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Abstract

In 1995, the Fermat’s Last Theorem was resolved by Andrew Wiles as a consequence

of the proof of the Taniyama-Shimura-Weil conjecture for semistable elliptic curves,

which built an important connection between elliptic curves and modular forms. This

paper is a survey on elliptic curves, modular forms and their L-functions. At the end,

we will understand the Taniyama-Shimura-Weil conjecture and numerically verify it.

1 Introduction

In 1637, French mathematician Pierre de Fermat wrote in the margin of the book Diophantus’

Arithmetica that he found a proof of the statement that for n ≥ 3, no three positive integers

satisfy the equation an + bn = cn. He also claimed that he found a marvellous proof but

margin is too small to contain it. The proof was not achieved until Andrew Wiles and

his student Richard Taylor’s proof of the Taniyama-Shimura-Weil conjecture, which now

is known as the modularity theorem, for semistable elliptic curves[wil95]. This led to a

contradiction, if a nontrivial solution exists, based on the work of Frey, Serre and Ribet.

In this paper, the concepts of elliptic curves and modular forms are introduced. Moreover,

we will define the L-functions attached to elliptic curves over Q and modular forms. We study



the analytic and arithmetic properties of these L-functions including their Euler product,

analytic continuation functional equations and special values. At the end, we will state the

Taniyama-Shimura-Weil conjecture, and numerically test it with elliptic curves with small

conductors.

2 L-functions

An L-function is a function L(s), usually given as an infinite series of the form

L(s) =
∞∑

n=1

an

ns
,

where the variable s takes complex value, usually on a half plane where the series converge,

and coefficients an are also complex numbers.

Example 2.1. The simplest and most famous series is the Riemann zeta function:

ζ(s) =
∞∑

n=1

1
ns

,

which converges on the half plane Re(s) > 1. The connection between ζ(s) and number

theory comes from the fact that ζ(s) has an Euler product:

ζ(s) =
∞∑

n=1

1
ns

=
∏
p

1
1 − p−1 ,

where the product runs over all the prime numbers. An important consequence of the Euler

product is that any information about the distribution of the zeros of ζ(s) can be translated

into the information about the distribution of the prime numbers among the natural numbers.

Let π(x) be the prime-counting function, i.e. π(x) is the number of primes p, 1 < p ≤ x.



The famous prime number theorem asserts that the limit

lim
x→∞

π(x)
x

log(x)

tends to 1. In other words, x
log(x) is a good approximation to the prime counting function.

It was not proved until 1896 when J. Hadamard and Ch. de la Vallé Poussin established

the result independently. Both of their proofs utilize the complex analytic properties of the

Riemann zeta function.

Another important property of ζ(s) is presented in the following theorem.

Theorem 2.2. The Riemann zeta function ζ(s) for Re(s) > 1 can be analytically continued

to the whole complex plane except for a simple pole at s = 1. Furthermore, let

Λ(s) := π−s/2Γ(s

2)ζ(s),

where Γ(s) is the Gamma function defined by the improper integral

∫ ∞

0
ts−1e−tdt

for Re(s) > 0, then Λ(s) is invariant under s 7→ 1 − s, i.e. ζ(s) satisfies the functional

equation

π−s/2Γ(s

2)ζ(s) = π−(1−s)/2Γ(1 − s

2 )ζ(1 − s).

Proof. (proof of the functional equation)



By replacing ζ(s) by the infinite sum, we find

π−sΓ(s)ζ(2s) =
∞∑

n=1

∫ ∞

0
(πn2)−sts−1e−tdt

=
∞∑

n=1

∫ ∞

0
ts−1e−πn2tdt

=
∫ ∞

0
ts−1(θ(it) − 1

2)dt

where the second equality is done by a change of variable t 7→ πn2t, and

θ(τ) = 1
2

∞∑
−∞

eπin2τ (Imτ > 0)

= 1
2 +

∞∑
n=1

eπin2τ

is the basic theta-function. θ(τ) is holomorphic on the upper half plane, and satisfies

θ(τ + 2) = θ(τ)

θ(−1/τ) = (τ

i
)1/2θ(τ), (1)

where the square root is defined on Re(z) > 0 to be real on the real axis. The proof of (1)

is an application of the Poisson summation formula and the fact that the Fourier transform

of e−πx2 is itself. In other words, θ(τ) is a modular form, which will defined later, of half

weight for the group G(2) generated by τ 7→ τ + 2 and τ 7→ −1/τ . The functional equation

for ζ(s) is a consequence of identity (1):

π−sΓ(s)ζ(2s) =
∫ ∞

1
ts−1(θ(it) − 1

2)dt +
∫ 1

0
ts−1(θ(it) − 1

2)dt

=
∫ ∞

1
ts−1(θ(it) − 1

2)dt − 1
2s

+
∫ ∞

1
t−s−1θ( i

t
)

=
∫ ∞

1
(ts−1 + t1/2−s−1)(θ(it) − 1

2)dt − 1
2s

− 1
1 − 2s

,

which is invariant under s 7→ 1
2 − s.



