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1 Introduction

In this paper we discuss the Erdős-Falconer distance problem. The classical
Erdős distance problem in Rd, d � 2, asks for the smallest possible size of
�(E) = {|x� y| : x, y 2 E} with E ⇢ Rd a finite set.

An analogous problem is the Falconer distance problem which asks how large
does the Hausdor↵ dimension of a compact set E ⇢ Rd, d � 2, needs to be to
ensure that the Lebesgue measure of �(E), defined as above, is positive.

The Erdős-Falconer distance problem in Z2
p

has features of both the Erdős
and the Falconer distance problems. Let E ⇢ Z2

p

and define

�(E) = {||x� y|| : x, y 2 E},

where
||x|| = x2

1 + x2
2.

taken modulo p. The Erdős-Falconer distance problem is the following: how
large does |E| have to be to ensure that �(E) = Z

p

?
In this paper, we argue that for any u 2 [0, 1

2 ), for all but finitely many
primes p, there is a set of size at least u · p log2(p) which has an incomplete
distance set, giving an explicit lower bound on the size of the largest such set.

2 Definitions

If E ⇢ Z
p

⇥ Z
p

, define �(E) = {t|9x, y 2 Z
p

⇥ Z
p

: d(x, y) = t}, where
d(x, y) = (x1 � y1)2 + (x2 � y2)2 taken modulo p. Define S (p) to be the size of
the largest such subset E which has distance set �(E) ( Z

p

.

3 Previous Results

Iosevich and Rudnev showed that if |E| > 2p
3
2 , then �(E) = Z

p

. Here we
sketch that proof.
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Let E be a subset of Z
p

⇥ Z
p

. Let 1
A

(·) be the indicator function of a set
A. Then, define

⌫(t) =
X

x,y2Z2
p

1
E

(x)1
E

(y)1
St(x� y),

where
S
t

= {x 2 Zp2 : ||x|| = t}.

Theorem 1. If |E| > 0, ⌫(t) > 0 for every t 2 Z
p

.

Proof. In order to prove this theorem, we begin with a couple of lemmas.

Lemma 1. Suppose that p ⌘ 1(mod 4). Then

|S
t

| = p� 1.

If p ⌘ 3(mod 4), then

|S
t

| = p+ 1.

Lemma 2. Suppose that m 6= (0,0). Then

|b1
St(m)|  2p�

3
2 .

Now, by Fourier Inversion, we have

⌫(t) =
X

x,y2Z2
p

1
E

(x)1
E

(y)
X

m2Z2
p

b1
St(m)�((x� y) ·m).

Reversing the order of summation and using the definition of the Fourier
transform, we obtain

p4
X

m2Z2
p

|b1
E

(m)|2b1
St(m)

= (|E|)2 · |S
t

| · p�2 + p4
X

m 6=(0,0)

|b1
E

(m)|2b1
St(m). (1)

With Lemma 1, the first term in equation (1) equals

(|E|)2p�1 ± (|E|)2p�2.

Assuming Lemma 2, the second term in equation (1) is bounded by

p4 · 2p� 3
2 ·
X

m2Z2
p

|b1
E

(m)|2

= 2p
1
2 · |E|
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by Plancherel.
It follows that the second term in equation (1) is smaller than the first term

if |E| > 2p
3
2 , which completes the proof since the positivity of the expression of

equation (1) says that

⌫(t) =
X

||x�y||=t

E(x)E(y) > 0,

which means that for every t 2 Z
p

there exists x, y 2 E such that ||x� y|| = t.
That is to say that for every t 2 Z

p

, there is a pair of points in E whose vector
di↵erence is in S

t

.
Thus matters have been reduced to proving Lemma 2. We have

b1
St(m) = p�2

X

||x||=t

�(�x ·m),

which equals

p�3
X

x2Z2
p

X

x2Zp

�(s||x||� t)�(�x ·m). (2)

Then we have

sx2
j

� x
j

m
J

= s
⇣
x2
j

� m
j

s

⌘
= s

 ⇣
x
j

� m
j

2s

⌘2
�

m2
j

4s2

!
.

