SIZE OF PROJECTION OF VECTOR SPACE OVER \mathbb{Z}_{p}^{d}

ZHONGHUI SUN

Abstract

The goal of the paper is to find the size of projection of vector space over \mathbb{Z}_{p}^{d} by using the similar proof of Marstrand's projection theorem for one-dimensional projections.

1. Introduction

We discuss a special case of Marstrand's projection theorem in this paper. Let e be a unit vector in \mathbb{R}^{n} and $\mathrm{E} \subset \mathbb{R}^{n}$ a compact set. The projection $P_{e}(E)$ is the set $\{x \cdot e: x \in E\}$. We want to relate the Hausdorff dimensions of E and of its projections.

2. Marstrand's projection theorem

Definition 2.1. Let e be a unit vector in \mathbb{R}^{n} and $E \subset \mathbb{R}^{n}$ a compact set. The projection $P_{e}(E)$ is the set $\{x \cdot e: x \in E\}$.

Definition 2.2. Fix $\alpha>0$, and let $\mathrm{E} \subset \mathbb{R}^{n}$. For $\epsilon>0$, one defines
$H_{\alpha}^{\epsilon}(E)=\inf \left(\sum_{j=1}^{\infty} r_{j}^{\alpha}\right)$, where the infimum is taken over all countable coverings of E by discs $D\left(x_{j}, r_{j}\right)$ with $r_{j}<\epsilon$.
It is clear that $H_{\alpha}^{\epsilon}(E)$ increases as ϵ decreases, and we define $H_{\alpha}(E)=\lim _{\epsilon \rightarrow 0} H_{\alpha}^{\epsilon}(E)$. It is also clear that $H_{\alpha}^{\epsilon}(E) \leq H_{\beta}^{\epsilon}(E)$ if $\alpha>\beta$ and $\epsilon \leq 1$, thus $H_{\alpha}(E)$ is a nonincreasing function of α.

Remark 2.1. If $H_{\alpha}^{1}(E)=0$, then $H_{\alpha}(E)=0$. This follows readily from the definition, since a covering showing that $H_{\alpha}^{1}(E)<\delta$ will necessarily consist of discs of radius of radius $<\delta^{\frac{1}{\alpha}}$.

Remark 2.2. It is also clear that $H_{\alpha}(E)=0$ for all E if $\alpha>n$, since one can then cover \mathbb{R}^{n} by discs $D\left(x_{j}, r_{j}\right)$ with $\sum_{j} r_{j}{ }^{\alpha}$ arbitrarily small.

Lemma 2.1. There is a unique number α_{0}, called the Hausdorff dimension of E or $\operatorname{dim} E$, such that $H_{\alpha}(E)=\infty$ if $\alpha<\alpha_{0}$ and $H_{\alpha}(E)=0$ if $\alpha>\alpha_{0}$.

Proof. Define α_{0} to be the supremum of all α such that $H_{\alpha}(E)=\infty$. Since $H_{\alpha}(E)$ is a nonincreasing function of $\alpha, H_{\alpha}(E)=\infty$ if $\alpha<\alpha_{0}$. Suppose $\alpha>\alpha_{0}$. Let $\beta \in\left(\alpha_{0}, \alpha\right)$. Define $M=1+H_{\beta}(E)<\infty$. If $\epsilon>0$, then we have a covering by discs with $\sum_{j} r_{j}{ }^{\alpha} \leq \epsilon^{\alpha-\beta} \sum_{j} r_{j}{ }^{\beta} \leq \epsilon^{\alpha-\beta} M$ which goes to 0 as $\epsilon \rightarrow 0$. Thus $H_{\alpha}(E)=0$

