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Abstract

We study the spectrum and essential minimum of the height of projective plane intersecting with the
curve x+y+z =  ⊂ P

. This paper is mainly inspired by the research of Zhang and Zagier. In the first part
of the research, we prove that the spectrum of the projective height is dense in R after a certain value C.

In the second part of this research, we prove that the six special points at which Zagier’s height gets
sharp upper bound can be normalized to one point. Thus, it is plausible to find all the value on the
spectrum before C and the essential minimum in our coordinate. We provide a conjecture about the
essential minimum and distributions on the spectrum before the essential minimum.

The main ingredients in our analysis are the estimation of capacity of level curve and the theorem of
Fekete-Szegö. Thus, we make an intensive use of potential theory.

Our results have been greatly motivated and guided by numerical experiments of capacity and level
curves that are described at the end of this paper in details.
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 Introduction

Height functions play a vital role in the study of arithmetic dynamics over global fields. It measures com-
plexity of the point in an arithmetic sense, and it is another modern view of Lehmer’s conjecture.

Let K/Q be a number field, and let P ∈ PN (K) be a point with homogeneous coordinates

P = [x : · · · : xN ], x, · · · ,xN ∈ K.

Then, the height of P relative to K is defined by

HK (P ) :=
∏
v∈MK

max{|x|v , · · · , |xN |v}nv , where nv is the local degree of v.

When working with a point in projective space with algebraic coordinates, it is sometimes easier to work
with a height function that does not depend on the number field.

Let P ∈ P
N (Q) be a point whose coordinates are algebraic numbers. Then the absolute height of P is

defined by choosing any number field such that P ∈ PN (K) and setting

H(P ) :=HK (P )/[K :Q].

Compared to the standard height defined above, it is always much easier to directly work with logarith-
mic height.

Keep the notation above, then the logarithmic height relative K is defined by

hK : PN (K) −→R, hK (P ) := logHK (P )

and the absolute logarithmic height is the function

h : PN (Q) −→R, h(P ) = logH(P ).

However, in terms of absolute logarithmic height function, if we use the formula given above to calculate
the height of an algebraic number, we will always have a hard time to normalize the absolute value with
respect to different number field.

Therefore, for any number field K , and for any algebraic number α ∈ K with algebraic coordinates, it is
alwasy easier to use the following formula of absolute logarithmic height function

h(α) =

d

∑
α′

∑
v∈MK

logmax{|α′ |v ,}

where d is degree of the minimal polynomial of α over Q, the first sum is summing over all conjugates of
α, and the second sum is summing over all places.

In the year of , Zhang discovered a classical result in [Zha, Theorems . and .], the simplest
version of which is that for all but finitely many pairs of algebraic numbers (α,β) lying on a curve X ⊂
P
 ×P, we will always have a universal upper bound C(X), depending on the curve X you choose, such

that
h(α) + h(β) ≥ C(X) > .





Then, in [Zag, Theorem ], Zagier applied this result to the curve

{(x,y) : x+ y = ,xy 6= } ⊂ P
 ×P.

He showed that for any algebric numbers α ∈Q such that α 6= ,, (±√−)/, we have

h(α) + h(−α) ≥ 


log
+
√




with equality if and only if α or −α is a primitive th root of unity.
Then, in [Zag, Section A], he asked whether there is a whole spectrum of values

c =  < c =
+
√



< c < · · ·

such that h(α)+h(−α) = cj for some finite collection of algebraic numbers α and h(α)+h(−α) > limsupcj
for all other α ∈Q.

With this question, Zagier explored further in [Zag, Section B] with the height function of projective
plane intersecting the curve x + y + z =  ⊂ P

, which is arguably more nature and more symmetric, since
the only small difference between P

 ×P and P
 is at the infinity.

In [Zag, Theorem ’], he proved for all P lying on x + y + z =  ⊂ P
 with homogenous algebraic

coordinates, except for five points that hzz(P ) vanishes, we have

hzz(P ) ≥ 


logθ

where θ is the real root of θ−θ− = , and the bound is sharp for exactly six values, namely at the points
P = ( : α −  : −α), where α is a root of the equation x − x + x − x + x − x+  = .

This paper is mainly motivated by the Zagier’s conjecture and [Zag, Theorem ’], and we only focus
on the spectrum of the height function of projective plane. The main body of this paper is in Section ,
which is the first part of our research, in which we prove Theorem A.

The second part of this research, which is discussed in Section , concerns with

µess
zz := inf

{
θ ∈R : the set {α ∈Qa : hzz(α) ≤ θ } is infinity

}
(.)

and the set {
hzz(α) : α ∈Qa

}
\
[
µess

zz ,∞
)
. (.)

In TheoremG, we prove that, under our transition map, the six special points at which the upper bound

of hzz is sharp can be normalized to



, and another six points at which hzz vanishes can be normalized to

 and . Therefore, it is plausible to find the exact value of µess
zz and to determine all the values of the set

(.) in our coordinate, whence solve the problem entirely. In Conjecture ., we also provide a conjecture
about the value of the essential minimum and the distribution on the spectrum before essential minimum.

Due to the nature and the audience of this paper, we assume basic knowledge of p−adic analysis, affine
and projective varieties, and of algebraic number theory. Concepts specific to height functions described
above are sufficient for readers of this paper. One could check [Kob], [Sil] and [Har] for p-adic
analysis, arithmetic dynamics, and algebraic geometry, respectively.

On the other hand, in the section , we will introduce some notions in potential theory that are closely
related to this paper and to our research, including the notions of potential function, capacity and the
theorem of Fekete-Szegö. We will basically follow [Ran] and [KL, pg-]. One could also read
[FS] for the deep interest in the theorem of Fekete-Szegö.

Further, since [Zag] is the main inspiration of our research, the Appendix B contains the detailed
proof of the Theorem and Theorem ’ in [Zag]. Also, since our research is greatly motivated by our
numerical experiments of capacity, Appendix A described those experiments in details.





 Preliminaries in Potential Theory

. Harmonic and Subharmonic Functions

We firstly recall some concepts from harmonic analysis. Let U be an open subset of C. A function h :U −→
R is called harmonic if h ∈ C(U ) and ∆h =  on U .

Recall that the real part of holomorphic function is harmonic, and the harmonic function satisfies mean-
value property, identity principle and maximum principle. [Ran, Theorem .., .. and ..]

Let X be a topological space. We say that a function u : X −→ [−∞,∞) is upper semicontinuous if the
set {x ∈ X : u(x) < α} is open in X for each α ∈ R. Also, if −v is upper semicontinuous, then v is lower
semicontinuous.

Now, let U be an open subset of C. A function u : U −→ [−∞,∞) is called subharmonic if it is upper
semicontinuous and satisfies the local submean inequality, i.e. given w ∈U , there exists ρ >  such that

u(w) ≤ 
π

∫ π


u(w+ reit)dt ( ≤ r < ρ).

Also, if −v is subharmonic, then v is superharmonic.

Theorem . (Criteria for Subharmonicity) Let U be an open subset of C, and let u ∈ C(U ). Then u is
subharmonic on U if and only if ∆u ≥  on U .

