If D is a pre-filter, so that N (D) is infinite, it is clear that the set of
extreme points of S(π∗), a finite set, cannot exceed N (D). From Lemma 2,
therefore, S(π∗) has at most one extreme point. Since it is finite, from part
(ii) of Theorem 1, and non-empty, it has exactly one, say x∗. From Lemma
1, therefore, we have x∗ ∈ C(D), giving us the following result.

Theorem 4 If D is a pre-filter, then all no-delay stationary equilibria are in
pure strategies and are of the form p∗1 = · · · = p∗n = x∗ for some x∗ ∈ C(D).

Using Lemma 1, we have an equivalence between the core outcomes of
the underlying voting rule and the equilibrium bargaining outcomes when
agents are perfectly patient and the decisive coalitions D constitute a pre-
filter. Combine this with Theorems 2 and 3 when D is a filter: pure strategy
equilibria exist for all discount factors; the equilibrium outcomes coincide
with the core outcomes when discount factors all equal one; and the equi-
librium outcomes converge to the core when these factors all converge to
one.

If d = 1, the set of extreme points of S(π∗) has at most two elements.
Since D is proper, however, N (D) ≥ 3, and from Lemma 2 we then know
that S(π∗) has at most one extreme point. Again, because S(π∗) is finite
and non-empty, we conclude that it has exactly one, say x∗. From Lemma
1, therefore, we have x∗ ∈ C(D), giving us the following result.

Theorem 5 If d = 1, then all no-delay stationary equilibria are in pure
strategies and are of the form p∗1 = · · · = p∗n = x∗ for some x∗ ∈ C(D).

When the alternative space has but a single dimension and agents are per-
fectly patient, we again get an equivalence between the core outcomes of the
underlying voting game and the equilibrium bargaining outcomes. Further-
more, by Theorems 2 and 3 we know that pure strategy equilibrium outcomes
exist for all discount factors, and that they converge to core outcomes when
discount factors converge to one.
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Now suppose in addition that the core of D is actually a singleton; then
we can also conclude that, as the discount factors converge to one, all of the
equilibrium bargaining proposals collapse down to a single point in the space.
Therefore, even if there are multiple equilibria when discount factors are less
than one, when these factors are close to one the equilibrium proposals will
be close to one another. A sufficient condition for the core (when non-empty)
to be a singleton, given our assumption of strictly quasi-concave utilities, is
that D is strong: C /∈ D implies N\C ∈ D.9 Majority rule is an example of
a strong rule when n is odd, so by Theorem 5 the current bargaining model
replicates the predictions of the Median Voter Theorem (Black, 1958; Downs,
1957) when agents are perfectly patient; and with Theorem 3, bargaining
outcomes will all be close to the median voter’s ideal point when discount
factors are close to one. (Analogous results employing Theorem 4 are less
interesting, as the only strong pre-filter turns out to be dictatorship.)

Given Theorems 4 and 5 and the results of Schofield (1984) and Str-
nad (1985), one might conjecture that core equivalence holds whenever d ≤
N (D) − 2. To see that conjecture is false, consider the following example:
n = 4, d = 2, X = [−1, 1]2, ρi = .25 for all i ∈ N , and agent i’s utility
function is quadratic on X with ideal point xi: ui(x) = −||xi − x||2 (plus a
constant to keep utilities non-negative, a term we can ignore since δi = 1).
Let the ideal points of agents 1 through 4 be given by (1, 0), (0, 1), (−1, 0),
and (0,−1), respectively. Under majority rule there is a unique core point at
(0, 0); however, consider the proposals p1 = (α, 0), p2 = (0, α), p3 = (−α, 0),
and p4 = (0,−α), where α ∈ (0, 1]. Quadratic utility implies mean-variance
analysis, so given that the mean of these four (equally weighted) propos-
als is (0, 0) and the variance is α2, agent i’s continuation value is equal to
−1−α2. Consider the utility to agents 2 and 4 from the proposal p1; by the
Pythagorean Theorem this is equal to −1− α2, and so these two agents are
indifferent between accepting and rejecting p1 and thus accepting is a best
response. A similar logic holds for proposals p2, p3 and p4, thereby guaran-
teeing that each proposal can be accepted. Further, given the continuation
values is it clear that these are utility-maximizing choices for the proposers.
Thus, we have a stationary equilibrium away from the unique core outcome

