The L-functions of Elliptic Curves and Modular Forms

Tianxiang Liu

Advisor: Dinesh S. Thakur

Abstract

In 1995, the Fermat's Last Theorem was resolved by Andrew Wiles as a consequence of the proof of the Taniyama-Shimura-Weil conjecture for semistable elliptic curves, which built an important connection between elliptic curves and modular forms. This paper is a survey on elliptic curves, modular forms and their L-functions. At the end, we will understand the Taniyama-Shimura-Weil conjecture and numerically verify it.

1 Introduction

In 1637, French mathematician Pierre de Fermat wrote in the margin of the book Diophantus' Arithmetica that he found a proof of the statement that for $n \geq 3$, no three positive integers satisfy the equation $a^{n}+b^{n}=c^{n}$. He also claimed that he found a marvellous proof but margin is too small to contain it. The proof was not achieved until Andrew Wiles and his student Richard Taylor's proof of the Taniyama-Shimura-Weil conjecture, which now is known as the modularity theorem, for semistable elliptic curves[wil95]. This led to a contradiction, if a nontrivial solution exists, based on the work of Frey, Serre and Ribet.

In this paper, the concepts of elliptic curves and modular forms are introduced. Moreover, we will define the L-functions attached to elliptic curves over \mathbb{Q} and modular forms. We study
the analytic and arithmetic properties of these L-functions including their Euler product, analytic continuation functional equations and special values. At the end, we will state the Taniyama-Shimura-Weil conjecture, and numerically test it with elliptic curves with small conductors.

2 -functions

An L-function is a function $L(s)$, usually given as an infinite series of the form

$$
L(s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}},
$$

where the variable s takes complex value, usually on a half plane where the series converge, and coefficients a_{n} are also complex numbers.

Example 2.1. The simplest and most famous series is the Riemann zeta function:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

which converges on the half plane $\operatorname{Re}(s)>1$. The connection between $\zeta(s)$ and number theory comes from the fact that $\zeta(s)$ has an Euler product:

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}=\prod_{p} \frac{1}{1-p^{-1}},
$$

where the product runs over all the prime numbers. An important consequence of the Euler product is that any information about the distribution of the zeros of $\zeta(s)$ can be translated into the information about the distribution of the prime numbers among the natural numbers. Let $\pi(x)$ be the prime-counting function, i.e. $\pi(x)$ is the number of primes $p, 1<p \leq x$.

The famous prime number theorem asserts that the limit

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{\frac{x}{\log (x)}}
$$

tends to 1 . In other words, $\frac{x}{\log (x)}$ is a good approximation to the prime counting function. It was not proved until 1896 when J. Hadamard and Ch. de la Vallé Poussin established the result independently. Both of their proofs utilize the complex analytic properties of the Riemann zeta function.

Another important property of $\zeta(s)$ is presented in the following theorem.

Theorem 2.2. The Riemann zeta function $\zeta(s)$ for $\operatorname{Re}(s)>1$ can be analytically continued to the whole complex plane except for a simple pole at $s=1$. Furthermore, let

$$
\Lambda(s):=\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)
$$

where $\Gamma(s)$ is the Gamma function defined by the improper integral

$$
\int_{0}^{\infty} t^{s-1} e^{-t} d t
$$

for $\operatorname{Re}(s)>0$, then $\Lambda(s)$ is invariant under $s \mapsto 1-s$, i.e. $\zeta(s)$ satisfies the functional equation

$$
\pi^{-s / 2} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\pi^{-(1-s) / 2} \Gamma\left(\frac{1-s}{2}\right) \zeta(1-s)
$$

Proof. (proof of the functional equation)

By replacing $\zeta(s)$ by the infinite sum, we find

$$
\begin{aligned}
\pi^{-s} \Gamma(s) \zeta(2 s) & =\sum_{n=1}^{\infty} \int_{0}^{\infty}\left(\pi n^{2}\right)^{-s} t^{s-1} e^{-t} d t \\
& =\sum_{n=1}^{\infty} \int_{0}^{\infty} t^{s-1} e^{-\pi n^{2} t} d t \\
& =\int_{0}^{\infty} t^{s-1}\left(\theta(i t)-\frac{1}{2}\right) d t
\end{aligned}
$$

where the second equality is done by a change of variable $t \mapsto \pi n^{2} t$, and

$$
\begin{aligned}
\theta(\tau) & =\frac{1}{2} \sum_{-\infty}^{\infty} e^{\pi i n^{2} \tau} \quad(\operatorname{Im} \tau>0) \\
& =\frac{1}{2}+\sum_{n=1}^{\infty} e^{\pi i n^{2} \tau}
\end{aligned}
$$

