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Abstract. The goal of the paper is to find the size of projection of vector
space over Zd

p by using the similar proof of Marstrand’s projection theorem for
one-dimensional projections.

1. Introduction

We discuss a special case of Marstrand’s projection theorem in this paper. Let
e be a unit vector in Rn and E ⇢ Rn a compact set. The projection P

e

(E) is the
set {x · e : x 2 E}. We want to relate the Hausdorff dimensions of E and of its
projections.

2. Marstrand’s projection theorem

Definition 2.1. Let e be a unit vector in Rn and E ⇢ Rn a compact set. The pro-
jection P

e

(E) is the set {x · e : x 2 E}.

Definition 2.2. Fix ↵ > 0, and let E ⇢ Rn. For ✏ > 0, one defines
H✏

↵

(E)=inf (
P1

j=1 r
↵

j

), where the infimum is taken over all countable coverings of E
by discs D(x

j

, r
j

) with r
j

< ✏.
It is clear that H✏

↵

(E) increases as ✏ decreases, and we define H
↵

(E) = lim

✏!0 H
✏

↵

(E).
It is also clear that H✏

↵

(E)  H✏

�

(E) if ↵ > � and ✏  1, thus H
↵

(E) is a nonincreasing
function of ↵.

Remark 2.1. If H1
↵

(E) = 0, then H
↵

(E) = 0. This follows readily from the defi-
nition, since a covering showing that H1

↵

(E) < � will necessarily consist of discs of
radius of radius < �

1
↵ .

Remark 2.2. It is also clear that H
↵

(E) = 0 for all E if ↵ > n, since one can then
cover Rn by discs D(x

j

, r
j

) with
P

j

r
j

↵ arbitrarily small.

Lemma 2.1. There is a unique number ↵0, called the Hausdorff dimension of E or
dim E, such that H

↵

(E) = 1 if ↵ < ↵0 and H
↵

(E) = 0 if ↵ > ↵0.

Proof. Define ↵0 to be the supremum of all ↵ such that H
↵

(E) = 1. Since H
↵

(E) is a
nonincreasing function of ↵, H

↵

(E) = 1 if ↵ < ↵0. Suppose ↵ > ↵0. Let � 2 (↵0,↵).
Define M = 1 +H

�

(E) < 1. If ✏ > 0, then we have a covering by discs withP
j

r
j

↵  ✏↵��

P
j

r
j

�  ✏↵��M which goes to 0 as ✏ ! 0. Thus H
↵

(E) = 0

⇤
Definition 2.3. L1 Fourier transform
If f 2 L1

(Rn

), then its Fourier transform is ˆf : Rn ! C defined by

ˆf(⇠) =

Z
e�2⇡ix⇠f(x)dx

1
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More generally, let M(Rn

) be the space of finite complex-valued measure on Rn with
the norm

k µ k= |µ|Rn,

where |µ| is the total variation. Thus L1
(Rn

) is contained in M(Rn

) via the iden-
tification f ! µ, dµ = fdx. We generalize the definition of Fourier transformation
via

µ̂(⇠) =

Z
e�2⇡ix⇠dµ(x)

Definition 2.4. Define the ↵ � dimensional energy of a (positive) measure µ with
compact support by the formula

I
↵

(µ) =

ZZ
|x� y|�↵ dµ(x) dµ(y)

We always assume that 0 < ↵ < n.

Theorem 2.2. If E is compact then the Hausdorff dimension of E coincides with the
number

sup{↵ : 9µ 2 P (E)withI
↵

(µ) < 1}.
Proof. Denote the above supremum by s. If � < s, then E supports a measure with
µ(D(x, r))  Cr�. Then H

�

(E) > 0, so �  dimE. So s  dimE. Conversely,
if � < dimE, then E supports a measure with µ(D(x, r))  Cr�+✏ for ✏ > 0 small
enough. Then I

�

(µ) < 1, so �  s, which shows that dimE  s. ⇤
Theorem 2.3. Let µ be a positive measure with compact support and 0 < ↵ < n.
Then

ZZ
|x� y|�↵ dµ(x) dµ(y) = c

↵

Z
|µ̂(⇠)|2|⇠|�(n�↵)d⇠,

where c
↵

=

�(n�a
2 )⇡a�n

2

�(a2 )
.

Theorem 2.4. Let µ be a positive measure with compact support and 0 < ↵ < n.
Then

ZZ
|x� y|�↵ dµ(x) dµ(y) = c

↵

Z
|µ̂(⇠)|2|⇠|�(n�↵)d⇠,

where c
↵

=

�(n�a
2 )⇡a�n

2

�(a2 )
.