9The weighted q-rule of footnote 8 is strong when q ∈ (.5, .55], since a coalition or
its complement must include either both “large” agents or one “large” and two “small”
agents; whichever does is a decisive coalition.
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at (0, 0) (in fact, a continuum of them, parametrized by α).
The “problem” in this example is that the core is not associated with

any one agent’s ideal point and so is not offered as a proposal. To illustrate,
suppose there is now a fifth agent with quadratic preferences and ideal point
at (0, 0). Under majority rule the core remains at (0, 0); however now, as long
as ρ5 is strictly positive, this core point can have some influence on the agents’
behavior. In particular, the above proposals for agents 1 through 4, along
with p5 = (0, 0), do not constitute an equilibrium, even with ρ5 arbitrarily
small (and the other recognition probabilities equal to, say, .25 − ρ5/4). To
see this, note that the mean of the proposals has not changed; the variance
has strictly decreased below α2, however, and by offering p1 = (α, 0) agent 1
will acquire the votes of no other agent.10

The only equilibrium in this augmented example is, as in Theorems 4
and 5, at the core point. The next theorem subsumes this observation as a
special case of a general result on quadratic preferences and strong voting
rules.

Theorem 6 If D is strong, ui is quadratic for all i ∈ N , and {x∗} = C(D)
with x∗ ∈ intX, then all no-delay stationary equilibria are in pure strategies
and are of the form p∗1 = · · · = p∗n = x∗.

Proof: Let ui(x) = −||x − xi||2 for all i ∈ N , and let σ∗ be a no-delay
stationary equilibrium. The proof proceeds in a number of steps.

(1) D strong, ui quadratic and {x∗} = C(D) with x ∈ intX imply x∗ = xi

for some i ∈ N : if not, ∇ui(x
∗) 6= 0 for all i ∈ N , so let H be a hyperplane,

with normal p, through zero containing no gradient vector. Since D is strong
either

{i ∈ N | ∇ui(x
∗) · p > 0} or {i ∈ N | ∇ui(x

∗) · p < 0}
is decisive. Suppose the former, without loss of generality. Since x∗ ∈ intX,
there exists ε > 0 such that x∗+ εp ∈ X and for all members i, ui(x

∗+ εp) >
ui(x

∗). Thus, x∗ /∈ C(D), a contradiction.

(2) {i ∈ N | ui(x
∗) ≥ ui(x(π∗))} ∈ D: if not, since D is strong, its comple-

ment is decisive, implying x∗ /∈ C(D), a contradiction.

(3) x∗ ∈ A∗: if not C = {i ∈ N | x∗ ∈ A∗
i } /∈ D, and by D strong N \C ∈ D.

By weak dominance, ui(x
∗) ≤ vi(π

∗) for all i ∈ N \ C; then concavity yields

10Note that this example demonstrates a violation of lower hemicontinuity of E in ρ.
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ui(x
∗) ≤ ui(x(π∗)) for all i ∈ N \ C. If |S(π)| > 1, these inequalities

hold strictly, but then x /∈ C(D), a contradiction. The remaining case is
|S(π)| = {y} for some y ∈ X \ x, but then 1

2
x∗ + 1

2
y ∈ PN\C(x∗) and

x /∈ C(D), a contradiction.

(4) Let agent 1 be such that x∗ = x1; then S(π∗1) = {x∗}: follows directly
from (3) and the definition of stationary equilibrium.

Let x ∈ arg min{u1(x) | x ∈ S(π∗)}, which is well-defined by Theorem 1,
parts (i) and (ii). Suppose, in order to deduce a contradiction, that x 6= x∗,
i.e., |S(π∗)| > 1.

(5) u1(x) < v1(π
∗): follows from p∗1 = x∗ and ρ1 > 0.