is the basic theta-function. $\theta(\tau)$ is holomorphic on the upper half plane, and satisfies

$$
\begin{align*}
& \theta(\tau+2)=\theta(\tau) \\
& \theta(-1 / \tau)=\left(\frac{\tau}{i}\right)^{1 / 2} \theta(\tau) \tag{1}
\end{align*}
$$

where the square root is defined on $\operatorname{Re}(z)>0$ to be real on the real axis. The proof of (1) is an application of the Poisson summation formula and the fact that the Fourier transform of $e^{-\pi x^{2}}$ is itself. In other words, $\theta(\tau)$ is a modular form, which will defined later, of half weight for the group $G(2)$ generated by $\tau \mapsto \tau+2$ and $\tau \mapsto-1 / \tau$. The functional equation for $\zeta(s)$ is a consequence of identity (1):

$$
\begin{aligned}
\pi^{-s} \Gamma(s) \zeta(2 s) & =\int_{1}^{\infty} t^{s-1}\left(\theta(i t)-\frac{1}{2}\right) d t+\int_{0}^{1} t^{s-1}\left(\theta(i t)-\frac{1}{2}\right) d t \\
& =\int_{1}^{\infty} t^{s-1}\left(\theta(i t)-\frac{1}{2}\right) d t-\frac{1}{2 s}+\int_{1}^{\infty} t^{-s-1} \theta\left(\frac{i}{t}\right) \\
& =\int_{1}^{\infty}\left(t^{s-1}+t^{1 / 2-s-1}\right)\left(\theta(i t)-\frac{1}{2}\right) d t-\frac{1}{2 s}-\frac{1}{1-2 s}
\end{aligned}
$$

which is invariant under $s \mapsto \frac{1}{2}-s$.

Remark. The last step of proof shows that the function equation of $\theta(\tau)$ can be transformed into the functional equation of $\zeta(s)$ by Mellin transform. By a similar reasoning, the functional equation of $\theta(\tau)$ can be derived from the functional equation of $\zeta(s)$. The following theorem, known as the Hecke's converse theorem, generalizes the above theorem and shows that $\zeta(s)$ and some other L-functions are determined by their functional equation.

Theorem 2.3. Given a sequence of complex numbers $a_{0}, a_{1}, \ldots, a_{n}, \ldots=O\left(n^{c}\right)$, given $\lambda>0, k>0, C= \pm 1$, form

$$
\phi(s)=\sum_{n=1}^{\infty} a_{n} n^{-s} \quad \Phi(s)=\left(\frac{2 \pi}{\lambda}\right)^{-s} \Gamma(s) \phi(s) \quad f(\tau)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n \tau / \lambda} .
$$

The following two conditions are equivalent:
(A) $\Phi(s)+\frac{a_{0}}{s}+\frac{C a_{0}}{k-s}$ is entire and bounded in every vertical strip and satisfies the functional equation $\Phi(k-s)=C \Phi(s)$;
(B) $f\left(-\frac{1}{\tau}\right)=C\left(\frac{\tau}{i}\right)^{k} f(\tau)$.

Example 2.4. In 1826, German mathematician Peter Gustav Lejeune Dirichlet proved the following theorem:

Theorem 2.5 (Dirichlet). Let $N \geq 1$ and a be a positive integers such that $\operatorname{gcd}(a, N)=1$. Let P_{a} be the set of prime numbers such that $p \equiv a(\bmod N)$. Then the set P_{a} has density $\frac{1}{\phi(N)}$ (ϕ is the Euler's totient function) in the sense that the ratio

$$
\left(\sum_{p \in P_{a}} \frac{1}{p^{s}}\right) /\left(\log \frac{1}{s-1}\right)
$$

tends to $\frac{1}{\phi(N)}$ as s tends to 1 .

In other words, the set of primes are "equally distributed" among the residue classes modulo N which are relative prime to N. An immediate result from this theorem is that
for each pair (a, N) as above, there are infinitely many primes $p \equiv a(\bmod N)$. This result was conjectured by Legendre, and is now known as the Dirichlet's theorem on arithmetic progression.