Definition 2.3. L^{1} Fourier transform
If $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then its Fourier transform is $\hat{f}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ defined by

$$
\hat{f}(\xi)=\int e^{-2 \pi i x \xi} f(x) d x
$$

More generally, let $M\left(\mathbb{R}^{n}\right)$ be the space of finite complex-valued measure on \mathbb{R}^{n} with the norm

$$
\|\mu\|=|\mu| \mathbb{R}^{n}
$$

where $|\mu|$ is the total variation. Thus $L^{1}\left(\mathbb{R}^{n}\right)$ is contained in $M\left(\mathbb{R}^{n}\right)$ via the identification $f \rightarrow \mu, d \mu=f d x$. We generalize the definition of Fourier transformation via

$$
\hat{\mu}(\xi)=\int e^{-2 \pi i x \xi} d \mu(x)
$$

Definition 2.4. Define the α-dimensional energy of a (positive) measure μ with compact support by the formula

$$
I_{\alpha}(\mu)=\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)
$$

We always assume that $0<\alpha<n$.
Theorem 2.2. If E is compact then the Hausdorff dimension of E coincides with the number

$$
\sup \left\{\alpha: \exists \mu \in P(E) \operatorname{with}_{\alpha}(\mu)<\infty\right\} .
$$

Proof. Denote the above supremum by s. If $\beta<s$, then E supports a measure with $\mu(D(x, r)) \leq C r^{\beta}$. Then $H_{\beta}(E)>0$, so $\beta \leq \operatorname{dimE}$. So $s \leq \operatorname{dimE}$. Conversely, if $\beta<\operatorname{dim} E$, then E supports a measure with $\mu(D(x, r)) \leq C r^{\beta+\epsilon}$ for $\epsilon>0$ small enough. Then $I_{\beta}(\mu)<\infty$, so $\beta \leq s$, which shows that $\operatorname{dim} E \leq s$.
Theorem 2.3. Let μ be a positive measure with compact support and $0<\alpha<n$. Then

$$
\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=c_{\alpha} \int|\hat{\mu}(\xi)|^{2}|\xi|^{-(n-\alpha)} d \xi
$$

where $c_{\alpha}=\frac{\left.\gamma\left(\frac{n-a}{2}\right)\right)^{a-\frac{n}{2}}}{\gamma\left(\frac{a}{2}\right)}$.
Theorem 2.4. Let μ be a positive measure with compact support and $0<\alpha<n$. Then

$$
\iint|x-y|^{-\alpha} d \mu(x) d \mu(y)=c_{\alpha} \int|\hat{\mu}(\xi)|^{2}|\xi|^{-(n-\alpha)} d \xi
$$

where $c_{\alpha}=\frac{\left.\gamma\left(\frac{n-a}{2}\right)\right)^{a-\frac{n}{2}}}{\gamma\left(\frac{a}{2}\right)}$.
Proof. Suppose first that $f \in L^{1}$ is real and even, and that $d \mu(x)=\phi(x) d x$ with $\phi \in \mathbf{S}$ Then we have

$$
\int f(x-y) d \mu(x) d \mu(y)=\int|\hat{\mu}(\xi)|^{2} \hat{f}(\xi) d \xi
$$

Now fix ϕ. Then both sides of the equation are seen to define continuous linear map from $\mathrm{f} \in L^{2}$ to \mathbb{R}. Accordingly, the equation remains valid when $f \in L^{1}+L^{2}, \phi \in \mathbf{S}$. We conclude if $d \mu(x)=\phi(x) d x, \phi \in \mathbf{S}$.
Theorem 2.5. Marstrand's projection theorem for one-dimensional projections Assume that $E \subset \mathbb{R}^{n}$ is compact and $\operatorname{dim} E=\alpha$. Then
(i) $\alpha \leq 1$ then for a.e. $e \in S^{n-1}$ we have $\operatorname{dim}_{e} E=\alpha$
(ii) $\alpha>1$ then for a.e. $e \in S^{n-1}$ the projection $P_{e} E$ has positive one-dimensional Lebesgue measure.