(6) x∗ is a total median; in particular, the coalition

D = {i ∈ N | (xi − x∗) · (x(π∗)− x) ≥ 0}
is decisive: otherwise, by D strong, N \D ∈ D; but because x∗ ∈ intX and
the ui are quadratic, we could then take ε > 0 small enough that

x∗ + ε(x− x(π∗)) ∈ PN\D(x∗)

and x∗ /∈ C(D), a contradiction.

(7) For all i ∈ D,

||xi − x(π∗)||2 − ||xi − x||2
= −2xi · (x(π∗)− x) + x(π∗) · x(π∗)− x · x
≤ −2x∗ · (x(π∗)− x) + x(π∗) · x(π∗)− x · x
= ||x∗ − x(π∗)||2 − ||x∗ − x||2.

(8) For all i ∈ D, ui(x) < vi(π
∗): quadratic utility implies mean-variance

analysis; letting v∗ denote the variance of π∗, we have

vi(π
∗)− ui(x) = ui(x(π∗))− v∗ − ui(x)

= −||xi − x(π∗)||2 + ||xi − x||2 − v∗

≥ −||x∗ − x(π∗)||2 + ||x∗ − x||2 − v∗

= u1(x(π∗))− v∗ − u1(x)

= v1(π
∗)− u1(x)

> 0,
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where the first inequality follows from (7) and the second from (5).

(9) x /∈ A∗: given (8), the equilibrium condition of Section 2 implies that
x /∈ A∗

i for all i ∈ D; since D ∈ D, by (6), and D is proper and monotonic,
we have {i ∈ N | x ∈ A∗

i } /∈ D.

Because x is, by definition, proposed with positive probability, (9) con-
tradicts our assumption that σ∗ is a no-delay equilibrium. Thus, we conclude
that x = x∗.

(10) S(π∗) = {x∗}: follows from x = x∗ and uniqueness of agent 1’s ideal
point.

Thus, under majority rule (n odd) and quadratic utilities, if the agents’
ideal points satisfy the “Plott conditions” (Plott, 1967) and agents are per-
fectly patient, the unique equilibrium outcome of the bargaining game coin-
cides with the majority rule core point. Furthermore, by Theorem 3, if we
perturb the ideal points, the equilibrium proposals stay near to one another,
as well as close to their original position. Just this sort of continuity has
been witnessed experimentally: in Fiorina and Plott (1978) five-person, two-
dimensional experiments were run in which at times the utilities were such
that a majority rule core existed, while at other times the required condi-
tions were not quite satisfied. The experimental outcomes tended to cluster
around the core in the former, and did not stray very far in the latter.

The assumption of quadratic utility functions allows us to use mean-
variance analysis in the proof of Theorem 6. To see that the theorem does
not generalize to all utility functions based on Euclidean distance, return to
our earlier example: n = 5, d = 2, X = [−1, 1]2, ρi = .2 for all i ∈ N ,
ideal points xi are at (1, 0), (0, 1), (−1, 0), (0,−1), and (0, 0); we now modify
the example by assuming ui(x) = −||xi − x||4. Given the profile of proposal
strategies where all agents propose their ideal points, the continuation values
of the first four agents are −5, and the continuation value of agent 5, the core
agent, is −.8. The utility to agents 2 and 4 from the proposal p1 = (1, 0)
is −4, which is greater than their continuation values, and accepting is a
best response. A similar logic holds for the remaining proposals. Thus, we
have a stationary equilibrium in which the unique core outcome occurs with
probability one fifth.
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6 Discussion