Remark. The last step of proof shows that the function equation of θ(τ) can be transformed

into the functional equation of ζ(s) by Mellin transform. By a similar reasoning, the func-

tional equation of θ(τ) can be derived from the functional equation of ζ(s). The following

theorem, known as the Hecke’s converse theorem, generalizes the above theorem and shows

that ζ(s) and some other L-functions are determined by their functional equation.

Theorem 2.3. Given a sequence of complex numbers a0, a1, ..., an, ... = O(nc), given

λ > 0, k > 0, C = ±1, form

ϕ(s) =
∞∑

n=1
ann−s Φ(s) = (2π

λ
)−sΓ(s)ϕ(s) f(τ) =

∞∑
n=0

ane2πinτ/λ.

The following two conditions are equivalent:

(A) Φ(s)+ a0
s

+ Ca0
k−s

is entire and bounded in every vertical strip and satisfies the functional

equation Φ(k − s) = CΦ(s);

(B) f(− 1
τ
) = C( τ

i
)kf(τ).

Example 2.4. In 1826, German mathematician Peter Gustav Lejeune Dirichlet proved the

following theorem:

Theorem 2.5 (Dirichlet). Let N ≥ 1 and a be a positive integers such that gcd(a, N) = 1.

Let Pa be the set of prime numbers such that p ≡ a(mod N). Then the set Pa has density
1

ϕ(N) (ϕ is the Euler’s totient function) in the sense that the ratio

 ∑
p∈Pa

1
ps

 / (
log

1
s − 1

)

tends to 1
ϕ(N) as s tends to 1.

In other words, the set of primes are ”equally distributed” among the residue classes

modulo N which are relative prime to N . An immediate result from this theorem is that



for each pair (a, N) as above, there are infinitely many primes p ≡ a (mod N). This result

was conjectured by Legendre, and is now known as the Dirichlet’s theorem on arithmetic

progression.

Dirichlet’s proof uses the properties of the Dirichlet’s L-functions, which are series in the

form

L(s, χ) =
∞∑

n=1

χ(n)
ns

where χ : (Z/NZ)× −→ C× is a Dirichlet character. For the integers n that are not relatively

prime to N , χ(n) = 0. Just like the Riemann zeta function, Dirichlet L-functions have Euler

products:

L(s, χ) =
∞∑

n=1

χ(n)
ns

=
∏
p

1
1 − χ(p)p−s

.

He showed that for every nontrivial character χ modulo N , L(1, χ) ̸= 0 or ∞ and the equality

log(ζ(s)) +
∑

χ mod N
χ ̸=1

χ(a)−1log(L(s, χ)) = ϕ(N)
 ∑

p≡a mod N

1
ps

 + g(s)

with g(1) finite. Using the fact that ζ(s) diverges at s = 1, we can conclude that the sum∑
p≡a mod N

1
ps diverges and hence is an infinite sum.

3 Elliptic Curves over Q

Definition 3.1. An elliptic curve over Q is a smooth cubic projective curve E defined over

Q, with at least one point O ∈ E.

For every elliptic curve E over a field K with char(K) ̸= 2, 3, there exists a curve Ê

given by the cubic equation

zy2 = x3 + Axz2 + Bz3, A, B ∈ K with 4A3 + 27B2 ̸= 0



that is isomorphic to E. In general, E is isomorphic to a model y2 + a1xy + a3y = x3 +

a2x
2 +a4x+a6, which is called a Weierstrass equation or Weierstrass model. One reason that

the theory of elliptic curves is so rich is that they can be equipped with a group structure.

Given an elliptic curve E over Q. Let P and Q be two points on the curve and l be the line

that goes through P and Q (if P = Q, we let l be the tangent line at P ). If l meets the

third point R on the curve, then P + Q is defined to be the reflection of R about the x-axis

(see figure 1). If the line is vertical, then P + Q = O, which is defined to be the point at

∞ and is outside the affine coordinates. Since the curve is defined by a cubic equation, one

of these two conditions will happen. The above operation is commutative, associative, and

hence makes (E, +) an abelian group with the identity O.

