SIZE OF PROJECTION OF VECTOR SPACE OVER \mathbb{Z}_p^d

ZHONGHUI SUN

ABSTRACT. The goal of the paper is to find the size of projection of vector space over \mathbb{Z}_p^d by using the similar proof of Marstrand's projection theorem for one-dimensional projections.

1. INTRODUCTION

We discuss a special case of Marstrand's projection theorem in this paper. Let e be a unit vector in \mathbb{R}^n and $\mathbf{E} \subset \mathbb{R}^n$ a compact set. The projection $P_e(E)$ is the set $\{x \cdot e : x \in E\}$. We want to relate the Hausdorff dimensions of E and of its projections.

2. MARSTRAND'S PROJECTION THEOREM

Definition 2.1. Let e be a unit vector in \mathbb{R}^n and $E \subset \mathbb{R}^n$ a compact set. The projection $P_e(E)$ is the set $\{x \cdot e : x \in E\}$.

Definition 2.2. Fix $\alpha > 0$, and let $E \subset \mathbb{R}^n$. For $\epsilon > 0$, one defines $H^{\epsilon}_{\alpha}(E) = \inf \left(\sum_{j=1}^{\infty} r_{j}^{\alpha} \right)$, where the infimum is taken over all countable coverings of E by discs $D(x_j, r_j)$ with $r_j < \epsilon$.

It is clear that $H^{\epsilon}_{\alpha}(E)$ increases as ϵ decreases, and we define $H_{\alpha}(E) = \lim_{\epsilon \to 0} H^{\epsilon}_{\alpha}(E)$. It is also clear that $H^{\epsilon}_{\alpha}(E) \leq H^{\epsilon}_{\beta}(E)$ if $\alpha > \beta$ and $\epsilon \leq 1$, thus $H_{\alpha}(E)$ is a nonincreasing function of α .

Remark 2.1. If $H^1_{\alpha}(E) = 0$, then $H_{\alpha}(E) = 0$. This follows readily from the definition, since a covering showing that $H^1_{\alpha}(E) < \delta$ will necessarily consist of discs of radius of radius $< \delta^{\frac{1}{\alpha}}$.

Remark 2.2. It is also clear that $H_{\alpha}(E) = 0$ for all E if $\alpha > n$, since one can then cover \mathbb{R}^n by discs $D(x_j, r_j)$ with $\sum_j r_j^{\alpha}$ arbitrarily small.

Lemma 2.1. There is a unique number α_0 , called the Hausdorff dimension of E or dim E, such that $H_{\alpha}(E) = \infty$ if $\alpha < \alpha_0$ and $H_{\alpha}(E) = 0$ if $\alpha > \alpha_0$.

Proof. Define α_0 to be the supremum of all α such that $H_{\alpha}(E) = \infty$. Since $H_{\alpha}(E)$ is a nonincreasing function of α , $H_{\alpha}(E) = \infty$ if $\alpha < \alpha_0$. Suppose $\alpha > \alpha_0$. Let $\beta \in (\alpha_0, \alpha)$. Define $M = 1 + H_{\beta}(E) < \infty$. If $\epsilon > 0$, then we have a covering by discs with $\sum_{j} r_{j}^{\alpha} \leq \epsilon^{\alpha-\beta} \sum_{j} r_{j}^{\beta} \leq \epsilon^{\alpha-\beta} M$ which goes to 0 as $\epsilon \to 0$. Thus $H_{\alpha}(E) = 0$