Plugging this back into equation (2) and making a change of variables

y
j

= x
j

� m
J

2s
,

we obtain

p�3
X

x 6=0

�

✓
�st� ||m||

4s

◆ X

y2Z2
p

�(s||y||). (3)

Then, we can write the inner sum of equation (3) in terms of a function  (s)
as X

y2Z2
p

�(s||y||) = p ·  2(s),

which | (s)| = 1.
Plugging this into equation (3), we obtain

p�2
X

x 6=0

�

✓
�st� ||m||

4s

◆
 2(s).

To conclude, we use the following result due to Andre Weil, which we use as
a black box.
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Theorem 2. With the notation above,

������

X

x 6=0

�

✓
�st� ||m||

4s

◆
 2(s)

������
 2

p
p.

This gives us the bound

���b1
St(m)

��� = p�2

������

X

x 6=0

�

✓
�st� ||m||

4s

◆
 2(s)

������
 2p�

3
2 ,

thereby proving Lemma 2 and therefore Theorem 1.

4 Computational Results

Whereas the aim of the last section was to give an upper bound on S (p), the
goal of the following sections is to find a large subset which has an incomplete
distance set, thereby giving a lower bound on S (p).

4.1 Brute force observations in Z5

Below is a visualization of Z5 ⇥ Z5, with an example of a subset

E = {(0, 1), (1, 1), (1, 2), (2, 3), (3, 4), (4, 4)} :

� � � X X
� � X � �
� X � � �
X X � � �
� � � � �

whose distance set is missing 4.
To get a handle on this problem, scripts were run for Z5 ⇥Z5. Interestingly,

the following subsets of size 10 were found to have incomplete distance sets:

� � � X X
� � X X �
� X X � �
X X � � �
X � � � X

� X � X �
� � X � X
X � � X �
� X � � X
X � X � �

X � X � �
X � X � �
X � X � �
X � X � �
X � X � �

� � � � �
X X X X X
X X X X X
� � � � �
� � � � �

� X X � �
� � X X �
� � � X X
X � � � X
X X � � �

X � � � X
� � � X X
� � X X �
� X X � �
X X � � �
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Observe that these subsets are pairs of parallel lines in Z5⇥Z5. In fact, by a
brute force algorithm, one can check that every pair of parallel lines in Z5 ⇥Z5

has an incomplete distance set, and they are the only subsets of size 10 that
enjoy this property. Furthermore, again by a simple brute force check, every
subset of Z5 ⇥ Z5 with exactly 11 points has a complete distance set.

This leads to a natural conjecture, namely that for any p, there exists a num-
ber of lines C such that the largest subsets of Z

p

⇥Z
p

with incomplete distance
set are exactly the sets which are collections of C parallel lines. However, this
can be shown to be incorrect, as one can algorithmically check that in Z19⇥Z19,
4 vertical lines at indices 0,1,2, and 3, have an incomplete distance set, but 4
lines with column indices 0,1,2, and 4 have a complete distance set.

Another natural question is: how many lines can the set contain while still
having an incomplete distance set?

4.2 Further simulations

To answer this question, a script was written which finds, for a given prime
p, the largest number of adjacent vertical lines in Z

p

⇥ Z
p

with an incomplete
distance set. Note that it is easy to compute the distance set of adjacent vertical
lines as we only need to compute the distances from every point to a fixed point
in the line with the smallest column index. The script was run on every prime
less than 20,000, and the number of adjacent lines (C) was plotted as a function
of p, alongside a function which is ⇥(log(x)), computed using Mathematica’s
FindFit function.
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This gives a strong indication that the largest number of adjacent lines with
incomplete distance set grows with log(p). Note that this would be a lower
bound on S (p), since there could possibly be larger subsets with an incomplete
distance set which are not adjacent vertical lines.

5 A Rephrasing in Terms of Quadratic Non-

residues

It turns out that finding a lower bound on the largest number of adjacent lines
with an incomplete distance set can be phrased as a problem related to quadratic
nonresidues. Explicitly,

Theorem 3. Let p be prime, and k 2 [1, . . . , p]. k adjacent lines have an

incomplete distance set if and only if there is an element y 2 Z
p

such that each

of y, y � 12, y � 22, . . . , y � (k � 1)2 are all quadratic nonresidues of Z
p

.