We have analyzed a non-cooperative model of multi-agent bargaining over a
multidimensional alternative space, proving existence of stationary equilibria,
and relating equilibrium outcomes to the core outcomes of the underlying
voting game. While our bargaining model replicates the predictions of the
core under certain conditions, it avoids the principle “negative” result of
social choice theory, the instability of social choices when the core is empty.
Furthermore, we establish a robustness property of equilibrium predictions,
namely, that the set of outcomes does not “blow up” upon perturbation of
parameters. Our existence result relies on the use of mixed strategies, a
maneuver with an extensive pedigree in game theory. One can see this as an
advantage of the non-cooperative approach in contrast to the cooperative, in
that an accepted (or, at least, standard) way out of the existence problem
is readily at hand. Alternatively, it should be noted that the necessity of
allowing for mixed strategies is being driven here by our quest for stationary
equilibria. If instead we only required equilibria that were (say) subgame
perfect, then presumably the existence of such equilibria in pure strategies
for finite-horizon versions of the game, along with a limiting argument, would
have sufficed to generate a pure-strategy equilibrium existence result. In any
event, we are able to prove existence of pure strategy stationary equilibria for
the special cases of two-agent bargaining (common in economic models), for
n-agent bargaining with unanimous consent, and for one-dimensional spaces
of alternatives.

The current model implicitly assumes that each agent’s utility from the
(unseen) “status quo” alternative is zero, while alternatives in X give the
agents non-negative utility; equivalently, everyone weakly prefers all the al-
ternatives in X to the status quo. If we drop this assumption, the proof of
part (i) of Theorem 1 no longer goes through, but we regain existence if (a)
we explicitly specify the status quo, q, as an alternative in X; (b) we impose
the requirement that the discount rates of the agents are identical, i.e., there
exists some δ ∈ [0, 1] such that, for all i ∈ N , δi = δ; and (c) we define agent
i’s payoff from outcome (x, t) as (1 − δt−1)ui(q) + δt−1ui(x).11 If we then
assume ui(q) = 0 for all i ∈ N (now just a normalization), agent i’s payoff

11It need no longer be the case that ui(x(π)) ≥ δivi(π), so that x(π) need not be an
element of Ai(π), invalidating our argument that AC(π) is non-empty. When all agents
have discount rate δ, however, concavity of ui yields (1−δ)q+δx(π) ∈ Ai(π) for all i ∈ N .
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from outcome (x, t) would be defined just as before. As a special case, we
obtain the model of Romer and Rosenthal (1978a,b), where d = 1, majority
rule, ρi = 1 for some i ∈ N (the “agenda setter”) and δ1 = · · · = δn = 0.
The core equivalence results are unaffected by the introduction of the status
quo.

Once the status quo is explicitly brought into the model, an obvious but
difficult extension would be to allow for bargaining to continue after passage
of a proposal in period t, that proposal being the new status quo for period
t+1, and so on. Baron (1996) characterizes the stationary equilibria of such a
model when the set of alternatives is one-dimensional, and Baron and Herron
(1998) investigate a finite horizon version of the model with three agents, two-
dimensional policy space, and quadratic utility functions. With the addition
of this state variable, stationary strategies must be conditional on the status
quo: proposal strategies would be mappings from X (possible status quo
outcomes) to probability measures on X, and acceptance strategies would be
correspondences from X to X. It may be possible to modify the techniques
of this paper to the analysis of this complex but realistic setting, but that is
a matter for future research.

We have taken recognition probabilities as exogeneously given, without
offering an explanation of their possible origins. One interpretation, appro-
priate when bargaining takes place within a parliamentary or legislative body,
is that the agents represent parties and that the recognition probability of
a party represents the number of seats it holds, proxying for the party’s in-
fluence in lawmaking. An interesting extension would be to explicitly model
the voters who elect the members of parliament, providing an alternative to
Austen-Smith and Banks (1988), Coate (1997), Schofield (1998), Schofield
and Sened (1998), and Baron and Diermeier (1998).

While we have investigated a model of bargaining, other types of institu-
tional structures have been modelled non-cooperatively to obtain equilibrium
existence in the absence of core outcomes. These approaches include sophis-
ticated voting under various types of agendas;12 mixed strategy equilibria
in two-party spatial competition games;13 and the “structure-induced equi-
librium” model of committees (Shepsle, 1979), in which each committee is

12Farquharson (1969), Miller (1977,1980), McKelvey and Niemi (1978), Shepsle and
Weingast (1984), Banks (1985).