Definition 2.3. L^1 Fourier transform If $f \in L^1(\mathbb{R}^n)$, then its Fourier transform is $\hat{f} : \mathbb{R}^n \to \mathbb{C}$ defined by

$$\hat{f}(\xi) = \int e^{-2\pi i x \xi} f(x) dx$$

More generally, let $M(\mathbb{R}^n)$ be the space of finite complex-valued measure on \mathbb{R}^n with the norm

$$\parallel \mu \parallel = |\mu| \mathbb{R}^n,$$

where $|\mu|$ is the total variation. Thus $L^1(\mathbb{R}^n)$ is contained in $M(\mathbb{R}^n)$ via the identification $f \to \mu, d\mu = f dx$. We generalize the definition of Fourier transformation via

$$\hat{\mu}(\xi) = \int e^{-2\pi i x \xi} d\mu(x)$$

Definition 2.4. Define the α – dimensional energy of a (positive) measure μ with compact support by the formula

$$I_{\alpha}(\mu) = \iint |x - y|^{-\alpha} d\mu(x) d\mu(y)$$

We always assume that $0 < \alpha < n$.

Theorem 2.2. If E is compact then the Hausdorff dimension of E coincides with the number

$$sup\{\alpha : \exists \mu \in P(E)withI_{\alpha}(\mu) < \infty\}.$$

Proof. Denote the above supremum by s. If $\beta < s$, then E supports a measure with $\mu(D(x,r)) \leq Cr^{\beta}$. Then $H_{\beta}(E) > 0$, so $\beta \leq dimE$. So $s \leq dimE$. Conversely, if $\beta < dimE$, then E supports a measure with $\mu(D(x,r)) \leq Cr^{\beta+\epsilon}$ for $\epsilon > 0$ small enough. Then $I_{\beta}(\mu) < \infty$, so $\beta \leq s$, which shows that $dimE \leq s$. \Box

Theorem 2.3. Let μ be a positive measure with compact support and $0 < \alpha < n$. Then

$$\iint_{\frac{n-a}{2}\pi^{a-\frac{n}{2}}} |x-y|^{-\alpha} d\mu(x) d\mu(y) = c_{\alpha} \int |\hat{\mu}(\xi)|^2 |\xi|^{-(n-\alpha)} d\xi$$

where $c_{\alpha} = \frac{\gamma(\frac{n-a}{2})\pi^{a-\frac{n}{2}}}{\gamma(\frac{a}{2})}$

Theorem 2.4. Let μ be a positive measure with compact support and $0 < \alpha < n$. Then

$$\iint_{\frac{\gamma(\frac{n-a}{2})\pi^{a-\frac{n}{2}}}{\gamma(\frac{a}{2})}} |x-y|^{-\alpha} d\mu(x) d\mu(y) = c_{\alpha} \int |\hat{\mu}(\xi)|^2 |\xi|^{-(n-\alpha)} d\xi,$$

where $c_{\alpha} = \frac{\gamma(\frac{n-a}{2})\pi^{a-\frac{n}{2}}}{\gamma(\frac{a}{2})}$

Proof. Suppose first that $f \in L^1$ is real and even, and that $d\mu(x) = \phi(x)dx$ with $\phi \in \mathbf{S}$ Then we have

$$\int f(x-y) \, d\mu(x) \, d\mu(y) = \int |\hat{\mu}(\xi)|^2 \hat{f}(\xi) d\xi$$

Now fix ϕ . Then both sides of the equation are seen to define continuous linear map from $f \in L^2$ to \mathbb{R} . Accordingly, the equation remains valid when $f \in L^1 + L^2$, $\phi \in \mathbf{S}$. We conclude if $d\mu(x) = \phi(x)dx$, $\phi \in \mathbf{S}$.

Theorem 2.5. Marstrand's projection theorem for one-dimensional projections Assume that $E \subset \mathbb{R}^n$ is compact and $\dim E = \alpha$. Then $(i)\alpha \leq 1$ then for a.e. $e \in S^{n-1}$ we have $\dim P_e E = \alpha$ $(ii)\alpha > 1$ then for a.e. $e \in S^{n-1}$ the projection $P_e E$ has positive one-dimensional Lebesque measure. *Proof.* If μ is a measure supported on E, $e \in S^{n-1}$, then the projected measure μ_e is the measure on \mathbb{R} defined by

$$\int f \, d\mu_e = \int f(x \cdot e) \, d\mu(x)$$

for continuous f. Notice that $\hat{\mu}_e$ may be readily be calculated from the is definition:

$$\hat{\mu}_e(k) = \int e^{-2\pi i k x \cdot e} d\mu(x)$$
$$= \hat{\mu}(ke).$$

Let $\alpha < dimE$ and let μ be a measure supported on R with $I_{\alpha}(\mu) < \infty$. We have then

$$\int |\hat{\mu}(ke)|^2 |k|^{-1+\alpha} \, dk d\sigma(e) < \infty$$

by Theorem 2.4 and and polar coordinates.

