
Polymorphisms and Neural Networks for Image

Classification

Rachel Dennis
Advisors: Alex Iosevich and Charlotte Aten

May 2, 2023

1 Abstract

Neural networks are a key tool used in machine learning. While neural networks
conventionally use continuous activation functions, in this paper we explore the
use of discrete activation functions, namely polymorphisms. We define a neigh-
bor function that we use to update the activation functions while training. We
also define dominion polymorphisms, which come from a combinatorial object
analogous to a graph coloring, and create a dominion activation function which
makes the neural network more powerful. We implement and test a neural
network with these features and discuss the results.

2 Table of Contents

Contents

1 Abstract 1

2 Table of Contents 1

3 Background 2
3.1 Neural Networks . 2
3.2 Polymorphisms and Neighbor Functions 3
3.3 Hamming Graphs . 3
3.4 Dominions . 4

4 Implementation 7
4.1 Data Set . 7
4.2 Constructing the Dominion Polymorphism 7
4.3 Constructing Dominions . 8
4.4 Constructing Homomorphisms 11

1

5 Testing 12
5.1 Neural Network Construction . 12
5.2 Training Process . 13

6 Results 14
6.1 Improvement in Loss Value . 14
6.2 Next Steps . 14

7 Acknowledgements 15

3 Background

3.1 Neural Networks

Neural networks are an essential tool in machine learning and artificial intelli-
gence, with a wide variety of applications. Neural networks consist of layers of
nodes through which a set of input data is passed. Each node has an activation
function, and the network trains by running a set of input data, comparing it
to the expected output, and then making small adjustments to the activation
functions. We give a more formal definition as follows:

Definition 1. A neural network on a set A consists of a layered graph with
vertices V and edges E. We label the layers of the graph V0, V1, ..., Vn. Each
vertex v (also called a node) in row Vi has an associated activation function
Φ : Ak → A, where k is the number of nodes in Vn−1 which are connected to v
by an edge.

The first layer of the neural network, V0, takes the input to the network
and passes that data to the next layer without passing it through an activation
function. Each subsequent layer takes the outputs of previous layer, as well as
an extra node, as its inputs. The outputs of the last layer are the outputs of the
network. For a network performing classification, the network gives the class of
the input data as its only output.

To train a neural network to classify images, we use a set of training data
where each data point is an image and its class. For this paper we used images
of handwritten digits and the class is the digit which is displayed. During the
training process the network attempts to classify the image, then compares the
class it assigned to the correct class. If the classes don’t match, we use a process
called backpropagation to work backwards through the network and make small
changes to the activation functions.

If the activation functions are continuous, there is a relatively intuitive un-
derstanding of what it means for two functions to be similar. We can make small
changes to the constants in the equation to get a function that is ”close” to the
original function. This works well for the majority of neural networks, which use
continuous activation functions such as the the sigmoid function 1

1+e−x . Another
common construction is for each node to have a weight which is multiplied by
the sum of the inputs. In this case we make the weight slightly larger or smaller

2

depending on whether we want that node to have more or less impact on the
output of the network.

When using discrete activation functions, the concept of a small change to
the function is much less intuitive. In the next section we examine the use of
polymorphisms as activation functions and how we can conceptualize a ”small”
change to a polymorphism.

3.2 Polymorphisms and Neighbor Functions

Definition 2. A graph homomorphism from G to H is an operation that maps
adjacent vertices in G to adjacent vertices in H.

Definition 3. An n-ary graph polymorphism is a graph homormorphism h :
Gn → G.

We use polymorphisms as our activation functions in this project, so we need
a way to make small changes to a polymorphism. In order to do this we use what
we call neighbor functions that make small changes to a polymorphism. There
is no universal definition of what constitutes a small change to a polymorphism,
so we have chosen a few changes that can be made to a polymorphism while
still generating what we consider similar images.

Definition 4. An endomorphism on a graph G is a homomorphism h : G→ G.
We make changes to a polymorphism activation function by composing it

with an endomorphism. The endomorphisms we use are:

• a rotation by a factor of π
2

• a reflection about the y axis

• a componentwise sum of the input image with another binary image

• a Hadamard (componentwise) product of the input image with another
binary image.

When adjusting the activation functions during training, our program calls
on the neighbor function, which generates a set of similar polymorphisms by
composing the original polymorphism with the endomorphisms listed above,
then randomly picks one of the newly generated polymorphisms to replace the
original.