Proof. [Ran, Theorem ..] �

Theorem . (Integrability Theorem) Every subharmonic function u on a domain D ⊂ C, with u 6= −∞ on D is
locally integrable on D, i.e.

∫
K
|u|dA <∞ for each compact subset K of D.

Proof. [Ran, Theorem ..] �

. Potential and Measures

Let (X,τ) be a Hausdorff topological space and let B be the σ -algebra of its Borel sets. A measure µ : B −→
[,∞) is called a regular Borel measure if it satisfies the following properties:

. µ(K) <∞ for every compact set K ;

. If B is a Borel subset of X, then µ(B) = inf{µ(O) :O open and B ⊂O};

. If O is an open subset of X, then µ(O) = sup{µ(K) : K compact and K ⊂O}.

A measure µ on the Borel sets of a topological space that satisfies µ(K) < ∞ for each compact set K is
called a Borel measure (or Borel probability measure).

Now, let µ be a finite Borel measure on C with compact support. Then, its corresponding potential is the
function pµ : C −→ [−∞,∞) defined by

pµ(z) :=
∫

log|z −w|dµ(w),

and its energy I(µ) is given by

I(µ) :=
∫ ∫

log|z −w|dµ(z)dµ(w) =
∫
pµ(z)dµ(z).

Let K be a compact subset of C, and denote by P (K) the collection of all Borel probability measures on
K . If there exists v ∈ P (K) such that

I(v) = sup
µ∈P (K)

I(µ),





then v is called an equilibrium measure for K . In particular, every compact set K ∈ C has an equilibrium
measure.

Remark .. One could also show that every potential function is subharmonic by directly applying the
definition and doing a change of variables.

Remark .. A subset E of C is called polar if I(µ) = −∞ for every finite Borel measure µ 6=  with supp µ is
a compact subset of E.

. Generalized Laplacian

By Theorem , a C subharmonic function u satisfies ∆u ≥ . However, it is important to extend this result
to an appropriate generalization for arbitrary subharmonic functions.

Let D ⊂ C be a domain. Denote C∞c (D) be the class of all C∞ functions φ : D −→R whose support supp
φ is a compact subset of D. If u is a C subharmonic function on D, then identifying ∆u with the positive
measure ∆udA, it then follows from Green’s theorem that∫

D
φ∆u =

∫
D
u∆φdA, φ ∈ C∞c (D). (.)

Now, if u is an arbitrary subharmonic function on D, with u 6= −∞, then by Theorem , u is locally
integrable and thus the right hand side of above identity makes sense. Therefore, we can use it to define
the left-hand side.

Thus, let u be a subharmonic function on a domain D in C with u 6= −∞, then the generalized Laplacian
of u is Radom measure ∆u on D such that (.) makes sense. By [Ran, Theorem ..], ∆u exists and is
unique.

Remark .. For this paper, it is sufficient for the readers to know that the generalized Laplacian is a mea-
sure, without knowing what exactly the Radom measure is. One could read [Ran, Section A.] for more
explanations about this concept.

Theorem . (Riesz Decomposition Theorem)
Let u be a subharmonic function on a domain D in C with u 6= −∞. Then, given a relatively compact open

subset U of D, we can decompose u as
u = pµ + h on U,

where µ = (π)−∆u|U and h is harmonic on U .

Proof. [Ran, Theorem ..] �

Further, it is necessary to recall the Fundamental Solution of Laplacian since we made extensive use
of this formula, it states that

∆(log|ζ − z|) = δz − δ∞
where δz is the direct mass at z and δ∞ is the direct mass at∞.

Example .. The Fundamental Solution of Laplacian allows us to calculate the laplacian of the log of the
absolute value of any polynomial. For instance, say we have f (z) = (z −w) · · · (z −wn). Then

∆(log|f |) = ∆(
n∑


log|z −wj |) =
n∑
i=

δwi + δ∞.

In fact, by Fundamental Solution of Laplacian and by the fact that ∆pµ = πµ for any finite Borel
measure, we can show that for any holomorphic function f on a domain D with f 6= , ∆(log|f |) consists of
(π)-masses at the zeros of f , counted multiplicity. The proof is in the same fashion as what we did in this
example.





Example .. If f is a potential, then

f (ζ) =
∫

log|z − ζ|d(∆f )(z).

Example .. The function log|ζ + z| for any z ∈ C is a potential function by the above example and the
Fundamental Solution of Laplacian. Therefore, it is also a subharmonic function.

Example .. ∆(log+|z|) is a Lebesgue measure on the unit circle. This measure is also called uniform
measure, and denoted by λ which is defined by

λ(arc) :=
length of the arc

π

Example .. Let φ be a holomorphic function, and f is a potential. Then, we have

∆(f ◦φ) = φ∗(∆f ), where φ∗ is the pull-back of φ,

therefore we have

f ◦φ(ζ) =
∫

log|z − ζ|dφ∗(∆f )(Z).

This shows that the composition of a potential function with holomorphic function is still a potential
function.

. Upper Semicontinuous Regularization

Let X be a topological space, and let u : X −→ [−∞,∞) be a function which is locally bounded above on X.
Its upper semicontinuous regularization u∗ : X −→ [−∞,∞) is defined by

u∗(x) := limsup
y→x

u(y) = inf
N

(
sup
y∈N

u(y)
)

(x ∈ X),

and the infimum is taken over all neighborhoods N of x.

Theorem . (Brelot-Cartan Theorem)
Let V be a collection of subharmonic function on an open subset U of C, and suppose that the function u :=

supv∈V u is locally bounded above on U . Then,

(a) u∗ is subharmonic on U ;

(b) u∗ = u nearly everywhere on U.

Proof. [Ran, Theorem ..] �

Example .. The simplest application of Brelot-Cartan Theorem is that if g and g̃ are subharmonic, then
the function

max{g, g̃}
is also subharmonic.

. Capacity and Fekete-Sezgö Theorem

The logarithmic capacity of a subset E of C is given by

c(E) := sup
µ
eI(µ),

where the supremum is taken over all Borel probability measures µ on C whose support is a compact subset
of E. In particular, if K is a compact set with equilibrium measure v, then

c(K) = eI(v).





Example .. We know that e−∞ = , so that c(E) =  when E is a polar set.

Example .. The capacity of a disc with radius r is r.

Example .. The capacity of an ellipse with semi-axes a,b is
a+ b


.

Theorem . (a) If E ⊂ E, then c(E) ≤ c(E);
(b) If E ⊂C, then c(E) = sup{c(K) : K ⊂ E, K compact};
(c) If E ⊂C, then c(αE + β) = |α|c(E) for all α,β ∈C.

Proof. [Ran, Theorem ..] �

It is well known that the computation and even only the estimation of capacity are really hard, and
there are tons of theorems and methods created for these purposes. Therefore, we did not introduce the
concepts related to computation of capacity. In our numerical experiments, we mainly use the calculation
results of capacity of circle and ellipse, and the part (a) of the above theorem. One could read [Ran,
Section . and .] for computation and estimation of capacity.