13Kramer (1978), McKelvey (1986), Laffond, Laslier, and Le Breton (1993), Banks,
Duggan, and Le Breton (1998), Laslier and Picard (1998).
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assigned to a dimension of the alternative space and is given sole jurisdiction
over the location of the policy along that dimension. In contrast, to the latter
approach, our bargaining model might be thought of as a model of legislatures
in the absence of a formal committee system, providing a useful benchmark
against which a general model of institutional choice might be constructed,
and offering a prediction in situations where no such institutional arrange-
ments are to be found. An important question is then the extent to which
our model gives different predictions for the same underlying preferences,
and how well these predictions square with empirical observations.

An alternative within the cooperative paradigm is to consider solutions
other than the core or top cycle set. Numerous alternative solution con-
cepts have been suggested, such as the von Neumann-Morgenstern solution
(von Neumann and Morgenstern, 1944), the Nash bargaining solution (Nash,
1950), the bargaining set (Aumann and Maschler, 1964), the competitive so-
lution (McKelvey, Ordeshook, and Winer, 1978), the uncovered set (Miller,
1980; McKelvey, 1986; Cox, 1987), and the heart (Schofield, 1996, 1998).
A question we have not addressed in this paper is the relationship between
the equilibrium outcomes of our non-cooperative bargaining model and the
above solutions, but the results of Section 5 do inform us that assuming una-
nimity rule and setting discount rates equal to one in our model does not
yield the Nash bargaining solution (or any other selection from the Pareto
optimals): by Lemma 1, every Pareto optimal alternative could be supported
as a stationary equilibrium outcome for this specification of the model. It
may be, however, that equilibrium outcomes do converge to the Nash solu-
tion as discount rates increase to one, giving us a robust selection from the
limit equilibrium outcomes.

A Limited Shared Weak Preference

In the subsections below, we construct two general models in which the
LSWP restriction holds: one in which limited forms of strict quasi-concavity
and monotonicity (satisfied in most economic models) are imposed, another
in which a limitation on shared indifference is imposed. In both cases, we will
take arbitrary C ⊆ N and x ∈ X such that |RC(x)| > 1. For any x′ ∈ RC(x),
we must then construct a sequence in PC(x) converging to x′. We note here
that, since |RC(x)| > 1, we can take x′′ ∈ RC(x) distinct from x′.
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A.1 Economic Environments

Assume X ⊆ Z × W × T , where Z ⊆ <l, W ⊆ <kn
+ , and T ⊆ <n

+, with
elements written x = (z, w, t), x′ = (z′, w′, t′), and so on. Here, l represents
a number of public goods, k represents a number of private goods, and ele-
ments of T represent allocations of an additional private good (distinguished
notationally to facilitate the analysis when preferences are quasi-linear). Let
w(i) denote the components of w representing i’s consumption of the first k
private goods. To the assumptions on X in Section 2, we add transferability
of private goods: given x ∈ X and x′ ≥ 0, if z′ = z,

∑n
i=1 w(i) =

∑n
i=1 w′(i),

and
∑n

i=1 ti =
∑n

i=1 t′i, then x′ = (z′, w′, t′) ∈ X.
In addition to continuity, we assume that ui is strictly monotonic in pri-

vate goods, and we assume ui is quasi-concave, strictly so in the public
good and strictly so in i’s consumption of the first k private goods. For-
mally, our monotonicity assumption is that, for all x, x′ ∈ X with z = z′ if
(w(i), ti) ≥ (w′(i), t′i) with strict inequality in at least one component, then
ui(x) > ui(x

′). Our convexity assumption is that, for all x, x′ ∈ X and all
α ∈ (0, 1), ui(αx + (1 − α)x′) ≥ min{ui(x), ui(x

′)}, with strict inequality if
z 6= z′ or if w(i) 6= w′(i). These assumptions generalize many economic mod-
els: setting k = 0 and noting that we do not require strict quasi-concavity
in t, we encompass the standard quasi-linear model of public decisions with
transfers; setting l = 0 and T = {0}, we encompass private good exchange
economies; setting k = 0 and T = {0}, we have a pure public good economy
with strictly convex preferences (this case is also treated in the next subsec-
tion); or setting l = k = 0, we can obtain the divide the dollar model. In
fact, because we do not require monotonicity in the public goods, we allow
for the possibility of public bads or, generalizing the classical spatial model,
for ideal (or “satiation”) points.

