SIZE OF PROJECTION OF VECTOR SPACE OVER Z;l
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ABSTRACT. The goal of the paper is to find the size of projection of vector
space over Zg by using the similar proof of Marstrand’s projection theorem for
one-dimensional projections.

1. INTRODUCTION

We discuss a special case of Marstrand’s projection theorem in this paper. Let
e be a unit vector in R” and E C R" a compact set. The projection P.(E) is the
set {x-e:x € E}. We want to relate the Hausdorff dimensions of E and of its
projections.

2. MARSTRAND’S PROJECTION THEOREM

Definition 2.1. Let e be a unit vector in R™ and £ C R™ a compact set. The pro-
jection P.(F) is the set {z-e: 2z € E}.

Definition 2.2. Fix a > 0, and let E C R™. For € > 0, one defines

H(E)=inf (3_72, r$), where the infimum is taken over all countable coverings of E
by discs D(z;, ;) with r; <e.

It is clear that HS(E) increases as € decreases, and we define H, (E) = lim.,o HS(E).
It is also clear that HS(F) < Hg(E) if a > B and € < 1, thus H,(F) is a nonincreasing

function of a.

Remark 2.1. If H(F) = 0, then H,(F) = 0. This follows readily from the defi-
nition, since a covering showing that H.(F) < § will necessarily consist of discs of

radius of radius < da.

Remark 2.2. It is also clear that H,(E) = 0 for all E if a > n, since one can then
cover R™ by discs D(z;,7;) with 3, r;* arbitrarily small.

Lemma 2.1. There is a unique number «y, called the Hausdorff dimension of E or
dim E, such that Hy(F) = 00 if a < ap and Ho(E) =0 if o > .

Proof. Define aq to be the supremum of all a such that H,(E) = co. Since H,(FE) is a
nonincreasing function of a, H,(E) = oo if & < ap. Suppose a > a. Let 8 € (ap, av).
Define M =1+ Hp(E) < oo. If € > 0, then we have a covering by discs with
>t < e > r;i® <€ P M which goes to 0 as € — 0. Thus H,(E) =0

O

Definition 2.3. L! Fourier transform A
If f € LY(R"), then its Fourier transform is f : R® — C defined by

f(6) = / e f () da
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More generally, let M (R™) be the space of finite complex-valued measure on R™ with
the norm

| o ll= [pIR™,
where || is the total variation. Thus L'(R™) is contained in M (R"™) via the iden-
tification f — p,dp = fdx. We generalize the definition of Fourier transformation
via

(€)= [ (o)

Definition 2.4. Define the o — dimensional energy of a (positive) measure p with
compact support by the formula

w = [ [ o= vl dutz) duty)

We always assume that 0 < a < n.

Theorem 2.2. If E is compact then the Hausdorff dimension of E coincides with the
number
sup{a : Iu € P(F)withl, (1) < co}.

Proof. Denote the above supremum by s. If 5 < s, then E supports a measure with
w(D(z,7)) < CrP. Then Hg(E) > 0, so B < dimE. So s < dimE. Conversely,
if 3 < dimFE, then E supports a measure with p(D(z,7)) < Crf*e for € > 0 small

enough. Then I3(p) < oo, so B < s, which shows that dimE < s. O
Theorem 2.3. Let i be a positive measure with compact support and 0 < o < n.
Then

[ 1o == dutoydnty) = o [l o,
where ¢, = () 7.

(%)

Theorem 2.4. Let i1 be a positive measure with compact support and 0 < o < n.
Then

/ b= 17 due) ) /m )Pl de,

y(HFH) T

(%)
Proof. Suppose first that f € L' is real and even, and that du(z) = ¢(z)dz with
¢ € S Then we have

/fm— ) dp() dp(y /m (6

Now fix ¢. Then both sides of the equation are seen to define continuous linear map
from f € L? to R. Accordingly, the equation remains valid when f € L' + L?, ¢ € S.
We conclude if du(z) = ¢(z)dz, ¢ € S. O

Theorem 2.5. Marstrand’s projection theorem for one-dimensional projections
Assume that E C R™ is compact and dimE = «. Then

(i)a < 1 then for a.e. e € S ' we have dimP.E = «

(it)a > 1 then for a.e. e € S"' the projection P.E has positive one-dimensional
Lebesgue measure.

where ¢, =
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Proof. If p is a measure supported on E, e € S"7!, then the projected measure . is
the measure on R defined by

[ an= [ ta-e)duto)

for continuous f. Notice that fi. may be readily be calculated from the is definition:

k) = [ e dua)

= jke).
Let o < dimFE and let p be a measure supported on R with 1, (u) < co.We have
then

/|/l(ke)|2]k\_1+a dkdo(e) < oo

by Theorem 2.4 and and polar coordinates.
Thus, for a.e. e we have

/ ko) 2l dk < oo(1)

It follows by Theorem 2.4 with n = 1 that for a.e. e the projected measure p. has
finite a-dimensional energy. This and Theorem 2.3 give part (i), since p,. is supported
on the projected set P,E. For part (ii), we note that if dimE > 1 we can take o = 1
in (1). Thus f, is in L? for almost all e. This condition implies that . has an L?
density, and in particular is absolutely continuous with respect to Lebesgue measure.
Accordingly P.E must have positive Lebesgue measure. ([l

Remark 2.3. dimP.E < dimFE, this follows from the definition of dimension and
the fact that the projection P, is a Lipschitz function.