Theorem . (Fekete-Szegö Theorem)
Let E ⊂C be compact and stable under complex conjugation.
If c(E) < , then there are only finitely many irreducible monic polynomials p(X) ∈ Z[i][X] having all their

roots in E.
If c(E) ≥  and if Ω is any open neighborhood of E, then there exists infinitely many irreducible monic poly-

nomials p(X) ∈Z[i][X] having all their roots in Ω.

Proof. [FS, Theorem A] �





 Density of the Spectrum

Before going to the formal proof, let us describe the basic idea. There are six symmetric in the height
function of projective plane intersecting with x+y+z = , and the first step of our proof is to mod out those
six symmetric. This involves several changes of coordinates within P

. Then, we want a coordinate such
that the height function for the algebraic numbers has the form

h(α) =

d

∑
α′

∑
v, finite

log+|α|v+

d

∑
α′
g∞(α), where g∞ is some potential function.

We know that log+| · |v=  for any algebraic integers and v finite places, and thus if we only talk about
algebraic integers, we can ignore the first part of the height function. Therefore, the height function only
has the archimedean part and that part is closely related to potential theory such that we are able to apply
Fekete-Szegö Theorem on it.

. Basic Setups and Notations

Define gv : Cv −→ Cv by

gv(ζ) := log
(
max

{
‖ζ + ρ‖v , ‖ζ + ρ‖v , ‖ζ + ‖v

})
− 


log‖ζ − ‖v (.)

where ρ is the primitive cubit root of unity.

Remark .. Note that without



log‖ζ − ‖v , (.) is a height function of projective plane composed with

the map
ι : P −→ P

 by ζ 7→ [ρζ +  : ζ + ρ : ρζ + ρ],

and since ‖ρ‖v= , the first term in the max function can be multiplied by ‖ρ‖v and the third term can be

divided by ‖ρ‖v without changing the function. Finally, by Product Formula,



log‖ζ−‖v will be zero if

we summing over the places.
Hence, gv can define a valid height function if we summing over the places and over the conjugates.

Now define the transition map:
α : P −→ P

 by ζ 7→ ζ (.)

Then, if we define g†v : Cv −→ Cv by

g†v (α) :=  log
(
max
ζ=α

{
‖ζ + ‖v

})
− log‖α − ‖v ,

we will have
gv =




(g†v ◦α). (.)

Now, define another transition map:

Z : P −→ P
 by α 7→ −

α +α− − 
. (.)

Then, if we define
ĝv : Cv −→ Cv

by
ĝv(Z) :=  log

(
max
ζ=α

{
‖ζ + ‖v

})
− log‖α − ‖v ,

we will have
g†v =




(ĝv ◦Z). (.)





Finally, define g̃v : Cv −→ Cv by

g̃v(Z) := ĝv(Z) + log
∥∥∥Z − 



∥∥∥
v
. (.)

This is the final formula we analyze in Z coordinate, the reason why this is the one we finally need is
embodied in the following lemmas and propositions.

With a little bit computation, we can rewrite g̃v as

g̃v(Z) =  log
(
max
ζ=α

{∣∣∣ζ + 
∣∣∣
v

})
− log

∣∣∣α − ∣∣∣
v

+ log
∣∣∣− Z∣∣∣

v
− log

∣∣∣∣∣∣
v

(.)

The problem with (.) is that it is hard to translation ζ into Z, as if we tried to solve ζ for Z, we would
be solving a quadratic equation with ζ and ζ, which will give different values depending on the ± you
chose in the quadratic formula. Also, there would be a problem with choices of different complex root in
the course of solving the formula. (You could see those problems in Section ..) Therefore, we want to
know the formula of g̃v in ζ-coordinate.

Define ǧv : Cv −→ Cv by
ǧv(ζ) := g̃v(Z(ζ)) (.)

Then by recalling (.) and (.) we have

ǧv(ζ) =  log
(
max

{
|ζ + |v , |ζ + ρ|v , |ζ + ρ|v

})
− log

∣∣∣ζ − ζ + 
∣∣∣
v

+ log
∣∣∣


∣∣∣
v

(.)

The whole research is closely related to (.) and (.), but focuses more on g̃∞ and ǧ∞.

. Main Theorem and Propositions

With these setups and notations, it is now appropriate to state the main theorem and propositions of our
paper.

Theorem A. Denote by C the value at which

c
(
{g̃∞ = C}

)
= .

Then, after C, the spectrum of the value of heights in projective plane is dense in R.

Proposition B. Given a function h : (−∞,] −→R>, define a function ν on (−∞,] by

ν := h ·Leb
(
[a,b]

)
, where Leb

(
[a,b]

)
denotes the Lebesgue measure on [a,b].

Then, we have the following results:

. ν =
∫ b
a
h(x)dx, where b ≤ .

. For any given ε > , we have

h ·Leb
(
[a,b]

)
∼ h(ζ)|b − a|, ∀ζ ∈ [a,b], whenever |b − a|< ε;

. Denote by λ the uniform measure on S, and by ξ an arbitrary arc on S. Recall that

λ(ξ) =
|ξ |
π
.

Then, Define the Möbius transformation Φ : C −→ C by

Φ(ζ) :=
ζ + ρ
ζ + ρ

, where ρ is the primitive cubic root of unity.

Now, Let ε > , then for all a,b ∈ (−∞,] with |b − a|< ε and for all ζ ∈ [a,b], we have:

h(ζ)|b − a|∼ (hLeb)
(
[a,b]

)
= λ

[
Φ
(
[a,b]

)]
=

∣∣∣(Φ)′(ζ)
∣∣∣ · |b − a|
π

;





. Finally, h has explicit formulas in each coordinate.

Proposition C. g̃(Z) ∼ log|Z| near infinity.

Proposition D. ǧ∞ is a potential function in C \ {}. Further, the generalized laplacian of ǧ∞ has an explicit
formula in the whole C. In particular,

∆g̃∞ = ĥ ·Leb|[,],

where ĥ is the h defined in Proposition B but in Z coordinate.

Proposition E. For Z ∈ [,], g̃∞ achieves local maximum in [,] at Zmax =



√
− 

with the maximum value

g̃∞(Zmax) := Cmax ≈ ..

Proposition F. For all C ∈R such that C > Cmax, the level curve g̃−∞ (C) is analytic.

. Lemmas

Lemma . Define the Möbius transformation Φ : C −→ C by

Φ(ζ) :=
ζ + ρ
ζ + ρ

, where ρ is the primitive cubic root of unity.

Then, we have
Φ
(
(−∞,]

)
=

{
z ∈ S : Arg(z) ∈ [−π


,)

}
.

Proof. Let x ∈ (−∞,]. Then, observe that |x + ρ|= |x + ρ|. Thus, we have Φ(x) ∈ S. On the other hand, a
little bit computation yields us

Φ(x) =
(x −  ) − 
(x −  ) + 

+ i
√
(x −  )

(x −  ) + 

Observe that u(x) :=<
(
Φ(x)

)
satisfies

u() = −

, and lim

x→−∞
u(x) = .