Dirichlet's proof uses the properties of the Dirichlet's L-functions, which are series in the form

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}
$$

where $\chi:(\mathbb{Z} / N \mathbb{Z})^{\times} \longrightarrow \mathbb{C}^{\times}$is a Dirichlet character. For the integers n that are not relatively prime to $N, \chi(n)=0$. Just like the Riemann zeta function, Dirichlet L-functions have Euler products:

$$
L(s, \chi)=\sum_{n=1}^{\infty} \frac{\chi(n)}{n^{s}}=\prod_{p} \frac{1}{1-\chi(p) p^{-s}}
$$

He showed that for every nontrivial character χ modulo $N, L(1, \chi) \neq 0$ or ∞ and the equality

$$
\log (\zeta(s))+\sum_{\substack{\chi \bmod N \\ \chi \neq 1}} \chi(a)^{-1} \log (L(s, \chi))=\phi(N)\left(\sum_{p \equiv a \bmod N} \frac{1}{p^{s}}\right)+g(s)
$$

with $g(1)$ finite. Using the fact that $\zeta(s)$ diverges at $s=1$, we can conclude that the sum $\sum_{p \equiv a \bmod N} \frac{1}{p^{s}}$ diverges and hence is an infinite sum.

3 Elliptic Curves over \mathbb{Q}

Definition 3.1. An elliptic curve over \mathbb{Q} is a smooth cubic projective curve E defined over \mathbb{Q}, with at least one point $\mathcal{O} \in E$.

For every elliptic curve E over a field K with $\operatorname{char}(K) \neq 2,3$, there exists a curve \hat{E} given by the cubic equation

$$
z y^{2}=x^{3}+A x z^{2}+B z^{3}, A, B \in K \text { with } 4 A^{3}+27 B^{2} \neq 0
$$

that is isomorphic to E. In general, E is isomorphic to a model $y^{2}+a_{1} x y+a_{3} y=x^{3}+$ $a_{2} x^{2}+a_{4} x+a_{6}$, which is called a Weierstrass equation or Weierstrass model. One reason that the theory of elliptic curves is so rich is that they can be equipped with a group structure. Given an elliptic curve E over \mathbb{Q}. Let P and Q be two points on the curve and l be the line that goes through P and Q (if $P=Q$, we let l be the tangent line at P). If l meets the third point R on the curve, then $P+Q$ is defined to be the reflection of R about the x-axis (see figure 1). If the line is vertical, then $P+Q=\mathcal{O}$, which is defined to be the point at ∞ and is outside the affine coordinates. Since the curve is defined by a cubic equation, one of these two conditions will happen. The above operation is commutative, associative, and hence makes $(E,+)$ an abelian group with the identity \mathcal{O}.

Figure 1: Addition of points [4]

In 1922, Mordell proves that $E(\mathbb{Q})$ is actually a finitely generated abelian group. In other words, there exists finitely many points $P_{1}, P_{2}, \ldots, P_{n}$ such that any points $Q \in E(\mathbb{Q})$ can be written as a linear combination

$$
Q=\sum_{i=1}^{n} a_{i} P_{i},
$$

with some $a_{i} \in \mathbb{Z}$. As a consequence of the mordell's theorem,

$$
E(\mathbb{Q}) \cong E(\mathbb{Q})_{\text {torsion }} \oplus \mathbb{Z}^{r}
$$

for some nonnegative integer r , which we call the rank of $E(\mathbb{Q})$.

Definition 3.2. Let E be an elliptic curve over \mathbb{Q} given by the equation $y^{2}=x^{3}+A x+B$, with $A, B \in \mathbb{Q}$. The discriminant Δ_{E} of E is defined to be

$$
\Delta_{E}=-16\left(4 A^{3}+27 B^{2}\right) .
$$

An elliptic E^{\prime} is said to be the minimal model for E if it is isomorphic to E and it has the smallest integer discriminant among all the curves that are isomorphic to E.

Before defining the L-function of $E(\mathbb{Q})$, we need to define the type of singularities of cubic curves. Let \tilde{E} be a cubic curve over a field K given by a Weierstrass equation

$$
f(x, y)=y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6}
$$

with a singular point $P=\left(x_{0}, y_{0}\right)$. We write the Taylor expansion of $f(x, y)$ around $\left(x_{0}, y_{0}\right)$ as follows:

$$
\begin{aligned}
f(x, y)-f\left(x_{0}, y_{0}\right) & =\lambda_{1}\left(x-x_{0}\right)^{2}+\lambda_{2}\left(x-x_{0}\right)\left(y-y_{0}\right)+\lambda_{3}\left(y-y_{0}\right)^{2}-\left(x-x_{0}\right)^{3} \\
& =\left(\left(y-y_{0}\right)-\alpha\left(x-x_{0}\right)\right)\left(\left(y-y_{0}\right)-\beta\left(x-x_{0}\right)\right)-\left(x-x_{0}\right)^{3}
\end{aligned}
$$

for some $\lambda_{i} \in K$ and $\alpha, \beta \in \bar{K}$, an algebraic closure of K.