Thus, for a.e. e we have

$$\int |\hat{\mu}(ke)|^2 |k|^{-1+\alpha} \, dk < \infty(1)$$

It follows by Theorem 2.4 with n = 1 that for a.e. e the projected measure μ_e has finite α -dimensional energy. This and Theorem 2.3 give part (i), since μ_e is supported on the projected set $P_e E$. For part (ii), we note that if dim E > 1 we can take $\alpha = 1$ in (1). Thus $\hat{\mu}_e$ is in L^2 for almost all e. This condition implies that μ_e has an L^2 density, and in particular is absolutely continuous with respect to Lebesgue measure. Accordingly $P_e E$ must have positive Lebesgue measure.

Remark 2.3. $dim P_e E \leq dim E$, this follows from the definition of dimension and the fact that the projection P_e is a Lipschitz function.

Remark 2.4. Theorem 2.3 has a natural generalization to k-dimensional instead of 1-dimensional projections, which is proved in the same way.

3. PRELIMINARIES

Definition 3.1. Given a function $f: \mathbb{Z}_p^2 \to \mathbb{C}$, its Fourier transformation is defined by

$$\hat{f}(m) = p^{-2} \sum_{x \in \mathbb{Z}_p^2} \chi(-x \cdot m) f(x)$$

Theorem 3.1. Cauchy Schwarz Inequality $|\sum_{i=1}^{n} u_i \bar{v}_i|^2 \le \sum_{j=1}^{n} |u_j|^2 \sum_{k=1}^{n} |v_k|^2$

4.
$$\mathbb{Z}_n$$
 CASE

Consider \mathbb{Z}_p^2 , where $p \equiv 3 \mod 4$

Definition 4.1. Consider $E \subseteq \mathbb{Z}_p^2$, define the projection $P_v(E) = \{x \cdot v : x \in E\}$, where $v \in \mathbb{Z}_p^2$.

Definition 4.2. Define λ_v by $\sum_{t \in \mathbb{Z}_p} \lambda_v(t) f(t) = \sum_{x \in \mathbb{Z}_p^2} f(x \cdot v) E(x)$, where E(x) is the characteristic function on E and $f : \mathbb{Z}_p \to \mathbb{R}, x \mapsto x$ is a constant map.

Theorem 4.1. Let $\lambda_v(t) = |\{x \in E : x \cdot v = t\}|$, then it is equivalent to the λ_v defined in Definition 4.2.

Z. SUN

Proof. Suppose $\sum_{t\in\mathbb{Z}_p} \lambda_v(t) f(t) = \sum_{x\in\mathbb{Z}_p^2} f(x \cdot v) E(x),$ since $\sum_{x\in\mathbb{Z}_p^2} f(x \cdot v) E(x) = \sum_{t\in\mathbb{Z}_p} f(t) \sum_{x \cdot v=t} E(x) = \sum_{t\in\mathbb{Z}_p} f(t) |\{x \in E : x \cdot v = t\}|,$ $\sum_{t\in\mathbb{Z}_p} f(t) \lambda_v(t) = \sum_{x\in\mathbb{Z}_p^2} f(x \cdot v) E(x) = \sum_{t\in\mathbb{Z}_p} f(t) |\{x \in E : x \cdot v = t\}|$ so $\lambda_v(t) = |\{x \in E : x \cdot v = t\}|.$