Further, u(x) is clearly continuous and by identifying u(x) = u(x) one could check that u(x) is also
injective on (−∞,]. Therefore, it must be monotone. Therefore, we have

u(x) ∈
[
− 

,

)
.

The argument of Φ(x) at which u(x) = −


can be −π


, and
π


, but we can get rid of
π


since v() =

−
√



. It then follows immediately that Arg
(
Φ(x)

)
∈
[
− π

,

)
.

�

Lemma . Define S :=
{
ζ ∈ C \ {} : Arg(ζ) /∈ [−π


,
π


]
}
. Then there exists a rational map R of degree  such that

for all ζ ∈ S, we have
ǧ∞(ζ) =  log+

∣∣∣Φ(ζ)
∣∣∣− log

∣∣∣R(ζ)
∣∣∣+C , where C is a constant.





Proof. The result follows immediately by noting that for all ζ ∈ S, we have

ǧ∞(ζ) =  log
(
max{|ζ + ρ|, |ζ + ρ|}

)
− log|ζ − ζ + |+log(/)

=⇒ ǧ(ζ) =  log+
∣∣∣Φ(ζ)

∣∣∣− log|ζ − ζ + |+ log|ζ + ρ|+log(/)

=⇒ ǧ(ζ) =  log+
∣∣∣Φ(ζ)

∣∣∣− log
∣∣∣R(ζ)

∣∣∣+C

where R(ζ) =
ζ − ζ + 

(ζ + ρ)
and C = log(/).

�

Lemma . For x ∈ [−,], the function

ǧ∞(x) =  log
(
max

{
|x+ |,

√
x − x+ 

})
− log

∣∣∣x − x + 
∣∣∣+ log

(


)
achieves local maximum at

xmax =



(
(− 

√
) +

√
− 

√
)

)
which is the larger negative root of

x − x − x − x+ .

Proof. Firstly note that for all x ∈ [−,], we have
√
x − x+  > |x + |. Then, computing the derivative and

setting it to be zero yields us

(x − )(x+ )(x − x − x − x+ ) = .

As x ∈ [−,], we can get rid of x =  and all other three roots of x − x − x − x+ .
The result then follows immediately by directly comparing

ǧ∞(−) = ǧ∞() ≈ .

and ǧ∞(xmax) := Cmax ≈ ..

�

Lemma . Keep the notation, then for finite places v and any algebraic integers α ∈Q, we have

g̃v(α) =

d

∑
α′

∑
v

log+|α′ |v ,

where d = the degree of minimal polynomial of α, and the first sum is summing over all the conjugates of α.

. Proof of Theorem A

Proof. Let C be any real number such that C ≥ C and set E := g̃−∞ (C). Then by the first part of Theorem ,
we know that c(E) ≥ .

Now, it follows from Proposition F that E is closed, and from Proposition C that E is bounded. There-
fore, E is a compact subset of C.

Further, one could check ǧ∞(ζ) = ǧ∞(ζ), as ρ− = ρ. Also, Z(ζ) = Z(ζ). Therefore, E is stable under
complex conjugation.

Thus, by Fekete-Szegö Theorem (Theorem ), we know that for every open neighborhood U ⊃ E, there
exists infinitely many irreducible monic polynomials P (X) ∈Z[i][X] that have all the roots in U .

Let O be any open set containing E such that

O ⊂ g̃−∞
(
(C − ε,C + ε)

)
, where ε >  is arbitrarily fixed.





Let α ∈ O be an algebraic integer, then by Lemma , we know that the height function

h̃(α) =

d

∑
α′
g̃∞(α′) ∈ (C − ε,C + ε).

As ε >  is arbitrarily small, we can conclude that for any real number C such that C ≥ C, it can be
approximated by a sequence of values of height function in projective plane.

�

. Proof of Proposition B

Proof. The first part of the proposition follows immediately from the fact that

(h ·µ)(A) =
∫
A
h(z)dµ(z),

for any Borel measure µ and set A.
The second part follows immediately from the first part. The third part follows from Lemma .
The fourth part requires a little bit long computation of the push-forward of ν.
Firstly, by the third part, we immediately have

h(ζ) =

∣∣∣Φ′(ζ)
∣∣∣

π
=
√

π
· 
ζ − ζ + 

. (.)

Now, define
ν† := h† ·Leb

(
(−∞,]

)
= α∗ν where α∗ is the push-forward of α.

Let ε >  be arbitrarily fixed, then for all a ∈ (−∞,], we have

ν†
(
[a,a+ ε]

)
:= α∗ν

(
[a,a+ ε]

)
= ν

(
α−([a,a+ ε])

)
= ν

(
[a/, (a+ ε)/]

)
∼ h(a/) ·

∣∣∣(a+ ε)/ − a/
∣∣∣ = h(a/) ·

∣∣∣(α−)′(a)∣∣∣ · |a+ ε − a|= h(a/) · 

a−/ · ε.

On the other hand, we have

ν†
(
[a,a+ ε]

)
∼ h†(a)|(a+ ε)− a|= h†(a) · ε.

Therefore, for all a ∈ (−∞,], we have

h†(a) = h(a/) · 

a−/ =

√


· 
a(a/ + a−/ − )

. (.)

Denote by Z∗ the push-forward of Z. Then we define

ν̂ := ĥLeb
(
[,]) = Z∗ν† (.)

Let ε >  and for all a ∈ [,], set

I := [a,a+ ε], Z−(I) = J ∪ J, and Z−(a) = {a, a}

where Ji ⊂ (−∞,] and ai ∈ (−∞,] for all i ∈ {,}.
Then, we have

ν̂(I) = Z∗ν†(I) = ν†
(
Z−(I)

)
= ν†(J) + ν†(J) ∼ h†(a)|J|+h†(a)|J|

Further, for all i ∈ {,}, we have
ε = |I |=

∣∣∣Z′(ai)∣∣∣ · |Ji |




which gives us

|Ji |=
ε

|Z′(ai)|
On the other hand, we have

ν̂(I) ∼ ĥ(a) · ε

Therefore, for all a ∈ [,],we have

ĥ(a) =
h†(a)
|Z′(a)|

+
h†(a)∣∣∣Z′(a)| , where a, a ∈ Z−(a). (.)

Now, solving the inverse map of (.) involves solving a quadratic equation. The solution provides us
the following information:

. a = a− ;

. a + a− −  =
−
a

and thus a − a +  =
−
a
· a for a ∈ [,];

. a − a =
±
√

∆
a

;

. Z−(a) =
(a− )±

√
∆

a
, where ∆ = (− a) − a = (− a)(− a).

Define the inversion map I : P −→ P
 by ζ 7→ ζ−, then it is easy to check that

g∞ ◦ I(ζ) = g∞(ζ).

Thus, ∆g∞ = ∆(g∞ ◦ I) yielding us I∗ν = ν.
Thus, for all a ∈ (−∞,] and ε >  arbitrarily fixed, we have

h(a) · ε ∼ ν
(
[a,a+ ε]

)
= I∗ν

(
[a,a+ ε]) = ν

(
[

a
,


a+ ε
]
)
∼ h

(
a

)
· ε
a
.