Definition 3.3. The singular point $P \in \tilde{E}$ is a node if $\alpha \neq \beta$. The geometric interpretation
is that there are two different tangent lines to \tilde{E} at P given by

$$
y-y_{0}=\alpha\left(x-x_{0}\right), \quad y-y_{0}=\beta\left(x-x_{0}\right) .
$$

If $\alpha=\beta$, we say P is a cusp and there is a unique tangent line at P.

Let E be an elliptic curve over \mathbb{Q} given by a minimal model. For each prime p, we can reduce the coefficients of the cubic equation modulo p and consider the set of points over \mathbb{F}_{p} that satisfy the reduced equation. This is a cubic curve \tilde{E} over \mathbb{F}_{p}. We say that E has good reduction modulo p if \tilde{E} is smooth and hence is an elliptic curve. If \tilde{E} is singular at a point P, then we say E has bad reduction at p. In this case, we further distinguish two cases:
(1) If \tilde{E} has a cusp at P, then we say E has additive reduction.
(2) If \tilde{E} has a node at P, then we say E has multiplicative (or semistable) reduction. If the slopes of the tangent lines are in \mathbb{F}_{p}, then the reduction is said to be split multiplicative. Otherwise, it is non-split multiplicative.

Figure 2: node and cusp [4]

Now we are ready to define the L-function of an elliptic curve over \mathbb{Q}. Let E be an elliptic curve over \mathbb{Q} with Weierstrass equation:

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}
$$

with coefficients $a_{i} \in \mathbb{Z}$. For each prime p, let N_{p} be the number of points in the projective coordinates over \mathbb{F}_{p}, i.e.

$$
N_{p}=\left|\{\mathcal{O}\} \cup\left\{(x, y) \in \mathbb{F}_{p}: y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6} \equiv 0 \bmod p\right\}\right|
$$

Let $a_{p}=p+1-N_{p}$. We define the local part at p of the L-series as the following:

$$
L_{p}(T)= \begin{cases}1-a_{p} T+p T^{2}, & \text { if } \mathrm{E} \text { has good reduction at } \mathrm{p} \\ 1-T, & \text { if } \mathrm{E} \text { has split multiplicative reduction at } \mathrm{p} \\ 1+T, & \text { if } \mathrm{E} \text { has non-split multiplivative reduction at } \mathrm{p} \\ 1, & \text { if } \mathrm{E} \text { has additive reduction at } \mathrm{p}\end{cases}
$$

The L-function of the elliptic curve E is the product

$$
L(E, s)=\prod_{p \geq 2} \frac{1}{L_{p}\left(p^{-s}\right)} .
$$

The product converges and gives an holomorphic function on the half plane $\operatorname{Re}(s)>\frac{3}{2}$. This follows from Hasse's bound $\left|a_{p}\right| \leq 2 \sqrt{p}$. The L-functions of elliptic curves over \mathbb{Q} were conjectured to have analytic continuation to the whole complex and satisfy certain functional equation relating the value at s and $2-s$. It now becomes a theorem due to be the proof of the Taniyama-Shimura-Weil conjecture. However, before the value of $L(E, s)$ makes sense at $s=1$, Bryan Birch and Sir Peter Swinnerton-Dyer conjectured that the order of vanishing of $L(E, s)$ at $s=1$ is equal to the rank r of E. This is amazing because if it's true, then the L-function is able to relate the solution counting of the curve over finite fields to the group structure of E, so we have a more computable tool to study the elliptic curves over \mathbb{Q}.

The last definition in this section is the conductor of an elliptic curve. Given an elliptic
curve E / \mathbb{Q}, for each prime p, define the quantity f_{p} as the following:

$$
f_{p}= \begin{cases}0, & \text { if } \mathrm{E} \text { has good reduction at } \mathrm{p}, \\ 1, & \text { if } \mathrm{E} \text { has multiplicative reduction at } \mathrm{p}, \\ 2, & \text { if } \mathrm{E} \text { has additive reduction at } \mathrm{p}, \text { and } p \neq 2,3, \\ 2+\delta_{p}, & \text { if } \mathrm{E} \text { has additive reduction at } \mathrm{p}=2 \text { or } 3\end{cases}
$$

where δ_{p} is a technical invariant.

Definition 3.4. The conductor $N_{E / \mathbb{Q}}$ of E / \mathbb{Q} is defined to be

$$
N_{E / \mathbb{Q}}=\prod_{p} p^{f_{p}} .
$$

The conductor is an important constant connecting the elliptic curves to the modular forms. The primes dividing $N_{E / \mathbb{Q}}$ are exactly the primes dividing the discrimiant of E because the curve is nonsingular if and only if the discriminant is non-zero.