Now take C, x′, and x′′ as at the beginning of the section, and define
x̂ = 1

2
x′ + 1

2
x′′. By quasi-concavity, we have x̂ ∈ RC(x). We consider four

cases. First, if z′ 6= z′′, we have x̂ ∈ PC(x) by our convexity assumption.
That assumption also yields 1

m
x̂ + (1 − 1

m
)x ∈ PC(x) for all non-negative

integers m. Letting m go to infinity, we have the desired sequence.
Second, if z′ = z′′ and w′(i) 6= w′′(i) for some i ∈ C, then, by our convexity

assumption, ui(x̂) > min{ui(x
′), ui(x

′′)} ≥ ui(x). Since w′(i) 6= w′′(i), it
follows that ŵ(i) is non-zero in some component, say the hth. Define x̃ ∈ X
from x̂ by taking a small enough amount, say ε > 0, of the hth good and
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distributing it to the other members of C. By continuity, we can take ε
small enough that ui(x̃) > ui(x). By strict monotonicity in private goods,
we have x̃ ∈ PC(x). That assumption also yields 1

m
x̃ + (1 − 1

m
)x ∈ PC(x)

for all non-negative integers m. Letting m go to infinity, we have the desired
sequence.

Third, suppose z′ = z′′, w′(i) = w′′(i) for all i ∈ C, and t′i 6= t′′i for some
i ∈ C. Without loss of generality, suppose t′i > t′′i . By strict monotonicity,
ui(x̂) > ui(x

′′) ≥ ui(x). Thus, following the argument of the second case, we
can define x̃ ∈ PC(x) from x̂ by distributing a small enough amount of the
distinguished private good from i to the other members of C. The desired
sequence is defined as in the second case.

Fourth, suppose z′ = z′′, w′(i) = w′′(i) for all i ∈ C, and t′i = t′′i for
all i ∈ C. Since x′ 6= x′′, there is some j /∈ C such that (w′(j), t′j) 6= 0

or (w′′(j), t′′j ) 6= 0. Therefore, (ŵ(j), t̂j) 6= 0, and we can define x̃ ∈ PC(x)
from x̂ by taking a small enough amount of some private good from j and
distributing it to the members of C. The desired sequence is defined in the
now familiar way.

A.2 Limited Shared Indifference

Assume now, as in Section 2, only that X is compact and convex. As a special
case of the last subsection, we know that strict quasi-concavity is sufficient for
the condition of interest. In this subsection, we drop strict quasi-concavity
by imposing, along with two other weak conditions, a condition limiting the
extent to which agents may share indifference. Let Ii(x) = {y ∈ X | ui(y) =
ui(x)}. In addition to continuity and concavity,14 we impose three conditions
on the agents’ utility functions: for all x ∈ X,

(i) Ri(x) = Pi(x) if Pi(x) 6= ∅;
(ii) Pi(x) = ∅ implies Ri(x) = {x};
(iii) for all j 6= i, Ii(x) ∩ Ij(x) contains no line segment.

14In this subsection, a condition weaker than concavity is sufficient for our arguments.
It is called “semistrict quasiconcavity” by Aliprantis and Border (1994, p.175): for all
x, y ∈ X and all α ∈ (0, 1), ui(x) > ui(y) implies ui(αx + (1− α)y) > ui(y).
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Condition (i) is the requirement that the agents’ indifference curves be
“thin.” Condition (ii) requires that an agent has at most one ideal point.
Condition (iii) limits the extent of shared indifference and is satisfied if each
ui is strictly quasi-concave. Moreover, it is enough that ui be strictly quasi-
concave for n−1 agents. If X is a subset of <2, the condition is also satisfied
when the agents’ utility functions are linear with pairwise linearly indepen-
dent gradients.15