Therefore, we have
h(a) = h

(
a

)
· 
a
.

Now, note that α ◦ I = I ◦α, and thus we have

I∗ν
† = I∗(α∗ν) = (α ◦ I)∗(ν) = (I ◦α)∗(v) = α∗(I∗ν) = α∗ν = ν†.

Thus, we go back to the same case for I∗ν = ν, and thus we have

h†(a) = h†
(
a

)
· 
a
.

Therefore,
h†(a) = h†

( 
a

)
= ah

†(a) (.)

Note that by the information of a and a, we know that

I(a) = a and thus I(J) = J

Also, observe that
Z ◦ I = Z

and thus we have
Z′ = (Z ◦ I)′ = (Z′ ◦ I) · I ′





which gives us

Z ′(a) = Z′ ◦ I(a) · I ′(a) = Z(a) · I ′(a = Z′(a) · −

a

= −a · Z′(a)

Therefore, we have
Z′(a) = −a · Z′(a) (.)

Then, plugging (.) and (.) into (.) yields us the desired result.
Therefore, we have

ĥ(a) = 
h†(a)
|Z′(a)|

(.)

and thus it suffices for us now to simplify only one thing.
Consider the results above, and we will have

ĥ(a) = 
h†(a)
|Z′(a)|

=
√


π · 
· (a − a + )

a
∣∣∣(a + )(a − )

∣∣∣(a/ + a−/ − )

=

√


π
· a
a
· 

|a − |·(a
/
 + a−/ − )

= −

√


π
· 
a
· ∣∣∣a − a− ∣∣∣ · (a/ + a−/ − )

= −

√


π
· 
a
· ∣∣∣a − a∣∣∣(a/ + a−/ − )

= −

√


π
· 

a ·
√

∆
· 

a
/
 + a−/ − 

= − 
π
· 
a
· 

(− a)/ · (− a)/
· 

a
/
 + a−/ − 

(.)

Set ξ = a/ , then by point  from the information of a and a, we have

− 
a

= a + a− = ξ + ξ− = (ξ + ξ−)(ξ − + ξ−)

Define X := (ξ + ξ−) = a/ + a−/ , then (ξ − + ξ−) = X  − 
Thus, we have:

− 
a

= X (X  − ) where X = (ξ + ξ−), ξ = a/ (.)

Now, set Y := X −  and then by point  from the information of a and a, we have

− 
a

= (Y + )(Y + Y + − ) = Y + Y − 

Thus, we have
Y + Y = (− 

a
), where Y ∈ (−∞,−] (.)

Set Y = − Ŷ
a/

, then (.) gives us

− a = Ŷ − a/Ŷ (.)

Finally, taking (.), (.), (.) into the consideration of (.), we have our final formula of ĥ(a)
where a ∈ [,]:

ĥ(a) =

π
· 
a/(− a)/

· 
(− a)/ · Ŷ

(.)

where Ŷ (a) is the unique solution of Ŷ − a/Ŷ + (a− ) =  in [,∞)

�





. Proof of Proposition C

Proof. Consider the three rays that connects the origin to −,−ρ,−ρ respectively.
Denote by µ the measure of those three rays. Then, if we define

L : P −→ P
 by ζ 7→ ρζ

we have
µ = ν +L∗ν +L∗ ν.

Then by observing that




log‖ζ − ‖v=



(
log‖ζ − ‖v+log‖ζ − ρ‖v+log‖ζ − ρ‖v

)
and by the Fundamental Formula of Laplacian, we have

∆gv = µ− 


(
δ + δρ + δρ

)
.

Now recall (.), and we have

∆gv =


α∗

(
∆g†v ) where α∗ is the pull-back of α.

Then, we have
α∗

(
∆gv

)
=


·α∗α∗

(
∆g†v

)
=


·  · Id

(
∆g†v

)
= ∆g†v .

Thus, we have
∆g†v = α∗

(
∆gv

)
= α∗

(
ν +L∗ν +L∗ ν −




(δ + δρ + δρ )
)

= α∗ν −


· δ = ν† − δ.

Therefore, we have
∆g†v = ν† − δ. (.)

Similarly, recalling (.) yields us

∆g†v =


Z∗

(
∆ĝv

)
where Z∗ is the pull-back of Z

and thus
Z∗∆g†v =



Z∗Z∗

(
∆ĝv

)
=


·  · Id

(
∆ĝv

)
= ∆ĝv .

Therefore, we have
∆ĝv = Z∗

(
∆g†v

)
= Z∗

(
ν† − δ

)
= ν̂ − δ 


.

Thus, we have
∆ĝv = ν̂ − δ 


. (.)

It is immediate from (.) and (.) that

∆g̃v = ν̂ − δ 


+ δ 

− δ∞ = ν̂ − δ∞, (.)

which implies that
∆g̃v = probability measure− δ∞,

this happens if and only if
g̃∞(Z) ∼ log‖Z‖ near infinity.

�





. Proof of Proposition D

Proof. Firstly, it is clear that log|ζ + |, log|ζ + ρ| and log|ζ + ρ| are subharmonic.
Therefore, by Brelot-Carton Theorem,

 log
(
max{|ζ + |, |ζ + ρ|, |ζ + ρ|}

)
is subharmonic.

Also, ζ − ζ +  is a polynomial and thus log|ζ − ζ + | is a potential.
Now, set h :=  log+

∣∣∣Φ(ζ)
∣∣∣− log

∣∣∣R(ζ)
∣∣∣+C, where the right hand side is defined as in Lemma .

By Lemma , ǧ∞ − h =  on S, which implies

∆ǧ∞|S= ∆h|S .

Thus,
∆(ǧ∞ − h) = ∆() = .

Therefore, ǧ∞ is a potential on C \ {}.

By Lemma , we have
∆ǧ∞

∣∣∣
S

=
(
∆ log+

∣∣∣Φ(ζ)
∣∣∣)
S
−
(
∆ log

∣∣∣R(ζ)
∣∣∣)
S
.

As R(ζ) is a rational function, the log of it can be rewritten as the difference of two polynomials. Then,
each polynomial can be factored into a product all of the roots. Then, by the Fundamental Solution of
Laplacian, we have

log|R(ζ)|=
∫

log|z − ζ|dµ(z), where µ =
∑
ζ zeros

δζ −
∑

w poles

δw

On the other hand,(
∆ log+

∣∣∣Φ(ζ)
∣∣∣)
S

= Φ∗
(
∆ log+|·|

)
S
, where Φ∗ is the pull-back of Φ.

Therefore,

log+|Φ(ζ)|=
∫

log|z − ζ|d(Φ∗λ)(z), where λ is the uniform measure on S.

Thus, ∆ǧ∞
∣∣∣
S

is has an explicit formula.

Now, define L : P −→ P
 by L(ζ) := ζρ, which is an isomorphism of order . Then, we have

C \ {} = S ∪L(S)∪L−(S)

.
Observe that

ǧ∞ ◦L = ǧ∞

and thus we have
∆(ǧ∞ ◦L) = ∆ǧ∞

which implies
L∗(∆ǧ∞) = ∆ǧ∞, where L∗ is the pull-back of L.