4 Modular Forms

The modular group is the group of 2-by-2 invertible matrices with integer entries and determinant 1 ,

$$
S L_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\}
$$

This group is generated by two matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Let \mathcal{H} denote the upper half plane

$$
\mathcal{H}=\{\tau \in \mathbb{C}: \operatorname{Im}(\tau)>0\} .
$$

Any matrix $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$ acts on $\tau \in \mathcal{H}$ by linear fractional transformation

$$
M \tau=\frac{a \tau+b}{c \tau+d}
$$

It turns out that this group action is well defined as

$$
\operatorname{Im}(M \tau)=\frac{\operatorname{Im}(\tau)}{|c \tau+d|^{2}}
$$

which implies $M \tau \in \mathcal{H}$.

Definition 4.1. Let k be an integer. A meromorphic function $f: \mathcal{H} \longrightarrow \mathbb{C}$ is weakly modular of weight k if

$$
f(M \tau)=(c \tau+d)^{k} f(\tau) \text { for } M \in S L_{2}(\mathbb{Z}), \tau \in \mathcal{H}
$$

Since $T=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in S L_{2}(\mathbb{Z})$, any weakly modular function f satisfies

$$
f(\tau)=f(T \tau)=f(\tau+1)
$$

The periodicity implies that f has a Fourier expansion

$$
f(\tau)=\sum_{n=-\infty}^{\infty} a_{n} q^{n}, q=e^{2 \pi i \tau}
$$

Definition 4.2. f is a modular form of weight k if
(a) f is holomorphic on \mathcal{H}.
(b) f is weakly modular of weight k.
(c) f is holomorphic at ∞, i.e. the Fourier coefficients a_{n} are zero for all $n<0$.

The third condition is equivalent to that $|f(y i)|$ remains bounded and tends to a_{0} as y tends to ∞.

Definition 4.3. f is a cusp form of weight k if it is a modular form of weight k and $a_{0}=0$.
given $N \geq 1$, we are also interested in the following subgroups of $S L_{2} \mathbb{Z}$:

$$
\begin{gathered}
\Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0 \bmod N\right\} \\
\Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): c \equiv 0, a \equiv d \equiv 1 \bmod N\right\} \\
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}): b \equiv c \equiv 0, a \equiv d \equiv 1 \bmod N\right\}
\end{gathered}
$$

We say that a subgroup Γ of $S L_{2}(\mathbb{Z})$ is a congruence subgroup if $\Gamma(N)$ is a subgroup of Γ and N is the level of the congruence subgroup. We can define the modular form (cusp form resp.) of weight k for a congruence subgroup Γ by simply replacing $S L_{2}(Z)$ by Γ. Being a congruence subgroup guarantees that f has a Fourier expansion $f(\tau)=\sum_{n=0}^{\infty} a_{n} e^{2 \pi i n \tau / N}$. The set of modular forms of weight k for G form a vector space over \mathbb{C}, which is denoted by $M_{k}(\Gamma)\left(S_{k}(\Gamma)\right.$ for the space of cusp forms).

Let Γ_{1} and Γ_{2} be two congruence subgroups. For each $\alpha \in G L_{2}^{+}(\mathbb{Q})$, the set

$$
\Gamma_{1} \alpha \Gamma_{2}=\left\{\gamma_{1} \alpha \gamma_{2}: \gamma_{1} \in \Gamma_{1}, \gamma_{2} \in \Gamma_{2}\right\}
$$

is a double coset in $G L_{2}^{+}(\mathbb{Q}) . \Gamma_{1}$ acts on the double coset by left multiplication. The orbit space $\Gamma_{1} \backslash \Gamma_{1} \alpha \Gamma_{2}$ is in fact a finite disjoint union $\cup_{j=1}^{n} \Gamma_{1} \beta_{j}$.

Definition 4.4. The weight $k \Gamma_{1} \alpha \Gamma_{2}$ operator takes function $f \in M_{k}\left(\Gamma_{1}\right)$ to

$$
f\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k}=\sum_{j} f\left[\beta_{j}\right]_{k}
$$

where $\left\{\beta_{j}\right\}$ are orbit representatives, and the symbol $f[\beta]$ is defined to be

$$
f[\beta]_{k}(\tau)=f\left[\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right]_{k}(\tau)=(\operatorname{det} \beta)^{k-1} j(\beta, \tau)^{-k} f\left(\beta_{j}\right), \tau \in \mathcal{H}
$$

where $j(\beta, \tau)$ is the automorphy factor $c \tau+d$.

The double coset operator is well defined as it is independent of the choice of representatives $\left\{\beta_{j}\right\}$. Moreover, $\left[\Gamma_{1} \alpha \Gamma_{2}\right]_{k}$ takes $S_{k}\left(\Gamma_{1}\right)$ to $S_{k}\left(\Gamma_{2}\right)$.