Proof. First, define A
D

= {y|x2+D2 = y for some x 2 Z
p

} ⇢ Z
p

. Then, notice
that the distance set of k vertical lines at column indices l1, . . . , lk is

[

i,j

A(li�lj)
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This follows since if x and y are two points in lines l
i

, l
j

, the horizontal distance
between them is (l

i

� l
j

)2, and thus their distance is contained in A(li�lj).
Further, if d 2 [

i,j

A(li�lj), there are lines at indices l
i

, l
j

where d 2 A(li�lj).
So, d = x2+(l

i

� l
j

)2 for some x 2 Z
p

. This distance is achieved between points
(l
i

, 0) and (l
j

, x).
Then, note that A

D

= {y|x2 + D2 = y for some x 2 Z
p

} = {y|x2 = y �
D2 for some x 2 Z

p

} = {y|y �D2 is a quadratic residue mod p}.
We want to know when p� |[

i,j

A(li�lj)| > 0. By convention, if S ⇢ Z
p

, let

S be the elements in Z
p

� S. Then, we have that

p�

������

[

i,j

A(li�lj)

������
=

������

[

i,j

A(li�lj)

������

=

������

\

i,j

A(li�lj)

������

=

������

\

i,j

{y|y � (l
i

� l
j

)2 is a quadratic nonresidue of Z
p

}

������

=

������

\

i<j

{y|y � (l
i

� l
j

)2 is a quadratic nonresidue of Z
p

}

������

since A(li�lj)2 = A(lj�li)2 . Then, assuming our k lines are all adjacent,
starting at column index 0, we have that {(l

i

� l
j

)2|0  i, j < k} = {i2|0  i <
k}, since line l

j

has horizontal distance j2 from line l0, and any two lines l
i

, l
j

(with i > j without loss of generality) have horizontal distance (l
i

� l
j

)2 = i2

for some i < k.
And so we have

������

\

i<j

{y|y � (l
i

� l
j

)2 is a quadratic nonresidue of Z
p

}

������

=

������

\

0i<k

{y|y � i2 is a quadratic nonresidue of Z
p

}

������

And thus, in particular, if each of y, y�12, y�22, . . . , y�(k�1)2 are quadratic
nonresidues of Z

p

, this expression is positive, and therefore the distance set of
k adjacent lines is incomplete.
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6 Distribution of Quadratic Nonresidues

Since there are (p � 1)/2 quadratic nonresidues in Z
p

, it makes intuitive sense
that there is about a 1/2k probability that all of y, y � 12, . . . , y � (k � 1)2 are
nonresidues, assuming that nonresidues behave essentially randomly. Then, it
would stand to reason that if k is about log p, then this probability is nonzero.
The following argument formalizes this intuition by giving exact bounds on the
likelihood that each of y�s1, y�s2, . . . , y�s

k

are quadratic nonresidues, where
the s

i

0s are distinct elements in Z
p

.

Definition 1. A set S of random boolean variables are ✏ � independent if for
every nonempty subset T ⇢ S, XOR

T

, the probability that an odd number of

elements of T are 1, is within ✏ of 1
2 .

Theorem 4. Let x be a random number in Z
p

. Let S = {s1, . . . , sk} be a subset

of Z
p

. Then define random variables A
i

such that A
i

= 1 if x+s
i

is a quadratic

nonresidue modulo p and 0 otherwise. Then the A
i

0s are ✏-independent with

✏ = k(3 +
p
p)/2p.

Proof. Let T = {s
i1 , . . . , sit} be any nonempty subset of S. Define

X
p

(z) =

8
><

>:

1 z is a nonzero quadratic residue modulo p

0 z = 0

�1 z is a quadratic nonresidue modulo p

Then, let f
T

(x) =
Q

t

j=1(x+s
ij ). Further, let X

+ be the number of elements

x in Z
p

such that X
p

(f
T

(x)) = 1, and X� be the number of elements x in Z
p

such that X
p

(f
T

(x)) = �1. Note that X
p

(z) = 0 if and only if z = 0, so there
are exactly t elements in Z

p

where X
p

(f
T

(x)) = 0, namely {�s
i1 , . . . ,�s

it}.
Thus X+ +X� = p� t.