Take C, x′, and x′′ as at the beginning of the section. Use condition (iii)
to find x̂ in the line segment [x′, x′′] = {αx′ + (1 − α)x′′ | α ∈ [0, 1]} such
that ui(x̂) = ui(x

′) for at most one agent i ∈ C. By concavity, uj(x̂) >
min{uj(x

′), uj(x
′′)} ≥ uj(x) for all other j ∈ C. If ui(x̂) = ui(x

′) for no
i ∈ C, then it follows that x̂ ∈ PC(x). By concavity, 1

m
x̂ + (1− 1

m
)x ∈ PC(x)

for all non-negative integers m. Letting m go to infinity, we have the desired
sequence.

Suppose ui(x̂) = ui(x
′) for one i ∈ C. By continuity, there exists an

open set G containing x̂ such that G ⊆ Pj(x) for all members j 6= i of C.
Since x̂ 6= x′, it follows from condition (ii) that Pi(x) 6= ∅. Then condition
(i) implies that x̂ ∈ Ri(x) = Pi(x), so there exists x̃ ∈ G ∩ Pi(x) ⊆ PC(x).
Again, we use concavity to construct the desired sequence.

B Continuity of Acceptance Correspondences

As in Section 4, let ρ = (ρ1, . . . , ρn) ∈ ∆ and δ = (δ1, . . . , δn) ∈ [0, 1]n be the
profiles of agents’ recognition probabilities and discount rates. Index profiles
of utility functions by λ ∈ Λ ⊆ <k, and assume each ui(·, λ) is concave
and non-negative; moreover, assume there is some x ∈ X such that, for
all j ∈ N , uj(x, λ) > 0. Lastly, assume each ui is jointly continuous. Let
Θ = ∆× [0, 1]n×Λ×P(X), let θ = (ρ, δ, λ, π) as in the proof of Theorem 3,
and define

ri(θ) = δivi(π, ρ, λ),

where vi is defined as in Section 2 but using ui(·, λ). Define the correspon-
dence Ai: Θ →→ X by

Ai(θ) = {x ∈ X | ui(x, λ) ≥ ri(θ)},
15The example at the end of Section 2 illustrates the role of the linear independence

condition.

27



and let AC(θ) =
⋂

i∈C Ai(θ) and A(θ) =
⋃

C∈D AC(θ). We can now state the
main result of this section.

Theorem 7 A has non-empty, compact values. If either δi < 1 for all i ∈ N
or LSWP holds at θ, then A is continuous at θ.

Proof: The proof proceeds in a series of steps.

(1) AC has non-empty values: by concavity and non-negativity of ui(·, λ) and
δi ≤ 1, it follows that ui(x(π), λ) ≥ ri(θ); therefore, x(π) ∈ AC(θ).

(2) AC is compact-valued: follows from the continuity of ui(·, λ), the com-
pactness of X, and the fact that compactness of the Ai(θ) sets is preserved
by intersections and (finite) unions.

(3) Ai is upper hemicontinuous: Take any θ and any open V ⊂ X such that
Ai(θ) ⊆ V . Suppose there is a sequence {θm} converging to θ such that, for
all m, Ai(θ

m) \ V 6= ∅. For all m, let xm ∈ Ai(θ
m) \ V ; then {xm} lies in

X ∩ V c, which is compact since V is open and X is compact. Thus, without
loss of generality we can assume {xm} converges to some x ∈ X ∩ V c. Since
ui−ri is jointly continuous, (θm, xm) → (θ, x) implies [ui(x

m, λm)−ri(θ
m)] →

[ui(x, λ)− ri(θ)]. Then xm ∈ Ai(θ
m) implies ui(x

m, λm)− ri(θ
m) ≥ 0 for all

m, so ui(x, λ) − ri(θ) ≥ 0. But then x ∈ Ai(θ) ⊆ V , contradicting the
assumption that x ∈ V c.

(4) AC is upper hemicontinuous: upper hemicontinuity follows from Theorem
14.24 in Aliprantis and Border (1994) which states that the intersection of
compact-valued, upper hemicontinuous correspondences is upper hemicon-
tinuous.