Now we define several operators, known as the Hecke operators, on the space of modular forms and cusp forms whose eigenvalues are closely related to the solution counting N_{p} of elliptic curves over \mathbb{Q} in section 3.

Definition 4.5. For $d \in(\mathbb{Z} / N \mathbb{Z})^{\times}$, a diamond operator is defined to be $\langle d\rangle: M_{k}\left(\Gamma_{1}(N)\right) \longrightarrow$ $M_{k}\left(\Gamma_{1}(N)\right)$ given by

$$
\langle d\rangle f=f[\alpha]_{k} \text { for any } \alpha=\left(\begin{array}{ll}
a & b \\
c & \delta
\end{array}\right) \in \Gamma_{0}(N) \text { with } \delta \equiv d(\bmod N)
$$

Definition 4.6. Given a prime p, the $p^{t h}$ Hecke operator is defined to be $T_{p}: M_{k}\left(\Gamma_{1}(N)\right) \longrightarrow$ $M_{k}\left(\Gamma_{1}(N)\right)$ given by

$$
T_{p} f=f\left[\Gamma_{1}(N)\left(\begin{array}{ll}
1 & 0 \\
0 & p
\end{array}\right) \Gamma_{1}(N)\right]_{k} .
$$

T_{p} has an explicit formula given by

$$
T_{p} f= \begin{cases}\sum_{j=0}^{p-1} f\left[\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)\right]_{k}, & \text { if } p \mid N, \\
\sum_{j=0}^{p-1} f\left[\left(\begin{array}{ll}
1 & j \\
0 & p
\end{array}\right)\right]_{k}+f\left[\left(\begin{array}{cc}
m & n \\
N & p
\end{array}\right)\left(\begin{array}{ll}
p & 0 \\
0 & 1
\end{array}\right)\right]_{k}, & \text { if } p \nmid N, \text { where } m p-n N=1 .\end{cases}
$$

We extend the diamond operator to all $n \in \mathbb{Z}^{+}$by letting $\langle n\rangle=0$ if $(n, N)>1$, just like how the Dirichlet character is defined. The diamond operator $\langle n\rangle$ is totally multiplicative in
the sense that $\langle m n\rangle=\langle m\rangle\langle n\rangle$. To define T_{n}, first let

$$
\begin{equation*}
T_{p^{r}}=T_{p} T_{p^{r-1}}-p^{k-1}\langle p\rangle T_{p^{r-2}}, \text { for } n \geq 2 \tag{2}
\end{equation*}
$$

For each $n \in \mathbb{Z}^{+}$, let

$$
\begin{equation*}
T_{n}=\prod T_{p_{i}^{r_{i}}}, \text { where } n=\prod p_{i}^{r_{i}} . \tag{3}
\end{equation*}
$$

Then, for $n, m \in \mathbb{Z}^{+},(m, n)=1, T_{m n}=T_{m} T_{n}$, i.e. T_{n} is multiplicative.
We form the series $g(s)$ with coefficients in T_{n} :

$$
g(s)=\sum_{n=1}^{\infty} T_{n} n^{-s} .
$$

As a consequence of (2) and (3), $g(s)$ has Euler product

$$
\begin{equation*}
g(s)=\prod_{p}\left(1-T_{p} p^{-s}+\langle p\rangle p^{k-1-2 s}\right)^{-1} . \tag{4}
\end{equation*}
$$

Definition 4.7. A nonzero modular form $f \in M_{k}\left(\Gamma_{1}(N)\right)$ is an eigenform if it is an eigenvector for all T_{n} and $\langle n\rangle$ simultaneously, $n \in \mathbb{Z}^{+} . f$ is said to be normalized if the first Fourier coefficient a_{1} is 1 . Then each Fourier coefficient a_{n} appears as an eigenvalue of T_{n}.

Given a Dirichlet character χ modulo N, the χ-eigenspace is defined to be

$$
M_{k}(N, \chi)=\left\{f \in M_{k}\left(\Gamma_{1}(N)\right): f[\gamma]_{k}=\chi\left(d_{\gamma}\right) f \text { for all } \gamma \in \Gamma_{0}(N)\right\}
$$

where d_{γ} denotes the lower right entry of γ.
For each modular form $f \in M_{k}\left(\Gamma_{1}(N)\right)$ with Fourier expansion $f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n}$, define its L-function to be

$$
L(s, f)=\sum_{n=1}^{\infty} a_{n} n^{-s}
$$

$L(f, s)$ converges on $\operatorname{Re}(s>k)$ and if f is a cusp form, then it converges on $\operatorname{Re}(s)>$
$k / 2+1$. The following theorem addresses the equivalence between the condition of f being an normalized eigenform and that its L-function has an Euler product.