Figure 1: Addition of points [4]

In 1922, Mordell proves that E(Q) is actually a finitely generated abelian group. In other

words, there exists finitely many points P1, P2, ..., Pn such that any points Q ∈ E(Q) can be

written as a linear combination

Q =
n∑

i=1
aiPi,



with some ai ∈ Z. As a consequence of the mordell’s theorem,

E(Q) ∼= E(Q)torsion ⊕ Zr

for some nonnegative integer r, which we call the rank of E(Q).

Definition 3.2. Let E be an elliptic curve over Q given by the equation y2 = x3 + Ax + B,

with A, B ∈ Q. The discriminant ∆E of E is defined to be

∆E = −16(4A3 + 27B2).

An elliptic E ′ is said to be the minimal model for E if it is isomorphic to E and it has the

smallest integer discriminant among all the curves that are isomorphic to E.

Before defining the L-function of E(Q), we need to define the type of singularities of

cubic curves. Let Ẽ be a cubic curve over a field K given by a Weierstrass equation

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6

with a singular point P = (x0, y0). We write the Taylor expansion of f(x, y) around (x0, y0)

as follows:

f(x, y) − f(x0, y0) = λ1(x − x0)2 + λ2(x − x0)(y − y0) + λ3(y − y0)2 − (x − x0)3

= ((y − y0) − α(x − x0))((y − y0) − β(x − x0)) − (x − x0)3

for some λi ∈ K and α, β ∈ K̄, an algebraic closure of K.

Definition 3.3. The singular point P ∈ Ẽ is a node if α ̸= β. The geometric interpretation



is that there are two different tangent lines to Ẽ at P given by

y − y0 = α(x − x0), y − y0 = β(x − x0).

If α = β, we say P is a cusp and there is a unique tangent line at P .

Let E be an elliptic curve over Q given by a minimal model. For each prime p, we can

reduce the coefficients of the cubic equation modulo p and consider the set of points over Fp

that satisfy the reduced equation. This is a cubic curve Ẽ over Fp. We say that E has good

reduction modulo p if Ẽ is smooth and hence is an elliptic curve. If Ẽ is singular at a point

P , then we say E has bad reduction at p. In this case, we further distinguish two cases:

(1) If Ẽ has a cusp at P , then we say E has additive reduction.

(2) If Ẽ has a node at P , then we say E has multiplicative (or semistable) reduction. If the

slopes of the tangent lines are in Fp, then the reduction is said to be split multiplicative.

Otherwise, it is non-split multiplicative.

Figure 2: node and cusp [4]

Now we are ready to define the L-function of an elliptic curve over Q. Let E be an elliptic

curve over Q with Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6



with coefficients ai ∈ Z. For each prime p, let Np be the number of points in the projective

coordinates over Fp, i.e.

Np = |{O} ∪ {(x, y) ∈ Fp : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 ≡ 0 mod p}|.

Let ap = p + 1 − Np. We define the local part at p of the L-series as the following:

Lp(T ) =



1 − apT + pT 2, if E has good reduction at p,

1 − T, if E has split multiplicative reduction at p,

1 + T, if E has non-split multiplivative reduction at p,

1, if E has additive reduction at p.

The L-function of the elliptic curve E is the product

L(E, s) =
∏
p≥2

1
Lp(p−s) .

The product converges and gives an holomorphic function on the half plane Re(s) > 3
2 .

This follows from Hasse’s bound |ap| ≤ 2√
p. The L-functions of elliptic curves over Q were

conjectured to have analytic continuation to the whole complex and satisfy certain functional

equation relating the value at s and 2 − s. It now becomes a theorem due to be the proof of

the Taniyama-Shimura-Weil conjecture. However, before the value of L(E, s) makes sense at

s = 1, Bryan Birch and Sir Peter Swinnerton-Dyer conjectured that the order of vanishing

of L(E, s) at s = 1 is equal to the rank r of E. This is amazing because if it’s true, then the

L-function is able to relate the solution counting of the curve over finite fields to the group

structure of E, so we have a more computable tool to study the elliptic curves over Q.

The last definition in this section is the conductor of an elliptic curve. Given an elliptic



curve E/Q, for each prime p, define the quantity fp as the following:

fp =



0, if E has good reduction at p,

1, if E has multiplicative reduction at p,

2, if E has additive reduction at p, and p ̸= 2, 3,

2 + δp, if E has additive reduction at p = 2 or 3.

where δp is a technical invariant.