Conversely, suppose
$$\lambda_v(t) = |\{x \in E : x \cdot v = t\}|,$$

$$\sum_{x \in \mathbb{Z}_p^2} f(x \cdot v) \ E(x) = \sum_t \sum_{x \cdot v = t} f(t) E(x) = \sum_t f(t) \sum_{x \cdot v = t} E(x) = \sum_t f(t) |\{x \in E : x \cdot v = t\}|$$

$$= \sum_{t \in \mathbb{Z}_p} f(t) \lambda_v(t)$$

Theorem 4.2. $\sum_{t\in\mathbb{Z}_p}\lambda_v^2(t) = p^3\sum_{s\in\mathbb{Z}_p}|\hat{E}(sv)|^2$

Proof. By Plancherel Theorem $\sum_{t \in \mathbb{Z}_p} \lambda_v^2(t) = p \sum_{s \in \mathbb{Z}_p} |\hat{\lambda}_v(s)|^2$, Directly from definition 4.2 and Fourier transformation,

$$\hat{\lambda}_{v}(s) = p^{-1} \sum_{t \in \mathbb{Z}_{p}} \chi(-t \cdot s) \lambda_{v}(t) = \sum_{x \in \mathbb{Z}_{p}^{2}} p^{-1} \chi(-x \cdot sv) E(x)$$
$$= p \cdot p^{-2} \sum_{x \in \mathbb{Z}_{p}^{2}} \chi(-x \cdot sv) E(x) = p \hat{E}(sv)$$
$$\sum_{x \in \mathbb{Z}_{p}^{2}} \lambda_{v}^{2}(t) = p \sum_{x \in \mathbb{Z}_{p}^{2}} |\hat{\lambda}_{v}(s)|^{2} = p \sum_{x \in \mathbb{Z}_{p}^{2}} |\hat{p}\hat{E}(sv)|^{2} = p^{3} \sum_{x \in \mathbb{Z}_{p}^{2}} |\hat{E}(sv)|^{2}.$$

Therefore, $\sum_{t \in \mathbb{Z}_p} \lambda_v^2(t) = p \sum_{s \in \mathbb{Z}_p} |\hat{\lambda}_v(s)|^2 = p \sum_{s \in \mathbb{Z}_p} |p\hat{E}(sv)|^2 = p^3 \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2.$

Lemma 4.3. $|V||E|^2 \le \sum_{v \in V} |P_v(E)| \cdot p^3 \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2$

Proof. By definition 4.2, $\sum \lambda_v(t) = \sum E(x) = |E|$. By Cauchy Schwarz Inequality, $|E|^2 = (\sum_{t \in \mathbb{Z}_p} 1 \cdot \lambda_v(t))^2 \le |P_v(E)| \cdot \sum_{t \in \mathbb{Z}_p} \lambda_v^2(t)$, By theorem 4.2, $\lambda_v^2(t) = p \sum_{t \in \mathbb{Z}_p} |\hat{\lambda}v(s)|^2 = p^3 \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2$, so $|V||E|^2 \le \sum_{v \in V} |P_v(E)| \cdot p^3 \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2$

Theorem 4.4. Let V be set of all direction of \mathbb{Z}_p^2 and $S_1 = \{x \in \mathbb{Z}_p^2 : || x || = 1\}$ where $|| x || = x_1^2 + x_2^2$. Let r be a non-square in \mathbb{Z}_p^* , then $V = S_1 \cup S_r$