Theorem 4.8. Let $f \in M_{k}(N, \chi) \subseteq M_{k}\left(\Gamma_{1}(N)\right), f(\tau)=\sum_{n=0}^{\infty} a_{n} q^{n}$. The following are equivalent:
(a) f is a normalized eigenform.
(b) L(s,f) has an Euler product

$$
L(s, f)=\prod_{p}\left(1-a_{p} p^{-s}+\chi(p) p^{k-1-2 s}\right)^{-1}
$$

Recall that the functional equation of the basic theta function θ was transformed into a function equation of its Mellin transform, which results in the functional equation for $\zeta(s)$. Does similar result hold for other modular forms? The answer is yes for $S_{k}\left(\Gamma_{1}(N)\right)$. If $k=2$, then it is exactly what the functional equation of $L(E, s)$ looks like acoording to the modularity theorem.

Before stating the theorem, we define the operator $W_{N}: S_{k}\left(\Gamma_{1}(N)\right) \longrightarrow S_{k}\left(\Gamma_{1}(N)\right)$ by

$$
f \mapsto i^{k} N^{1-k / 2} f\left[\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)\right]_{k} .
$$

W_{N} is an involution and decompose $S_{k}\left(\Gamma_{1}(N)\right)$ into two eigenspaces

$$
S_{k}\left(\Gamma_{1}(N)\right)^{ \pm}=\left\{f \in S_{k}\left(\Gamma_{1}(N)\right): W_{N} f= \pm f\right\}
$$

Theorem 4.9. Suppose $f \in S_{k}\left(\Gamma_{1}(N)\right)^{ \pm}$, let

$$
\Lambda_{N}(s)=N^{s / 2}(2 \pi)^{-s} \Gamma(s) L(s, f)
$$

Then Λ_{N} can be analytically continued to the entire complex plane and satisfies the functional
equation

$$
\Lambda_{N}(s)= \pm \Lambda_{N}(k-s)
$$

Consequently, $L(s, f)$ can be analytically continued to the entire complex plane.

Proof.

$$
\begin{aligned}
\Lambda_{N}(s) & =N^{s / 2} \int_{0}^{\infty} f(i t) t^{s-1} d t \\
& =\int_{0}^{\infty} f(i t / \sqrt{N}) t^{s-1} d t \\
& =\int_{1}^{\infty} f(i t / \sqrt{N}) t^{s-1} d t+\int_{0}^{1} f(i t / \sqrt{N}) t^{s-1} d t
\end{aligned}
$$

Since $f(i t / \sqrt{N})$ is of order $e^{2 \pi t / \sqrt{N}}$, the first integral converges to an entire function. Also applying the definition of W_{N},

$$
\begin{aligned}
\left(W_{N} f\right)(i /(\sqrt{N} t)) & =i^{k} N^{1-k / 2} f\left[\left(\begin{array}{cc}
0 & -1 \\
N & 0
\end{array}\right)\right]_{k}(i /(\sqrt{N} t)) \\
& \left.=i^{k} N^{1-k / 2} N^{k-1}(N i /(\sqrt{n} t))^{-k} f\left(\frac{-1}{N i /(\sqrt{N} t}\right)\right) \\
& =t^{k} f(i t / \sqrt{N}) .
\end{aligned}
$$

Then the second integral can be written as

$$
\begin{aligned}
\int_{0}^{1} f(i t / \sqrt{N}) t^{s-1} d t & =\int_{0}^{1}\left(W_{N} f\right)(i /(\sqrt{N} t)) t^{s-k-1} d t \\
& =\int_{1}^{\infty}\left(W_{N} f\right)(i t / \sqrt{N}) t^{k-s-1} d t
\end{aligned}
$$

Thus,

$$
\Lambda_{N}(s)=\int_{1}^{\infty}\left(f(i t / \sqrt{N}) t^{s}+\left(W_{N} f\right)(i t / \sqrt{N}) t^{k-s}\right) \frac{d t}{t} .
$$

Since $W_{N} f= \pm f$, we have $\Lambda_{N}(s)= \pm \Lambda_{N}(k-s)$

5 The Taniyama-Shimura-Weil Conjecture

Definition 5.1. An elliptic curve E defined over \mathbb{Q} is modular if there is a cusp form $f_{E}(\tau)$ such that

$$
L(E, s)=L\left(s, f_{E}\right)
$$

The Taniyama-Shimura-Weil Conjecture said that all elliptic curves over E / \mathbb{Q} are modular. Given an elliptic curve E / \mathbb{Q}, we expect the modular form f_{E} to have be a normalized eigenform because of Theorem 4.8 and because $L(E, s)$ is defined by an Euler product. Also, f_{E} must have weight 2 because of Theorem 4.9 and the conjectural functional equation of $L(E, s)$. What's more, f_{E} is expected to be an element of $S_{k}\left(\Gamma_{0}(N)\right)$ where N is the conductor of E.