Proof. Suppose first that f 2 L1 is real and even, and that dµ(x) = �(x)dx with
� 2 S Then we have

Z
f(x� y) dµ(x) dµ(y) =

Z
|µ̂(⇠)|2 ˆf(⇠)d⇠

Now fix �. Then both sides of the equation are seen to define continuous linear map
from f 2 L2 to R. Accordingly, the equation remains valid when f 2 L1

+ L2, � 2 S.
We conclude if dµ(x) = �(x)dx, � 2 S. ⇤
Theorem 2.5. Marstrand’s projection theorem for one-dimensional projections
Assume that E ⇢ Rn is compact and dimE = ↵. Then
(i)↵  1 then for a.e. e 2 Sn�1 we have dimP

e

E = ↵
(ii)↵ > 1 then for a.e. e 2 Sn�1 the projection P

e

E has positive one-dimensional
Lebesgue measure.
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Proof. If µ is a measure supported on E, e 2 Sn�1, then the projected measure µ
e

is
the measure on R defined by

Z
f dµ

e

=

Z
f(x · e) dµ(x)

for continuous f. Notice that µ̂
e

may be readily be calculated from the is definition:

µ̂
e

(k) =

Z
e�2⇡ikx·e dµ(x)

= µ̂(ke).

Let ↵ < dimE and let µ be a measure supported on R with I
↵

(µ) < 1.We have
then Z

|µ̂(ke)|2|k|�1+↵ dkd�(e) < 1

by Theorem 2.4 and and polar coordinates.
Thus, for a.e. e we have

Z
|µ̂(ke)|2|k|�1+↵ dk < 1(1)

It follows by Theorem 2.4 with n = 1 that for a.e. e the projected measure µ
e

has
finite ↵-dimensional energy. This and Theorem 2.3 give part (i), since µ

e

is supported
on the projected set P

e

E. For part (ii), we note that if dimE > 1 we can take ↵ = 1

in (1). Thus µ̂
e

is in L2 for almost all e. This condition implies that µ
e

has an L2

density, and in particular is absolutely continuous with respect to Lebesgue measure.
Accordingly P

e

E must have positive Lebesgue measure. ⇤
Remark 2.3. dimP

e

E  dimE, this follows from the definition of dimension and
the fact that the projection P

e

is a Lipschitz function.

Remark 2.4. Theorem 2.3 has a natural generalization to k-dimensional instead of
1-dimensional projections, which is proved in the same way.

3. PRELIMINARIES

Definition 3.1. Given a function f : Z2
p

! C, its Fourier transformation is defined by

ˆf(m) = p�2
X

x2Z2
p

�(�x ·m)f(x)

Theorem 3.1. Cauchy Schwarz Inequality |
P

n

i=1 ui

v̄
i

|2 
P

n

j=1 |uj

|2
P

n

k=1 |vk|2

4. Z
p

case

Consider Z2
p

, where p ⌘ 3 mod 4

Definition 4.1. Consider E ✓ Z2
p

, define the projection P
v

(E)={x · v : x 2 E},
where v 2 Z2

p

.

Definition 4.2. Define �
v

by
P
t2Zp

�
v

(t) f(t)=
P
x2Z2

p

f(x · v) E(x), where E(x) is the

characteristic function on E and f : Z
p

! R, x 7! x is a constant map.

Theorem 4.1. Let �
v

(t) = |{x 2 E : x ·v = t}|, then it is equivalent to the �
v

defined
in Definition 4.2.
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Proof. Suppose
P
t2Zp

�
v

(t) f(t)=
P
x2Z2

p

f(x · v) E(x),

since
P
x2Z2

p

f(x · v) E(x)=
P
t2Zp

f(t)
P

x·v=t

E(x)=
P
t2Zp

f(t) |{x 2 E : x · v = t}|,
P
t2Zp

f(t) �
v

(t)=
P
x2Z2

p

f(x · v) E(x)=
P
t2Zp

f(t) |{x 2 E : x · v = t}|

so �
v

(t) = |{x 2 E : x · v = t}|.