Proof. If μ is a measure supported on $\mathrm{E}, e \in S^{n-1}$, then the projected measure μ_{e} is the measure on \mathbb{R} defined by

$$
\int f d \mu_{e}=\int f(x \cdot e) d \mu(x)
$$

for continuous f. Notice that $\hat{\mu}_{e}$ may be readily be calculated from the is definition:

$$
\begin{aligned}
\hat{\mu}_{e}(k)= & \int e^{-2 \pi i k x \cdot e} d \mu(x) \\
& =\hat{\mu}(k e) .
\end{aligned}
$$

Let $\alpha<\operatorname{dim} E$ and let μ be a measure supported on R with $I_{\alpha}(\mu)<\infty$. We have then

$$
\int|\hat{\mu}(k e)|^{2}|k|^{-1+\alpha} d k d \sigma(e)<\infty
$$

by Theorem 2.4 and and polar coordinates.
Thus, for a.e. e we have

$$
\int|\hat{\mu}(k e)|^{2}|k|^{-1+\alpha} d k<\infty(1)
$$

It follows by Theorem 2.4 with $n=1$ that for a.e. e the projected measure μ_{e} has finite α-dimensional energy. This and Theorem 2.3 give part (i), since μ_{e} is supported on the projected set $P_{e} E$. For part (ii), we note that if $\operatorname{dim} E>1$ we can take $\alpha=1$ in (1). Thus $\hat{\mu}_{e}$ is in L^{2} for almost all e. This condition implies that μ_{e} has an L^{2} density, and in particular is absolutely continuous with respect to Lebesgue measure. Accordingly $P_{e} E$ must have positive Lebesgue measure.
Remark 2.3. $\operatorname{dim} P_{e} E \leq \operatorname{dim} E$, this follows from the definition of dimension and the fact that the projection P_{e} is a Lipschitz function.

Remark 2.4. Theorem 2.3 has a natural generalization to k-dimensional instead of 1-dimensional projections, which is proved in the same way.

3. PRELIMINARIES

Definition 3.1. Given a function $f: \mathbb{Z}_{p}^{2} \rightarrow \mathbb{C}$, its Fourier transformation is defined by

$$
\hat{f}(m)=p^{-2} \sum_{x \in \mathbb{Z}_{p}^{2}} \chi(-x \cdot m) f(x)
$$

Theorem 3.1. Cauchy Schwarz Inequality $\left|\sum_{i=1}^{n} u_{i} \bar{v}_{i}\right|^{2} \leq \sum_{j=1}^{n}\left|u_{j}\right|^{2} \sum_{k=1}^{n}\left|v_{k}\right|^{2}$

$$
\text { 4. } \mathbb{Z}_{p} \text { CASE }
$$

Consider \mathbb{Z}_{p}^{2}, where $p \equiv 3 \bmod 4$
Definition 4.1. Consider $\mathrm{E} \subseteq \mathbb{Z}_{p}^{2}$, define the projection $P_{v}(E)=\{x \cdot v: x \in E\}$, where $v \in \mathbb{Z}_{p}^{2}$.
Definition 4.2. Define λ_{v} by $\sum_{t \in \mathbb{Z}_{p}} \lambda_{v}(t) f(t)=\sum_{x \in \mathbb{Z}_{p}^{2}} f(x \cdot v) E(x)$, where $E(x)$ is the characteristic function on E and $f: \mathbb{Z}_{p} \rightarrow \mathbb{R}, x \mapsto x$ is a constant map.
Theorem 4.1. Let $\lambda_{v}(t)=|\{x \in E: x \cdot v=t\}|$, then it is equivalent to the λ_{v} defined in Definition 4.2.