Notice that as L : L(S) −→ L−(S) is an isomorphism, the pull-back of any measure on L−(S) via L is the
measure on L(S). Therefore, we have

L∗
(
∆ǧ∞

∣∣∣
L−(S)

)
=

(
L∗∆ǧ∞

)∣∣∣
L(S)

= ∆ǧ∞
∣∣∣
L(S)

.





Similarly, as L : L−(S) −→ S is an isomorphism, the pull-back of any measure on S via L is a measure on
L−(S). Thus,

L∗
(
∆ǧ∞

∣∣∣
S

)
=

(
L∗∆ǧ∞

)∣∣∣
L−(S)

= ∆ǧ∞
∣∣∣
L−(S)

As ∆ǧ∞
∣∣∣
S

has an explicit formula, by the above two calculation, ∆ǧ∞
∣∣∣
L−(S)

and ∆ǧ∞
∣∣∣
L(S)

both have ex-
plicit formulas.

Finally, ǧ∞() = log(/) and thus there is no direct mass, ∆ǧ() = .

For the last part of the proposition, by (.) and (.), we know that ∆g̃∞ is supported on [,]. Then
for any Borel set A ⊂ [,], we have

∆g̃(A) =
∫
A
h(x)dx = ĥ ·Leb|A.

Therefore, we have
∆g̃ = ĥ ·Leb|[,].

�

. Proof of Proposition E

Proof. Note that for all ζ ∈ [−,], we have Z(ζ) ∈ [,]. Thus, it suffices to analyze parametrized curve

ζ 7→
(
Z(ζ), g†∞(Z(ζ))

)
, for ζ ∈ [−,].

However, note that by definition we have

ǧ∞(ζ) = g†
(
Z(ζ)

)
and thus ǧ ′∞(ζ) = g†

′
∞
(
Z(ζ)

)
· Z′(ζ).

Also, for all ζ ∈ [−,], we have

Z′(ζ) =
ζ(ζ − )

(ζ − ζ + )
≤ .

Therefore, as long as the critical point ζ is not − and , the vanishing of ǧ ′∞ must imply the vanishing
of g†

′
∞.
Further, by Lemma , we know that ∀x ∈ [−,] \ {xmax}, we have

ǧ∞(xmax) > ǧ∞(x).

Set Zmax = Z(xmax). As Z : [−,] −→ [,] is a bijection, then ∀Z ∈ [,] \ {Zmax}, we have

ǧ∞(xmax) = g̃∞(Zmax) > g̃∞(Z) = ǧ∞(x).

Hence, it suffices to analyze the behavior of ǧ∞(ζ) for ζ ∈ [−,].
Therefore, Proposition E follows immediately from Lemma  by noting that Z(xmax) =



√
− 

.

�

. Proof of Proposition F

Proof. By Proposition E, for all x ∈ [,], we have

g̃(x) ≤ Cmax.

Therefore,
g̃−

(
(−∞,Cmax]

)
≥ [,].





Therefore, for all C ∈R such that C > Cmax, we have

g̃−(C)∩ g̃−
(
(−∞,Cmax]

)
= ∅,

which implies
g̃−(C)∩ [,] = ∅.

Now, by Proposition B, ∆g̃∞ is supported on [,], and thus g̃∞ is harmonic and thus analytic on C\[,].
The result then follows immediately from Implicit Function Theorem.

�





 Values on the Spectrum

. Conjecture of the Spectrum

Conjecture .. In Theorem A, we showed that the spectrum of height function in projective plane is dense after
C. Here, we also conjecture that

µess
zz = C.

Also, we conjecture that the set (.) is finite.

. Theorem G and Discussions

Theorem G. Under the the map Z : P −→ P
 defined by

Z(ζ) :=
−

ζ + ζ− − 
,

the six special points at which the projective height intersecting with x + y + z =  gets sharp upper bound are

normalized to one point Z† =


.

Proof. Recall that the six special points mentioned in the lemma has the form ( : α −  : −α) where α is a
root of the equation z−z+z−z+z−z+. We firstly need to identify those three coordinates with
the coordinates we use in P

, which is of the form [ρζ +  : ζ + ρ : ρζ + ρ].
As height function is symmetric, we can identity in this way:

[ζ + ρ : ρζ + ρ : ρζ + ] = [,α − ,−α]

and since the coordinates are homogenous, the above identity can be converted to[
 : −

ρζ

ζ + ρ
:
ρζ + 
ζ + ρ

]
= [,α − ,−α].

Therefore, we have

α = −
ρζ + 
ζ + ρ

.

Since α is a root, we have
α − α + α − α + α − α +  = 

and thus
(ζ + ρ)

[
(α + )− (α +α) + (α +α)− α

]
= .

Set y = ζ + ζ−, then, through a long computation, we have

(ζ)
[
+

(y − 


)
+
(y − 


)]
= ,

which then gives us

ζ +

ζ

+  = .

Plugging the above equation into Z(ζ) yields us the desired result:

Z† =


.

�





Remark .. In the similar fashion, one could also check that another six points at which hzz vanished can
be normalized to Z =  and Z = .

Therefore, under our normalization, those twelve points in Zagier’s paper can be now normalized to
only three points. This implies that, in our coordinate, the distributions of algebraic numbers and the cor-
responding values of height function are much simpler than Zagier’s coordinate. Hence, it is plausible for
us to find the essential minimum and all the values before essential minimum.

Remark .. Our numerical experiment suggests that the level curve g̃∞(Cmax) has logarithmic capacity less
than . Thus, by Proposition F , the level curve with logarithmic capacity must be smooth, since we need
to increase C in order to increase the capacity. Also, the level curve with capacity  contains the level curve
g̃∞(Cmax), and thus contains all the three normalized points.

We strongly suspect that, if C = µess
zz , then the level curve with capacity would contain all the algebraic

numbers that give you the values of height function before the essential minimum.
To prove or disprove the Conjecture ., it is necessary to find an algebraic formula of the curve that

contains the level curve g̃∞(Cmax), which could be the level curve with capacity . In this way, we could
try to understand the spectrum by understanding the algebraic formula since there must be some number
theory on it.

For now, we are trying to drive an algebraic equation form

ǧ(ζ)∞ = C

but only considering one of the three components in the max function.
For example, we only consider

|ζ + |

|ζ − ζ + |
= exp[C − log(/)].

Then, we want to fit the right hand side into some algebraic equation by identifying the left hand side as a
root of some algebraic equation.

The major problem here is that C is directly related to the capacity, which is hard to estimate. The way
we estimate C is described in Section A, and one could find that it wholly depends on the luck.

For now, we find the right hand side could be a root of the polynomial

x − x − x+ .

Thus, if we set
A = |ζ + |, and B = |ζ − ζ + |,

we would have (A
B

)
− 

(A
B

)
− 

(A
B

)
+  = ,

which gives us
A(A − B) = B(A − B).

To get rid of the square root, we need to square both side, which yields us

A(A − B) = B(A − B).

However, this equation involves th power, and there is no way to cancel the left hand side and right
hand side in a beautiful way such that the final equation is clean or at least understandable.