Now define the correspondence As
i : Θ →→ X by

As
i (θ) = {x ∈ X | ui(x, λ)− ri(θ) > 0},

and let As
C(θ) =

⋂
i∈C As

i (θ).

(5) As
i has open graph: take (θ, y) ∈ GrAs

i , i.e., ui(y, λ) − ri(θ) > 0. Since
u − ri is continuous on Θ × X, there exists an open set V ⊆ Θ × X such
that (θ, y) ∈ V and ui(y

′, λ′) − ri(θ
′) > 0 for all (θ′, y′) ∈ V , implying GrAs

i

is open.
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(6) As
C has open graph: follows from (5), since the finite intersection of open

sets is open.

(7) If δi < 1 for all i ∈ N , then As
C(θ) 6= ∅: let x ∈ X be such that ui(x, λ) > 0

for all i ∈ N . If ri(θ) = 0 then, since ui(·, λ) is concave and non-negative,
ui(αx + (1− α)x(π), λ) > 0 = ri(θ) for all α ∈ (0, 1). If ri(θ) > 0 then, since
ui(·, λ) is concave and non-negative and δi < 1, ui(x(π), λ) > δivi(π, λ) =
ri(θ). Thus, by continuity, ui(αx + (1 − α)x(π), λ) > ri(θ) for α > 0 low
enough. Taking α > 0 low enough, therefore, αx + (1− α)x(π) ∈ As

C(θ).

(8) If δi < 1 for all i ∈ N , then AC is lower hemicontinuous at θ: take any
x ∈ AC(θ); from (7), there exists y ∈ As

C(θ); by concavity of the ui(·, λ),
1
m

x + (1 − 1
m

)y ∈ As
C(θ) for all non-negative integers m. Letting m go

to infinity, AC(θ) ⊆ As
C(θ). With (6) and (7), it follows that AC is lower

hemicontinuous at θ (see Lemma 14.21 in Aliprantis and Border (1994)).

(9) If LSWP holds at θ, then either |AC(θ)| = 1 or AC(θ) ⊆ As
C(θ): suppose

|AC(θ)| > 1, take any x ∈ AC(θ), and note that, by concavity, x(π) ∈ Ai(θ)
for all i ∈ C. Partition C into two sets:

I = {i ∈ N | ui(x(π), λ) = ri(θ)}
J = {i ∈ N | ui(x(π), λ) > ri(θ)}.

Note that, for all i ∈ J , x(π) ∈ As
i (θ), an open set. Thus, we can find an

open set V such that x(π) ∈ V ⊆ As
J(θ). Note also that

|RI(x(π))| = |AI(θ)| ≥ |AC(θ)| > 1,

so, by LSWP, there is a sequence {xk} in PI(x(π)) converging to x(π). Pick-
ing k high enough, therefore, we have

xk ∈ V ∩ PI(x(π)) ⊆ PC(x(π)) ⊆ As
C(θ).

By concavity, 1
m

xk+(1− 1
m

)x ∈ As
C(θ) for all non-negative integers m. Letting

m go to infinity, we have x ∈ As
C(θ).

(10) If LSWP holds at θ, then AC is lower hemicontinuous at θ: from (9)
there are two cases to consider. If |AC(θ)| = {x′} for some x′ ∈ X then, for
every open set V ⊆ X, V ∩ {x′} 6= ∅ implies {x′} ⊆ V , in which case lower
hemicontinuity at θ follows from (1) and (4). If AC(θ) ⊆ As

C(θ) then, by (6),
AC is lower hemicontinuous at θ.
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We can now complete the proof. That A has non-empty, compact values
follows from (1), (2), and the arbitrary choice of C. If δi < 1 for all i ∈ N ,
then continuity of AC at θ follows from (4) and (8); continuity of A at θ then
follows from Theorem 14.26 in Aliprantis and Border (1994). If LSWP holds
at θ, continuity of AC at θ follows from (4) and (10), and continuity of A at
θ again follows.
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