Proof. Let ζ be the set of squares in $\mathbb{Z}_p *$. Claim: ζ is a group. $a \in \zeta, b \in \zeta$ implies $a = t^2, b = v^2$, then $ab = t^2v^2 = (tv)^2 \in \zeta$ $a \in \zeta$, implies $a = t^2$. Since $a \cdot a^{-1} = 1, a^{-1} = \frac{1}{t^2} \in \zeta$ $1 \in \zeta$ since 1 is a square of itself. Let $\Phi : \mathbb{Z}_p \to \mathbb{Z}_p \ x \mapsto ax$ where $a \notin \zeta$, Φ is an isomorphism. Let $\Psi : \mathbb{Z}_p * \to \zeta \ x \mapsto x^2$, since $ker(\Psi) = \{-1, 1\}, \frac{\mathbb{Z}_p}{ker(\Psi)} \cong \zeta$ implies $|\zeta| = \frac{p-1}{2}$ So if we prove $\Phi(sq)=$ not sq, $\Phi($ not sq)=sq, then we have done for the theorem. Take $x \in S_1$, then $|| \ tx \ || = t^2 \ || \ x \ || = t^2$. Suppose $y \in \mathbb{Z}_p^2$ and $|| \ y \ ||$ is a square, then let $|| \ y \ || = s^2$ for some $s \in \mathbb{Z}_p, s \neq 0$. Let $x = \frac{y}{s}$, then $|| \ x \ || = \frac{||y||}{s^2} = 1$ implies y = sxSuppose $y \in \mathbb{Z}_p^2$ and $|| \ y \ ||$ is not a square. We want to write y = tx for some $x \in S_r$. Consider $\|\frac{y}{t}\| = \frac{\|y\|}{t^2}$. To make this equal to r, we must find t such that $\frac{\|y\|}{r} = t^2$. Since $\|y\|$ and r is not in ζ , $\frac{\|y\|}{r} \in \zeta$. Therefore $V = S_1 \cup S_r$.

Remark 4.1. We have the fact that $\sum_{y \in \mathbb{Z}_p^2} |\hat{E}(y)|^2 = p^{-2}|E|$ **Theorem 4.5.** $|P_v(E)| = p \cdot \frac{1}{1 + \frac{p^2}{(p+1)|E|} - \frac{1}{p+1}}$, if |E| > p

Proof. By Lemma 4.3,

$$\begin{split} |V||E|^2 &\leq \sum_{v \in V} |P_v(E)| \cdot p^3 \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2 \\ &\leq \max_{v \in V} |P_v(E)| \cdot p^3 \sum_{v \in V} \sum_{s \in \mathbb{Z}_p} |\hat{E}(sv)|^2 \\ &\leq \max_{v \in V} |P_v(E)| \cdot (p^3 \sum_{v \in V} \sum_{s \neq 0} |\hat{E}(sv)|^2 + p^3 \sum_{v \in V} \sum_{s = 0} |\hat{E}(sv)|^2) \\ &\leq \max_{v \in V} |P_v(E)| \cdot (2p^3 \sum_{x \in \mathbb{Z}_p^2} |\hat{E}(x)|^2 + p^3 \sum_{v \in V} |\hat{E}(\vec{0})|^2) \cdot p^{-4} \\ &\leq \max_{v \in V} |P_v(E)| \cdot (2p^3 \cdot p^{-2}|E|^2 - 2p^3 \cdot p^{-4}|E|^2 + p^{-1}|V||E|^2) \\ 2(p+1)|E|^2 &\leq \max_{v \in V} |P_v(E)| \cdot (2p|E| + 2(p+1)p^{-1}|E|^2 - 2p^{-1}|E|^2) \\ &\max_{v \in V} |P_v(E)| &\geq \frac{2(p+1)|E|^2}{2p|E| + 2(p+1)p^{-1}|E|^2 - 2p^{-1}|E|^2} \\ &\geq \frac{p \cdot 2(p+1)|E|^2}{2(p+1)|E| + 2p^2|E| - 2|E|^2} \\ &= p \cdot \frac{1}{1 + \frac{p^2}{(p+1)|E|} - \frac{1}{p+1}} \end{split}$$

5. Reference

Thomas H. Wolf, "LECTURES IN HARMONIC ANALYSIS", pp.58-61

UNIVERSITY OF ROCHESTER, DEPARTMENT OF MATHEMATICS, ROCHESTER NY 14627 E-mail address: zsun18@u.rochester.edu