Definition 3.4. The conductor NE/Q of E/Q is defined to be

NE/Q =
∏
p

pfp .

The conductor is an important constant connecting the elliptic curves to the modular

forms. The primes dividing NE/Q are exactly the primes dividing the discrimiant of E

because the curve is nonsingular if and only if the discriminant is non-zero.

4 Modular Forms

The modular group is the group of 2-by-2 invertible matrices with integer entries and deter-

minant 1,

SL2(Z) =
{ (

a b
c d

)
: a, b, c, d ∈ Z, ad − bc = 1

}
.

This group is generated by two matrices

(1 1
0 1

)
and

(0 −1
1 0

)
.



Let H denote the upper half plane

H = {τ ∈ C : Im(τ) > 0}.

Any matrix M =
(

a b
c d

)
∈ SL2(Z) acts on τ ∈ H by linear fractional transformation

Mτ = aτ + b

cτ + d
.

It turns out that this group action is well defined as

Im(Mτ) = Im(τ)
|cτ + d|2

,

which implies Mτ ∈ H.

Definition 4.1. Let k be an integer. A meromorphic function f : H −→ C is weakly modular

of weight k if

f(Mτ) = (cτ + d)kf(τ) for M ∈ SL2(Z), τ ∈ H.

Since T =
(1 1

0 1
)

∈ SL2(Z), any weakly modular function f satisfies

f(τ) = f(Tτ) = f(τ + 1).

The periodicity implies that f has a Fourier expansion

f(τ) =
∞∑

n=−∞
anqn, q = e2πiτ .

Definition 4.2. f is a modular form of weight k if

(a) f is holomorphic on H.

(b) f is weakly modular of weight k.



(c) f is holomorphic at ∞, i.e. the Fourier coefficients an are zero for all n < 0.

The third condition is equivalent to that |f(yi)| remains bounded and tends to a0 as y

tends to ∞.

Definition 4.3. f is a cusp form of weight k if it is a modular form of weight k and a0 = 0.

given N ≥ 1, we are also interested in the following subgroups of SL2Z :

Γ0(N) =
{ (

a b
c d

)
∈ SL2(Z) : c ≡ 0 mod N

}

Γ1(N) =
{ (

a b
c d

)
∈ SL2(Z) : c ≡ 0, a ≡ d ≡ 1 mod N

}

Γ(N) =
{ (

a b
c d

)
∈ SL2(Z) : b ≡ c ≡ 0, a ≡ d ≡ 1 mod N

}

We say that a subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) is a subgroup of Γ

and N is the level of the congruence subgroup. We can define the modular form (cusp form

resp.) of weight k for a congruence subgroup Γ by simply replacing SL2(Z) by Γ. Being

a congruence subgroup guarantees that f has a Fourier expansion f(τ) = ∑∞
n=0 ane2πinτ/N .

The set of modular forms of weight k for G form a vector space over C, which is denoted by

Mk(Γ) (Sk(Γ) for the space of cusp forms).

Let Γ1 and Γ2 be two congruence subgroups. For each α ∈ GL+
2 (Q), the set

Γ1αΓ2 = {γ1αγ2 : γ1 ∈ Γ1, γ2 ∈ Γ2}

is a double coset in GL+
2 (Q). Γ1 acts on the double coset by left multiplication. The orbit

space Γ1\Γ1αΓ2 is in fact a finite disjoint union ∪n
j=1Γ1βj.

Definition 4.4. The weight k Γ1αΓ2 operator takes function f ∈ Mk(Γ1) to

f [Γ1αΓ2]k =
∑

j

f [βj]k,



where {βj} are orbit representatives, and the symbol f [β] is defined to be

f [β]k(τ) = f [
(

a b
c d

)
]k(τ) = (detβ)k−1j(β, τ)−kf(βj), τ ∈ H

where j(β, τ) is the automorphy factor cτ + d.

The double coset operator is well defined as it is independent of the choice of represen-

tatives {βj}. Moreover, [Γ1αΓ2]k takes Sk(Γ1) to Sk(Γ2).

Now we define several operators, known as the Hecke operators, on the space of modular

forms and cusp forms whose eigenvalues are closely related to the solution counting Np of

elliptic curves over Q in section 3.