Conversely, suppose �
v

(t) = |{x 2 E : x · v = t}|,P
x2Z2

p

f(x ·v) E(x) =
P
t

P
x·v=t

f(t)E(x)=
P
t

f(t)
P

x·v=t

E(x) =
P
t

f(t)|{x 2 E : x ·v = t}|

=

P
t2Zp

f(t)�
v

(t) ⇤

Theorem 4.2.
P
t2Zp

�2
v

(t) = p3
P
s2Zp

| ˆE(sv)|2

Proof. By Plancherel Theorem
P
t2Zp

�2
v

(t) = p
P
s2Zp

|ˆ�
v

(s)|2,

Directly from definition 4.2 and Fourier transformation,
ˆ�
v

(s) = p�1
X

t2Zp

�(�t · s)�
v

(t) =
X

x2Z2
p

p�1�(�x · sv)E(x)

= p · p�2
X

x2Z2
p

�(�x · sv)E(x) = p ˆE(sv)

Therefore,
P
t2Zp

�2
v

(t) = p
P
s2Zp

|ˆ�
v

(s)|2 = p
P
s2Zp

|p ˆE(sv)|2=p3
P
s2Zp

| ˆE(sv)|2. ⇤

Lemma 4.3. |V ||E|2 
P
v2V

|P
v

(E)| · p3
P
s2Zp

| ˆE(sv)|2

Proof. By definition 4.2,
P

�
v

(t) =
P

E(x)=|E|.
By Cauchy Schwarz Inequality, |E|2 = (

P
t2Zp

1 · �
v

(t))2  |P
v

(E)| ·
P
t2Zp

�2
v

(t),

By theorem 4.2, �2
v

(t) = p
P
t2Zp

|ˆ�v(s)|2=p3
P
s2Zp

| ˆE(sv)|2,

so |V ||E|2 
P
v2V

|P
v

(E)| · p3
P
s2Zp

| ˆE(sv)|2 ⇤

Theorem 4.4. Let V be set of all direction of Z2
p

and S1 = {x 2 Z2
p

:k x k= 1} where
k x k= x2

1 + x2
2. Let r be a non-square in Z

p

⇤, then V = S1 [ S
r

Proof. Let ⇣ be the set of squares in Z
p

⇤ . Claim: ⇣ is a group.
a 2 ⇣, b 2 ⇣ implies a = t2, b = v2, then ab = t2v2 = (tv)2 2 ⇣
a 2 ⇣, implies a = t2. Since a · a�1

= 1, a�1
=

1
t

2 2 ⇣
1 2 ⇣ since 1 is a square of itself.
Let � : Z

p

! Z
p

x 7! ax where a /2 ⇣, � is an isomorphism.
Let  : Z

p

⇤ ! ⇣ x 7! x2, since ker( ) = {�1, 1}, Zp

ker( )
⇠
=

⇣ implies |⇣| = p�1
2

So if we prove �(sq)=not sq, �(not sq)=sq, then we have done for the theorem.
Take x 2 S1, then k tx k= t2 k x k= t2.
Suppose y 2 Z2

p

and k y k is a square, then let k y k= s2 for some s 2 Z
p

, s 6= 0.
Let x =

y

s

, then k x k= kyk
s

2 = 1 implies y = sx
Suppose y 2 Z2

p

and k y k is not a square. We want to write y = tx for some x 2 S
r

.
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Consider k y

t

k =

kyk
t

2 . To make this equal to r, we must find t such that kyk
r

= t2.
Since k y k and r is not in ⇣, kyk

r

2 ⇣.
Therefore V = S1 [ S

r

. ⇤
Remark 4.1. We have the fact that

P
y2Z2

p

| ˆE(y)|2 = p�2|E|

Theorem 4.5. |P
v

(E)| = p · 1

1 +

p

2

(p+1)|E| �
1

p+ 1

, if |E| > p

Proof. By Lemma 4.3,

|V ||E|2 
P
v2V

|P
v

(E)| · p3
P
s2Zp

| ˆE(sv)|2

 max

v2V |P
v

(E)| · p3
P
v2V

P
s2Zp

| ˆE(sv)|2

 max

v2V |P
v

(E)| · (p3
P
v2V

P
s 6=0

| ˆE(sv)|2 + p3
P
v2V

P
s=0

| ˆE(sv)|2)

 max

v2V |P
v

(E)| · (2p3
P
x2Z2

p

| ˆE(x)|2 + p3
P
v2V

| ˆE(

~
0)|2)· p�4

 max

v2V |P
v

(E)| · (2p3 · p�2|E|2 � 2p3 · p�4|E|2 + p�1|V ||E|2)

2(p+ 1)|E|2  max

v2V
|P

v

(E)| · (2p|E|+ 2(p+ 1)p�1|E|2 � 2p�1|E|2)

max

v2V |P
v

(E)| � 2(p+ 1)|E|2

2p|E|+ 2(p+ 1)p�1|E|2 � 2p�1|E|2

� p · 2(p+ 1)|E|2

2(p+ 1)|E|+ 2p2|E|� 2|E|2

= p · 1

1 +

p

2

(p+1)|E| �
1

p+ 1

⇤
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