By the Weil bound, we have

t
p
p >

������

X

x2Zp

X
p

(
tY

j=1

(x+ s
ij ))

������
= |X+ �X�| = |p� t� 2X�|

Then, divide by 2p to get

t

2
p
p
>

����
1

2
� t

2p
� X�

p

����

Then notice X�/p is the probability that f
T

(x) is a quadratic nonresidue.
Thus this probability is within t/(2p)+t/(2

p
p) of 1

2 . Also note that if f
T

(x) 6= 0,
then f

T

(x) is a nonresidue if and only if an odd number of A
ij

0s are 1, that is
XOR

T

= 1. Then we have that the probability that f
T

(x) = 0 is t/p, so XOR
T

deviates from 1
2 by at most

t

p
+

t

2p
+

t

2
p
p
=

t(3 +
p
p)

2p


k(3 +
p
p)

2p
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Lemma 3. If S is a set of ✏-independent random variables, then the joint dis-

tribution of all of the random variables deviates from the joint distribution of

independent fair coins by no more than 2✏.

Combining Lemma 3 and Theorem 4, the probability that the A
i

0s defined
as in Theorem 1 are all equal to 1, that is that each of x+ s

i

are nonresidues, is
within k(3 +

p
p)/p of ( 12 )

k. Thus, in particular, if p( 12 )
k > k(3 +

p
p), then the

probability is positive, and thus there exists an x 2 Z
p

such that each of x+ s
i

are quadratic nonresidues.
Putting this all together, we have our main theorem:

Theorem 5. Take any u 2 [0, 1
2 ). Then, for all but finitely many primes p,

S (p) � u · p log2(p).

Proof. Let p be prime, and let u 2 [0, 1
2 ). Then, let S = {0,�12,�22, . . . ,�(k�

1)2}, where k = du log2(p)e. Note that these are all distinct since each nonzero
value of 0,�1, . . . ,�(k � 1) appear in the second half of Z

p

( 12 log2(p) < p/2),
and thus no pair are additive inverses, and so their squares are all unique.

Then, p( 12 )
k grows faster than k(3 +

p
p), so for all but finitely many p,

p( 12 )
k > k(3+

p
p). Thus, from the argument above, for these p, there exists an

x 2 Z
p

such that each of x + s
i

are quadratic nonresidues. Then, by Theorem
3, this means that k adjacent columns in Z

p

⇥ Z
p

have an incomplete distance
set (in fact, it must be missing distance x), and the size of the set containing
these columns is pdu log2(p)e � u · p log2(p).

7 Conclusion

Putting the results of this paper with the result from Iosevich and Rudnev, we
have that for any u 2 [0, 1

2 ), for all but finitely many primes p,

u · p log2(p)  S (p)  2p
3
2 .

However, the author conjectures that S (p) 2 O(p log2(p)), as evidenced both
by the data presented in the graphs in this paper and the further assumption
that adjacent lines are near-optimal for creating subsets of Z

p

⇥ Z
p

which have
small distance sets.

The author also notes that if a subset of size k of Z
p

can always be found
which is near log2(p) in size which has a squared distance set of size strictly
less than k, then we can increase the lower bound proved in this paper. This
will allow us to choose our k lines to have an even smaller distance set than k
adjacent lines. However, to increase our lower bound, the size of the squared
distance set would have to be smaller than k by a factor that grows faster than
a constant, and the author conjectures that this is impossible.

Figure 1 below shows the accuracy of the lower bound produced in this paper
as well as a potential (unproven) upper bound, as evidence of the O(p log2(p))
conjecture
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Figure 1: Size of largest set of adjacent lines with incomplete data set, k, plotted
vs. p, the field size. Lower bound of S (p) proven in this paper in blue, and a
function which is O(p log2(p)) in green.
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