Definition 4.5. For d ∈ (Z/NZ)×, a diamond operator is defined to be ⟨d⟩ : Mk(Γ1(N)) −→

Mk(Γ1(N)) given by

⟨d⟩f = f [α]k for any α =
(

a b
c δ

)
∈ Γ0(N) with δ ≡ d (mod N)

Definition 4.6. Given a prime p, the pth Hecke operator is defined to be Tp : Mk(Γ1(N)) −→

Mk(Γ1(N)) given by

Tpf = f [Γ1(N)
(1 0

0 p

)
Γ1(N)]k.

Tp has an explicit formula given by

Tpf =


∑p−1

j=0 f
[ (1 j

0 p

) ]
k
, if p|N,

∑p−1
j=0 f

[ (1 j
0 p

) ]
k

+ f
[ (

m n
N p

) (
p 0
0 1

) ]
k
, if p ∤ N , where mp − nN = 1.

We extend the diamond operator to all n ∈ Z+ by letting ⟨n⟩ = 0 if (n, N) > 1, just like

how the Dirichlet character is defined. The diamond operator ⟨n⟩ is totally multiplicative in



the sense that ⟨mn⟩ = ⟨m⟩⟨n⟩. To define Tn, first let

Tpr = TpTpr−1 − pk−1⟨p⟩Tpr−2 , for n ≥ 2. (2)

For each n ∈ Z+, let

Tn =
∏

Tp
ri
i

, where n =
∏

pri
i . (3)

Then, for n, m ∈ Z+, (m, n) = 1, Tmn = TmTn, i.e. Tn is multiplicative.

We form the series g(s) with coefficients in Tn:

g(s) =
∞∑

n=1
Tnn−s.

As a consequence of (2) and (3), g(s) has Euler product

g(s) =
∏
p

(1 − Tpp−s + ⟨p⟩pk−1−2s)−1. (4)

Definition 4.7. A nonzero modular form f ∈ Mk(Γ1(N)) is an eigenform if it is an eigen-

vector for all Tn and ⟨n⟩ simultaneously, n ∈ Z+. f is said to be normalized if the first

Fourier coefficient a1 is 1. Then each Fourier coefficient an appears as an eigenvalue of Tn.

Given a Dirichlet character χ modulo N , the χ-eigenspace is defined to be

Mk(N, χ) = {f ∈ Mk(Γ1(N)) : f [γ]k = χ(dγ)f for all γ ∈ Γ0(N)},

where dγ denotes the lower right entry of γ.

For each modular form f ∈ Mk(Γ1(N)) with Fourier expansion f(τ) = ∑∞
n=0 anqn, define

its L-function to be

L(s, f) =
∞∑

n=1
ann−s.

L(f, s) converges on Re(s > k) and if f is a cusp form, then it converges on Re(s) >



k/2 + 1. The following theorem addresses the equivalence between the condition of f being

an normalized eigenform and that its L-function has an Euler product.

Theorem 4.8. Let f ∈ Mk(N, χ) ⊆ Mk(Γ1(N)), f(τ) = ∑∞
n=0 anqn. The following are

equivalent:

(a) f is a normalized eigenform.

(b) L(s,f) has an Euler product

L(s, f) =
∏
p

(1 − app−s + χ(p)pk−1−2s)−1

Recall that the functional equation of the basic theta function θ was transformed into a

function equation of its Mellin transform, which results in the functional equation for ζ(s).

Does similar result hold for other modular forms? The answer is yes for Sk(Γ1(N)). If

k = 2, then it is exactly what the functional equation of L(E, s) looks like acoording to the

modularity theorem.

Before stating the theorem, we define the operator WN : Sk(Γ1(N)) −→ Sk(Γ1(N)) by

f 7→ ikN1−k/2f
[ ( 0 −1

N 0
) ]

k
.

WN is an involution and decompose Sk(Γ1(N)) into two eigenspaces

Sk(Γ1(N))± = {f ∈ Sk(Γ1(N)) : WNf = ±f}.

Theorem 4.9. Suppose f ∈ Sk(Γ1(N))±, let

ΛN(s) = N s/2(2π)−sΓ(s)L(s, f).

Then ΛN can be analytically continued to the entire complex plane and satisfies the functional



equation

ΛN(s) = ±ΛN(k − s).

Consequently, L(s, f) can be analytically continued to the entire complex plane.

Proof.