Proof. Suppose $\sum_{t \in \mathbb{Z}_{p}} \lambda_{v}(t) f(t)=\sum_{x \in \mathbb{Z}_{p}^{2}} f(x \cdot v) E(x)$,
since $\sum_{x \in \mathbb{Z}_{p}^{2}} f(x \cdot v) E(x)=\sum_{t \in \mathbb{Z}_{p}} f(t) \sum_{x \cdot v=t} E(x)=\sum_{t \in \mathbb{Z}_{p}} f(t)|\{x \in E: x \cdot v=t\}|$,
$\sum_{t \in \mathbb{Z}_{p}} f(t) \lambda_{v}(t)=\sum_{x \in \mathbb{Z}_{p}^{2}} f(x \cdot v) E(x)=\sum_{t \in \mathbb{Z}_{p}} f(t)|\{x \in E: x \cdot v=t\}|$
so $\lambda_{v}(t)=|\{x \in E: x \cdot v=t\}|$.
Conversely, suppose $\lambda_{v}(t)=|\{x \in E: x \cdot v=t\}|$,
$\sum_{x \in \mathbb{Z}_{p}^{2}} f(x \cdot v) E(x)=\sum_{t} \sum_{x \cdot v=t} f(t) E(x)=\sum_{t} f(t) \sum_{x \cdot v=t} E(x)=\sum_{t} f(t)|\{x \in E: x \cdot v=t\}|$
$=\sum_{t \in \mathbb{Z}_{p}} f(t) \lambda_{v}(t)$
Theorem 4.2. $\sum_{t \in \mathbb{Z}_{p}} \lambda_{v}^{2}(t)=p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2}$
Proof. By Plancherel Theorem $\sum_{t \in \mathbb{Z}_{p}} \lambda_{v}^{2}(t)=p \sum_{s \in \mathbb{Z}_{p}}\left|\hat{\lambda}_{v}(s)\right|^{2}$,
Directly from definition 4.2 and Fourier transformation,

$$
\begin{aligned}
\hat{\lambda}_{v}(s)= & p^{-1} \sum_{t \in \mathbb{Z}_{p}} \chi(-t \cdot s) \lambda_{v}(t)=\sum_{x \in \mathbb{Z}_{p}^{2}} p^{-1} \chi(-x \cdot s v) E(x) \\
& =p \cdot p^{-2} \sum_{x \in \mathbb{Z}_{p}^{2}} \chi(-x \cdot s v) E(x)=p \hat{E}(s v)
\end{aligned}
$$

Therefore, $\sum_{t \in \mathbb{Z}_{p}} \lambda_{v}^{2}(t)=p \sum_{s \in \mathbb{Z}_{p}}\left|\hat{\lambda}_{v}(s)\right|^{2}=p \sum_{s \in \mathbb{Z}_{p}}|p \hat{E}(s v)|^{2}=p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2}$.
Lemma 4.3. $|V||E|^{2} \leq \sum_{v \in V}\left|P_{v}(E)\right| \cdot p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2}$
Proof. By definition 4.2, $\sum \lambda_{v}(t)=\sum E(x)=|E|$.
By Cauchy Schwarz Inequality, $|E|^{2}=\left(\sum_{t \in \mathbb{Z}_{p}} 1 \cdot \lambda_{v}(t)\right)^{2} \leq\left|P_{v}(E)\right| \cdot \sum_{t \in \mathbb{Z}_{p}} \lambda_{v}^{2}(t)$,
By theorem 4.2, $\lambda_{v}^{2}(t)=p \sum_{t \in \mathbb{Z}_{p}}|\hat{\lambda} v(s)|^{2}=p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2}$,
so $|V||E|^{2} \leq \sum_{v \in V}\left|P_{v}(E)\right| \cdot p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2}$
Theorem 4.4. Let V be set of all direction of \mathbb{Z}_{p}^{2} and $S_{1}=\left\{x \in \mathbb{Z}_{p}^{2}:\|x\|=1\right\}$ where $\|x\|=x_{1}^{2}+x_{2}^{2}$. Let r be a non-square in $\mathbb{Z}_{p} *$, then $V=S_{1} \cup S_{r}$
Proof. Let ζ be the set of squares in $\mathbb{Z}_{p} *$. Claim: ζ is a group.
$a \in \zeta, b \in \zeta$ implies $a=t^{2}, b=v^{2}$, then $a b=t^{2} v^{2}=(t v)^{2} \in \zeta$
$a \in \zeta$, implies $a=t^{2}$. Since $a \cdot a^{-1}=1, a^{-1}=\frac{1}{t^{2}} \in \zeta$
$1 \in \zeta$ since 1 is a square of itself.
Let $\Phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p} x \mapsto a x$ where $a \notin \zeta, \Phi$ is an isomorphism.
Let $\Psi: \mathbb{Z}_{p} * \rightarrow \zeta x \mapsto x^{2}$, since $\operatorname{ker}(\Psi)=\{-1,1\}, \frac{\mathbb{Z}_{p}}{\operatorname{ker}(\Psi)} \cong \zeta$ implies $|\zeta|=\frac{p-1}{2}$
So if we prove $\Phi(\mathrm{sq})=$ not sq, $\Phi($ not sq$)=\mathrm{sq}$, then we have done for the theorem.
Take $x \in S_{1}$, then $\|t x\|=t^{2}\|x\|=t^{2}$.
Suppose $y \in \mathbb{Z}_{p}^{2}$ and $\|y\|$ is a square, then let $\|y\|=s^{2}$ for some $\mathrm{s} \in \mathbb{Z}_{p}, s \neq 0$.
Let $x=\frac{y}{s}$, then $\|x\|=\frac{\|y\|}{s^{2}}=1$ implies $y=s x$
Suppose $y \in \mathbb{Z}_{p}^{2}$ and $\|y\|$ is not a square. We want to write $y=t x$ for some $x \in S_{r}$.