Remark 2.4. Theorem 2.3 has a natural generalization to k-dimensional instead of
1-dimensional projections, which is proved in the same way.

3. PRELIMINARIES

Definition 3.1. Given a function f : Z; — C, its Fourier transformation is defined by

f(m)=p7? Y x(=x-m)f()

€22
Theorem 3.1. Cauchy Schwarz Inequality | 37" w;ioi|* < 370 Ju|* 370 [oe]?

4. 7, CASE
Consider ZZ, where p =3 mod 4
Definition 4.1. Consider E C Z2, define the projection Py(E)={z-v : z € E},

where v € ZIQ).

Definition 4.2. Define A\, by > A, (t) f(t)=>_ f(z-v) E(x), where E(x) is the

teZy €l
characteristic function on E and f : Z, = R, x — z is a constant map.

Theorem 4.1. Let A\, (t) = |{x € E : x-v = t}|, then it is equivalent to the A\, defined
in Definition 4.2.
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Proof. Suppose Y A\, (t) f(t)=>_ f(z-v) E(x),

since gz f(z-v) pE(x) tEZZ (@) pzt E(:zc):tezZ fit) {xre E:a-v=t},
WM T ) B@)= 3 S0 e Brev =1

soN(t) =z e E:x-v=t}|.

Conversely, suppose \,(t) = |{z € E:2-v =1t}

2 flov) Blr) =20 20 fOE@)=2 f(t) 2. E@) =2 [tz € B:a-v =t}

xEZ% x-v=t t r-v=t t
= 2 D)X (1) [
teZy
Theorem 4.2. 3 A2(t) = p* 3 |E(sv)|?
tELyp SE€ZLyp
Proof. By Plancherel Theorem = A2(¢) =p 3= |Au(s)]2,
tELy SE€EZLp

Directly from definition 4.2 and Fourier transformation,

ths pr:vst()

teZyp T€l2
=p-p° Y x(—x-sv)E(x) = pE(sv)
xEZZQ,
Therefore, > N(t)=p > |/A\U(s)|2 =p > ]pE(sv)P:p?’ > |E(sv)|2. O
tEZy SELyp SELy SEZyp

Lemma 4.3. |[V||[E2 < 3 |PJ(E)|-p* 3 |E(sv)]?
veV s€Lyp
Proof. By definition 4.2, >~ A\, (t) =Y E(x)=|E|.
By Cauchy Schwarz Inequality, |E[*> = (Y 1- A, (¢))* < [P,(E)| - > A(1),

teZ,y teZ,
By theorem 4.2, \2(t) = p 3 [\(s)2=p® 3 |E(sv)?,
tELy €Ly
so [VIIEP < 32 [P(E)-p° X |E(sv)]? O
veV SE€ZLp

Theorem 4.4. Let V be set of all direction of Z; and Sy = {x € Z || = ||= 1} where
| z ||= 2% + 23. Let r be a non-square in Zy*, then V = S; U S,

Proof. Let ¢ be the set of squares in Zj, * . Claim: ( is a group.

a € ¢,b € ¢ implies a = t2,b = v?, then ab = t*v? = (tv)? €

a € ¢, implies a = t?. Since a-a ' =1,a7! = t% e(

1 € ( since 1 is a square of itself.

Let ® : Z, — Z, © — ax where a ¢ ¢, ® is an isomorphism

Let ¥ : Zy,x — ¢ x — 22, since ker(¥) = {—1,1}, ]m >~ ( implies (| = &+
So if we prove ®(sq)=not sq, ®(not sq)=sq, then we have done for the theorem.
Take z € Sy, then || tz |=* || z ||= t2.

Suppose y € Z2 and || y || is a square, then let || y ||= s* for some s € Z,, 5 # 0.
Let z = ¥, then || z ||= ”S%” = 1 implies y = sz

Suppose y € Zg and || y || is not a square. We want to write y = tz for some z € S,.
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Consider || 4 || = th—QH To make this equal to r, we must find t such that ”r—” = 2
Since || y || and r is not in ¢, ”TL” € (.
Therefore V =5, U S,. O
Remark 4.1. We have the fact that 3 |E(y)|? = p~2|E]
yEZ%
1 .
Theorem 4.5. |P,(E)|=p- T i |E| >p
P’
L eom — 551
Proof. By Lemma 4.3,
VIIEP < 32 |R(E)]-p* X |E(sv)l?
veV SEZLp )
< maxeey |P(E)|-p* 30 X [E(sv)]?
veV s€Zyp R )
< maxpey [B(E)] - (07 20 2 E(sv)[* +p° 30 30 |E(sv)?)
veV s#0 veV s=0

< maxeey |Py(E)|- (2p° X |E(@)]+p* 3 [E(0)))- p*
veV

mEZ%

(
< maxyey |P(E)| - (20° - p2|E* = 2p* - pHE? + p V|| E]?)
|- (2p|E| +2(p+ L)p ' Ef” — 2p | E)

N 2(p + 1)|BJ?

— 2plE[+2(p + V)p Y E]P = 2p7 Y EP?
N p-2p+1)|E’

— 2p+DIE| J1r2p2lE| —2|EJ?

P _
1+ DB p 41
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