Given an elliptic curve E / \mathbb{Q} with equation $y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6}=0$, we can numerically verify its modularity by doing the following steps:
(1) Compute the conductor N of E.
(2) For primes $p<100$, calculate the number of points N_{p} on $E\left(\mathbb{F}_{p}\right)$ with the help of computers. Let $a_{p}=p+1-N_{p}$.
(3) For $p \nmid N$, compare a_{p} to the table of Hecke eigenvalues, which is on pg. 265 of [2]. A part of the table is on the last page. If the elliptic curve is modular, then we expect the a_{p} matches with the Hecke eigenvalue of certain cusp form with level N.

The following is a pseudocode for step (2):

```
Algorithm 1 solution counting
    Set primeset \(=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73\),
    \(79,83,89,97]\)
    Set apvalue be an empty array.
    for \(p \in\) primeset do
                Set \(n_{p}=1\)
        for x in range \((0, \mathrm{p})\) do
            for \(y\) in range \((0, p)\) do
                if \(y^{2}+a_{1} x y+a_{3} y-x^{3}-a_{2} x^{2}-a_{4} x-a_{6}=0\) then
                \(n_{p}+=1\)
            end if
            end for
        end for
        \(\operatorname{apvalue} . \operatorname{append}\left(p+1-n_{p}\right)\)
    end for
    return apvalue
```

We obtain a sequence of a_{p} value from the solution counting over finite fields, which we can use to compare with the Hecke eigenvalue table.

Example $5.2\left(E: y^{2}+y=x^{3}-x\right)$. The discriminant of E is 37 , which means the only possible bad reduction is at 37 . In fact, E has multiplicative reduction at 37 , so the conductor of E is 37 . Following step, we input the coefficients $a_{1}=0, a_{2}=0, a_{3}=1, a_{4}=-1, a_{6}=0$. The sequence of a_{p} we get is $[-2,-3,-2,-1,-5,-2,0,0,2,6,-4,-1,-9,2,-9,1,8,-8,8,9,-1$, $4,-15,4,4]$, which agrees with the row $37 \mathrm{~A}(\mathrm{~A})$ on pg. 265 of [2].

Example $5.3\left(E: y^{2}+x y+y=x^{3}+4 x-6\right)$. The discriminant of E is $-21952=-1 \cdot 2^{6} \cdot 7^{3}$. Therefore, the possible bad reductions are 2 and 7. It turns out that E has multiplicative reduction at both 2 and 7 , so the conductor N is 14 . Following step 2, we get the sequence
$[-1,-2,0,1,0,-4,6,2,0,-6,-4,2,6,8,-12,6,-6,8,-4,0,2,8,-6,-6,-10]$, which agrees with the row $14 \mathrm{~A}(\mathrm{C})$.

Example $5.4\left(E: y^{2}+x y+y=x^{3}-6 x+4\right)$. The discriminant of E is $1188=2^{2} \cdot 3^{3} \cdot 11$. Therefore, the possible bad reductions are 2, 3 and 11. It turns out that E has multiplicative reduction at all three primes, so the conductor N is 66 . Following step 2 , we get the sequence $[-1,1,0,2,-1,-4,-6,-4,6,6,8,-10,6,8,-6,0,0,8,-4,6,2,14,-12,-6,14]$, which agrees with the row $66 \mathrm{~A}(\mathrm{~A})$.

Figure 3: Hecke eigenvalue table [2]

References

[1] Gary Cornell, Joseph H. Silverman, and Glenn Stevens. Modular forms and Fermat's last theorem. Springer, 2007.
[2] J. E. Cremona. Algorithms for modular elliptic curves. Cambridge University Press, 1992.
[3] Fred Diamond and Jerry Michael Shurman. A first course in modular forms. Springer, 2016.
[4] Álvar Lozano-Robledo. Elliptic curves, modular forms, and their L-functions. American Mathematical Society, 2011.
[5] Andrew Ogg. Modular forms and Dirichlet series. W.A. Benjamin, 1969.
[6] Jean-Pierre Serre. A course in arithmetic. Springer, 1973.
[7] Andrew Wiles. "Modular elliptic curves and Fermat's last theorem". In: The Annals of Mathematics 141.3 (1995), p. 443. DOI: 10.2307/2118559.