Consider $\left\|\frac{y}{t}\right\|=\frac{\|y\|}{t^{2}}$. To make this equal to r , we must find t such that $\frac{\|y\|}{r}=t^{2}$. Since $\|y\|$ and r is not in $\zeta, \frac{\|y\|}{r} \in \zeta$.
Therefore $V=S_{1} \cup S_{r}$.
Remark 4.1. We have the fact that $\sum_{y \in \mathbb{Z}_{p}^{2}}|\hat{E}(y)|^{2}=p^{-2}|E|$
Theorem 4.5. $\left|P_{v}(E)\right|=p \cdot \frac{1}{1+\frac{p^{2}}{(p+1)|E|}-\frac{1}{p+1}}$, if $|E|>p$
Proof. By Lemma 4.3,

$$
\begin{aligned}
&|V||E|^{2} \leq \sum_{v \in V}\left|P_{v}(E)\right| \cdot p^{3} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2} \\
& \leq \max _{v \in V}\left|P_{v}(E)\right| \cdot p^{3} \sum_{v \in V} \sum_{s \in \mathbb{Z}_{p}}|\hat{E}(s v)|^{2} \\
& \leq \max _{v \in V}\left|P_{v}(E)\right| \cdot\left(p^{3} \sum_{v \in V} \sum_{s \neq 0}|\hat{E}(s v)|^{2}+p^{3} \sum_{v \in V} \sum_{s=0}|\hat{E}(s v)|^{2}\right) \\
& \leq \max _{v \in V}\left|P_{v}(E)\right| \cdot\left(2 p^{3} \sum_{x \in \mathbb{Z}_{p}^{2}}|\hat{E}(x)|^{2}+p^{3} \sum_{v \in V}|\hat{E}(\overrightarrow{0})|^{2}\right) \cdot p^{-4} \\
& \leq \max _{v \in V}\left|P_{v}(E)\right| \cdot\left(2 p^{3} \cdot p^{-2}|E|^{2}-2 p^{3} \cdot p^{-4}|E|^{2}+p^{-1}|V||E|^{2}\right) \\
& 2(p+1)|E|^{2} \leq \max _{v \in V}\left|P_{v}(E)\right| \cdot\left(2 p|E|+2(p+1) p^{-1}|E|^{2}-2 p^{-1}|E|^{2}\right) \\
& \max _{v \in V}\left|P_{v}(E)\right| \geq \frac{2(p+1)|E|^{2}}{2 p|E|+2(p+1) p^{-1}|E|^{2}-2 p^{-1}|E|^{2}} \\
& \geq \frac{p \cdot 2(p+1)|E|^{2}}{2(p+1)|E|+2 p^{2}|E|-2|E|^{2}} \\
&=p \cdot \frac{1}{1+\frac{p^{2}}{(p+1)|E|}-\frac{1}{p+1}}
\end{aligned}
$$

5. Reference

Thomas H. Wolf, "LECTURES IN HARMONIC ANALYSIS",pp.58-61
University of Rochester, Department of Mathematics, Rochester NY 14627
E-mail address: zsun18@u.rochester.edu