ΛN(s) = N s/2
∫ ∞

0
f(it)ts−1dt

=
∫ ∞

0
f(it/

√
N)ts−1dt

=
∫ ∞

1
f(it/

√
N)ts−1dt +

∫ 1

0
f(it/

√
N)ts−1dt

Since f(it/
√

N) is of order e2πt/
√

N , the first integral converges to an entire function. Also

applying the definition of WN ,

(WNf)(i/(
√

Nt)) = ikN1−k/2f
[ ( 0 −1

N 0
) ]

k
(i/(

√
Nt))

= ikN1−k/2Nk−1(Ni/(
√

nt))−kf( −1
Ni/(

√
Nt

))

= tkf(it/
√

N).

Then the second integral can be written as

∫ 1

0
f(it/

√
N)ts−1dt =

∫ 1

0
(WNf)(i/(

√
Nt))ts−k−1dt

=
∫ ∞

1
(WNf)(it/

√
N)tk−s−1dt

Thus,

ΛN(s) =
∫ ∞

1
(f(it/

√
N)ts + (WNf)(it/

√
N)tk−s)dt

t
.

Since WNf = ±f , we have ΛN(s) = ±ΛN(k − s)



5 The Taniyama-Shimura-Weil Conjecture

Definition 5.1. An elliptic curve E defined over Q is modular if there is a cusp form fE(τ)

such that

L(E, s) = L(s, fE).

The Taniyama-Shimura-Weil Conjecture said that all elliptic curves over E/Q are mod-

ular. Given an elliptic curve E/Q, we expect the modular form fE to have be a normalized

eigenform because of Theorem 4.8 and because L(E, s) is defined by an Euler product. Also,

fE must have weight 2 because of Theorem 4.9 and the conjectural functional equation

of L(E, s). What’s more, fE is expected to be an element of Sk(Γ0(N)) where N is the

conductor of E.

Given an elliptic curve E/Q with equation y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0,

we can numerically verify its modularity by doing the following steps:

(1) Compute the conductor N of E.

(2) For primes p < 100, calculate the number of points Np on E(Fp) with the help of

computers. Let ap = p + 1 − Np.

(3) For p ∤ N , compare ap to the table of Hecke eigenvalues, which is on pg. 265 of [2]. A

part of the table is on the last page. If the elliptic curve is modular, then we expect

the ap matches with the Hecke eigenvalue of certain cusp form with level N .

The following is a pseudocode for step (2):



Algorithm 1 solution counting
Set primeset = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,

79, 83, 89, 97]

Set apvalue be an empty array.

for p ∈ primeset do

Set np = 1

for x in range(0, p) do

for y in range(0, p) do

if y2 + a1xy + a3y − x3 − a2x
2 − a4x − a6 = 0 then

np+=1

end if

end for

end for

apvalue.append(p + 1 − np)

end for

return apvalue

We obtain a sequence of ap value from the solution counting over finite fields, which we

can use to compare with the Hecke eigenvalue table.

Example 5.2 (E : y2 + y = x3 − x). The discriminant of E is 37, which means the only

possible bad reduction is at 37. In fact, E has multiplicative reduction at 37, so the conductor

of E is 37. Following step, we input the coefficients a1 = 0, a2 = 0, a3 = 1, a4 = −1, a6 = 0.

The sequence of ap we get is [-2, -3, -2, -1, -5, -2, 0, 0, 2, 6, -4, -1, -9, 2, -9, 1, 8, -8, 8, 9, -1,

4, -15, 4, 4], which agrees with the row 37A(A) on pg. 265 of [2].

Example 5.3 (E : y2 +xy +y = x3 +4x−6). The discriminant of E is −21952 = −1 ·26 ·73.

Therefore, the possible bad reductions are 2 and 7. It turns out that E has multiplicative

reduction at both 2 and 7, so the conductor N is 14. Following step 2, we get the sequence



[-1, -2, 0, 1, 0, -4, 6, 2, 0, -6, -4, 2, 6, 8, -12, 6, -6, 8, -4, 0, 2, 8, -6, -6, -10], which agrees

with the row 14A(C).

Example 5.4 (E : y2 + xy + y = x3 − 6x + 4). The discriminant of E is 1188 = 22 · 33 · 11.

Therefore, the possible bad reductions are 2, 3 and 11. It turns out that E has multiplicative

reduction at all three primes, so the conductor N is 66. Following step 2, we get the sequence

[-1, 1, 0, 2, -1, -4, -6, -4, 6, 6, 8, -10, 6, 8, -6, 0, 0, 8, -4, 6, 2, 14, -12, -6, 14], which agrees

with the row 66A(A).



Figure 3: Hecke eigenvalue table [2]
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