Getting the algebraic formula is just the first step, and it is a pretty new and unknown field for us to
know what will be going on in the several steps.

Hence, the conjecture is still an open and a totally new problem, and we will be working on this in the
next few semesters. At the very least, Theorem A has provided a freshly new result of the spectrum of the
height function in projective plane.





A Numerical Experiment

A. Level Curve in original coordinate

To plot the graph of ǧ∞(ζ) with ζ ∈C, we will directly use (.) but replacing ζ = x+ iy in the software.
We will firstly plot some general graphs within different domains and then we will plot the level curves

with specific values.

Figure A.: D and Contour Plot of ǧ∞(ζ) for x,y ∈ [−,]

Figure A.: D and Contour Plot of ǧ∞(ζ) for x,y ∈ [−,]

Figure A.: D and Contour Plot of ǧ∞(ζ) for x,y ∈ [−,]





Figure A.: D and Contour Plot of ǧ∞(ζ) for x,y ∈ [−,]

Figure A.: Left ǧ∞(ζ) = / for x,y ∈ [−,], Right ǧ∞(ζ) =  for x,y ∈ [−,]

Figure A.: Left ǧ∞(ζ) =  for x,y ∈ [−,], Right ǧ∞(ζ) =  for x,y ∈ [−,]





A. Level Curve in Final Coordinate

As we tried many times that if we used the formula (.), the plot will not really be nice behaved, especially
around the origin. This is because the choice of different complex root and the choice of the ± in terms of
solving the quadratic formula. However, since the formula of ǧ∞(ζ) is really nice, we can then directly let
Mathematica to compute the curve of the composition map

(ǧ∞ ◦Z−)(ζ).

Figure A below indicates that Mathematica does not compute the wrong graph, since in the graph,
ǧ∞(ζ) tends to be circle when ζ is large, which is consistent with Proposition C.

Figures A, A, A give us a closer look of the level curve. The behavior is consistent with what we
guessed. The curve becomes not smooth anymore around [,]. Figure A gives us the look of the level
curve with respect to the local maximum value. Figure A, A, A provides our insight about the
change of the shape when we increase the value. In fact, it changes to a circle at a really fast speed.

Figure A.: D and Contour Plot of g̃∞(Z) for x,y ∈ [−,]

Figure A.: D and Contour Plot of g̃∞(Z) for x,y ∈ [−,]





Figure A.: D and Contour Plot of g̃∞(Z) for x,y ∈ [−,]

Figure A.: D and Contour Plot of g̃∞(Z) for {x,−,}, {y,−,}

Figure A.: g̃∞(Z) = g̃∞(x) for {x,−/,/}, {y,−/,/}





Figure A.: g̃∞(Z) =  for x,y ∈ [−/,/]

Figure A.: g̃∞(Z) = . for x,y ∈ [−.,.]

Figure A.: g̃∞(Z) =  for x,y ∈ [−,]





A. Computation of Capacity

We aim to compute find a C such that the capacity of the set of level curve {g̃∞ ≤ C}, cap
(
{g̃∞ ≤ C}

)
= .

The hardness of computing capacity is well-known. Some ways to get information of capacity is to
estimate it by some numerical method, which is also hard. However, the capacity some certain shapes is
known. For instance, the capacity of a circle is its radius, and the capacity of an ellipse is (a + b)/. Since
the shape of our level curve is clearly shown in the Figures above, we could interact those level curves with
circle and ellipse to estimate C such that the level curve is almost like a circle or ellipse.

Firstly, Figures A-A show the experiments we did. We could see that for circle with radius less
than , even we can adjust the center, the level curve cannot be even close to a circle. However, the level
curve with respect to the value  gives us an insight about trying ellipse, because it is pretty like an ellipse
and it pretty much tends to be an “flat” circle. Thus, we get the Figure A. We are now trying to estimate
this value as specific as possible for the purpose described in Section . The value provided in Figure A
is the C that gives us the cubic polynomial.

Figure A.: Left:ǧ∞(x) = ǧ∞(x) with B(center,radius)=B(/,.). Right:ǧ∞(x) =  with B(/, .).

Figure A.: Left:ǧ∞(x) = . with B(/,). Right:ǧ∞(x) =  with B(/,.).





Figure A.: ǧ∞(x) =  with Ball(/, .).

Figure A.: ǧ∞(x) = . with ellipse (a,b)=(.,  - .), center=(.,)





B Proof of Zagier’s Paper

B. Theorem  of Zagier

Theorem . Zagier’s Theorem For all algebraic number α 6= ,,
(±√−)


, we have,

H(α) +H(−α) ≥ 


log
+
√



,

with equality if and only if α or −α is a primitive th root of unity.

Lemma . Let w and w denote the complex roots of x − x +  = . There is a universal constant A ≥  such that
for every complex number α /∈ {,,w,w}, we have

log|α −α + |v+nv ≤ A(|log|α|v |+|log|−α|v |), (B.)

for all places v in an algebraic number field K , where nv =


 if v is real
 if v is complex
 if v is non-Archimedean.

Proof. For v being non-Archimedean, by Theorem ., we have |α|v≤  for all α ∈C. Therefore, |α−α+|v≤
 and hence the left-hand side of (..) ≤ . But the right-hand side of (..) is always ≥ . Therefore, the
inequality holds for the non-Archimedean case.

If v is Archimedean, then we need to consider the function,

f (z) =
log|z − z+ |+
|log|z||+|log|− z||

,

for all z ∈C {,,w,w}.
Notice that as |z|→∞, f (z)→ . For z which is near the points w or w, f (z) is large and negative. Finally

the function is continuous everywhere except at z satisfying |z|= | − z|= , where again f (x) is large and
negative. It follows that the function is bounded above uniformly on all of C.

�

Corollary B.. For all algebraic number α 6= ,,
(±√−)


, we have

H(α) +H(−α) ≥ 
A
.

Proof. By Product Formula and observation, we have∑
v

log|β|v= ,
∑
v

nv = [K : Q],
∑
v

|log|β|v |= HK (β). (B.)

Now, summing (B.) over all places v with considering (B.), we can conclude that

H(α) +H(−α) ≥ 
A
.

�

Lemma . For z ∈C, we have

max(, log|z|) + max(, log|− z|) ≥
√
− 

√


log|z − z|+ 

√


log|z − z+ |+


log
+
√



, (B.)

and the equality holds if and only if z or − z equals e
±πi
 or e

±πi
 .





Proof. Denote max(, log|z|) = log+|z| for brevity. Define a function f by

f (z) =
√
− 

√


log|z − z|+ 

√


log|z − z+ |+


log
+
√



− log+|z|− log+|− z|.

Notice that if |z| is large, then f (z) ∼
√
− 

√


log|z|+ 

√


log|z|− log|z|− log|z|= − log|z|. In particular,

f (z)→ −∞ as |z|→ ∞. Similarly, if z is close to one of the points ,,w,w, then f (z) is large and negative.
Away from these points, f (z) is continuous and therefore can attain its maximum on some finite point or
points. Further, off the circles |z|=  and |− z|= , the function is the real part of a holomorphic function,
and thus by the maximal Maximum Modulus Principle for harmonic function, the maxima must be attained
on these circles. Finally, observe that z 7→ −z and z 7→ z preserve f , and thus it suffices to only consider the
case of z = eiθ where  ≤ θ ≤ π. Thus, (..) can be simplified a little to the following since |z|=  always
holds in this proof.

It now remains only to consider the size between |− z| and .
Firstly, consider the case where  ≤ θ ≤ π

 , so that |−z|≤ . Replace z by z = eiθ in (..) and use Euler’s

formula to expand eiθ . Simplify and we can get

f (z) =
√
− 

√


log(sin
θ


) +


√


log(cosθ − ) +



log
+
√



.

Wirte S = sin θ so that  ≤ S ≤ , then we get

f (z) =
√
− 

√


log(S) +


√


log(− S) +



log
+
√



.

Differentiating the above equation with respect to S, and we can find that the maximum of f for S ∈ (,)
is achieved at S =

−√
 , where f =  and θ = π

 .
Now, consider the case where π

 < θ ≤ π so that |− z|> . We use the same S, so that  < S ≤  and

f (z) =
−√− 

√


log(S) +


√


log(S − ) +



log
+
√



.

Differentiating above equation with respect to S, and we can find that the maximum of f for S ∈ (,)
is achieved at S =

+
√

 , where f =  and θ = π .

Therefore, f ≤  and achieves equality if and only if z or  − z equals e
πi
 or e

πi
 . This conclusion is

equivalent to (B.).
�

Proof of Theorem  (Zagier’s Theorem):

Proof. Lemma  immediately gives us

max(, log|z|v) + max(, log|− z|v) ≥
√
− 

√


log|z − z|v+


√


log|z − z+ |v+



log
+
√



,

since for v to be Archimedean, |α|v= |α|nv , and for v to be non-Archimedean, we can apply the same argu-
ment as in the proof of Lemma  by only considering the cases |α|v≤ . Now summing over all places v,
using (B.), we can conclude the theorem immediately.

�





B. Projective Version of Zagier’s Theorem

Observe that we have the following inequality:

max(|x|,) + max(|y|,) ≥max(|x|, |y|,) ≥
max(|x|,) + max(|y|,)


.

To show this inequality, one can assume without the loss of generality that |x|≥ , then separate the cases
|x|≤ |y| and |x|≥ |y|, and to show the second inequality, one may need to additionally separate the cases |y|≤ 
and |y|≥ .

The combination of this observation with Theorem  implies that

H(x) +H(y) ≥H
P
(x : y : ) ≥  (H(x) +H(y))

and hence the minimum of H
P
 restricted to the curve x+y+z =  is some value between C/ and C, where

C is the optimal constant such that
H(α) +H(−α) ≥ C > 

Theorem . (Projective Version of Zagier’s Theorem) Let C ⊂ P
 be the curve x + y + z = , and let θ =

. · · · be the real root of θ −θ −  = . Then, we have:

H
P
(P ) ≥ 


logθ = . · · ·

for all P ∈ C(Q) except for the five points:

P = ( : − : ), ( :  : −), ( :  : −), ( : w : w), ( : w : w),

where w = nontrivial cube root of unity for which H
P
(P ) vanishes.

The equality holds if and only if P = ( : α −  : −α), where α is a root of the equation α − α + α − α +
α − α +  = 

Lemma . For (x : y : z) ∈C, we have

logmax(|x|, |y|, |z|) ≥ 


logθ +


θ − 
log|xy + yz+ zx|+ θ − 

θ − 
log|xyz|, (B.)

with x+ y + z = , where θ = . · · · is the real root of θ −θ −  = .

Proof. Since the calculation is symmetric in x + y + z = , we can always assume |z|= |x + y|≥max{|x|, |y|} by
interchanging x, y, z if necessary. Apply this change to (B.) and we will get the inequality

log|x+ y|≥ 


logθ +


θ − 
log|(x+ y) − xy|+ θ − 

θ − 
log|xy(x+ y)|.

Define function F to be the right-hand side of the above equation subtracting the left-hand side.

F =



logθ +


θ − 
log|(x+ y) − xy|+ θ − 

θ − 
log|xy|+− θ

θ − 
log|x+ y|

For now, let’s assume |x+y|≥ |x| and |x+y|≥ |y|. By similar argument in the proof of Lemma ., we know
that F is a hormonic function, and thus the maximal value only happens on the boundary. Therefore, we
can assume |x+ y|= |x| or |x+ y|= |y| with |x+ y|, |x|, |y|6= .

Without loss of generality, assume |x + y|= |x|, so that
|x+ y|
|x|

= |+
y

x
|= . Let ζ = +

y

x
with noting that

|ζ|= . Replace ζ into F and get

F =



logθ +


θ − 
log|ζ − ζ + |+ θ − 

θ − 
log|ζ − |+− θ

θ − 
log|ζ|.





Since |ζ|=  and ζ ∈ C, we can parametrize ζ = eiα . Note that since |x + y|= |x| and |x + y|≥ |y|, we have
|x + y|= |x|≥ |y|= |x||ζ − |, and hence we have |ζ − |≤ . Therefore, α ∈ [, π ] or [,−π ]. By symmetric, we
assume that α ∈ [, π ].

Replace ζ = eiα and get

F =



logθ +


θ − 
log|eiα − eiα + |+ θ − 

θ − 
log|eiα − |.

Use Euler’s formula, we have |eiα−eiα+|= (cosα−) and |eiα−|= −(cosα−). Let S = cosα−
where α ∈ [, π ]. Let’s first consider the case where α ∈ (, π ), so that  < cosα <  and thus  < S < .

Then, |eiα − eiα + |= S and |eiα − |= (− S)

 . Replace S into the above equation, we get

F =



logθ +


θ − 
log(S) +

θ − 
θ − 

log(− S), for S ∈ (,).

Differentiating above equation with respect to S, and we get that F achieves maximum at S =

θ

, with

Fmax = F(

θ

) = .

Lastly, for the cases α =  and α =
π


, F→−∞, and thus the maximum cannot occur.

Hence, F ≤  as desired.
�

Proof of Theorem  (Projective Version of Zagier’s Theorem):

Proof. Firstly, we have argued in the proof of Lemma  that the maximum for F cannot happen for α =
π

,,−π


. For α =

π


, we have the corresponding coordinates to be ( : w : w), where w is a primitive cube

root of unity. For α = −π


, the corresponding coordinates are ( : w : w). For α = , we have ( :  : −). We

also argued that by symmetry, we can interchange x,y,z, so that we also have another two points at which
the maximal cannot occur, ( : − : ), ( :  : −).

Similarly as in the proof of Theorem , Lemma  immediately gives us

logmax(|x|v , |y|v , |z|v) ≥ nv


logθ +


θ − 
log|xy + yz+ zx|v+

θ − 
θ − 

log|xyz|v

where nv is the same as before.
Now, summing all over the places v, using (B.) and dividing by


[K : Q]

will yield the desired result.

�
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