We’ve discussed how to make changes to a polymorphism, but we have yet
to discuss what polymorphisms we’ll be using. To do this we need to define
Hamming graphs.

3.3 Hamming Graphs

A Hamming graph stores tuples of binary images as its vertices.
Let n ∈ N and let An =Matn(F2).

3

Definition 5. We call a ∈ An a binary image and say that it has size n. We
call an entry aij in the matrix a a pixel.

An n-dimensional Hamming graph stores all the binary images of size n. To
explain the concept of adjacent images in the graph, we define the Hamming
distance.

Definition 6. The Hamming distance between two binary images a1, a2 ∈ An

is given by
d(a1, a2) := |{(i, j) ∈ [n]2|(ai)ij ̸= (a2)ij}|

. In other words, the Hamming distance is the number of pixels whose values
are different in a1 and a2.

Now we can formally define the Hamming graph.

Definition 7. The n-dimensional Hamming graph is

Hamn := (An, {(a1, a2) ∈ A2
n|d(a1, a2) ≤ 1}).

The k-ary n-dimensional Hamming graph is

Hamk
n := (Ak

n, {(a1, a2)|a1, a2 ∈ Ak
n and d(a1i , a2i) = 1 for at most one i ∈ {1, ..., k}}).

When constructing the polymorphisms it is useful to simplify the data stored
at the vertices. To do this we introduce the concept of a Hamming weight.

Definition 8. A binary image a ∈ An has Hamming weight

||a|| := d(a, 0)

where 0 is the binary image where every pixel takes value 0.

Definition 9. A Hamming weight map ψk : Ak
n → [n2 + 1]k is defined by

ψk(a1, ..., ak) := (||a1||, ..., ||ak||)

.

Definition 10. The k-ary Hamming weight graph of size n is given byHamk
n/ker(ψk).

Example 1. Figure 1 shows the binary Hamming weight graph of size 2.

3.4 Dominions

We want our activation function to map a tuple of binary images to a single
binary image. For the purposes of this paper, we focus on mapping pairs of
binary images in order to keep our tests simple. To ensure that our homo-
morphism maps Ham2

n/ker(Ψn) to Hamn, we use a coloring of the Hamming
weight graph to facilitate the process.

4

Figure 1: The binary Hamming weight graph of size 2

(0,0) (0,1) (0,2) (0,3) (0,4)

(1,0) (1,1) (1,2) (1,3) (1,4)

(2,0) (2,1) (2,2) (2,3) (2,4)

(3,0) (3,1) (3,2) (3,3) (3,4)

(4,0) (4,1) (4,2) (4,3) (4,4)

Definition 11. We refer to a coloring of of a Hamming weight graph as a
dominion.

To construct a homomorphism from Ham2
n/ker(Ψn) to Hamn, we need to

impose some restrictions on our coloring. A Hamming graph cannot contain
any 3-cycles due to its construction. For example, if we try to create a 3-cycle
starting with an image where the value of each pixel is 0, we get the following
adjacent images:

[
0 0
0 0

] [
1 0
0 0

]
[
0 1
0 0

]
[
0 0
1 0

]
[
0 0
0 1

]

For a 3-cycle to exist, there would have to be an edge in the graph between
two of the images adjacent to the 0 image. However, each pair of these matrices
has different values at two pixels. Thus their Hamming distance is 2 and so
there is no edge between them in the Hamming graph.

To ensure that the dominion preserves the structure of the Hamming graph,

5

we need to make sure there are no 3-cycles in the dominion. To formalize this
constraint we define a basic cube.

Definition 12. Given a vertex v′ = (v′1, v
′
2, ..., v

′
k) of the k-ary Hamming weight

graph of size n, the basic cube with v′ as its top corner is

{v = (v0, v1, ..., vk)|∀i, (vi − v′i) ∈ {0, 1}}

We then restrict the coloring by saying that a dominion can assign at most
2 colors to the vertices of a basic cube.

Example 2. We want to define a dominion for the Hamming weight graph
shown in Figure 1. Suppose we are using the three colors {a, b, c}. There are
no restrictions on the color of (0, 0), so we assign it a. Again, there are no
restrictions on the color of (1, 0), so we assign it b. Now (0, 1) and (1, 1) are in
a basic cube with (0, 0) and (1, 0), so we can only color them a or b. We assign
them both a. Thus we have assigned colors to our first basic cube:

a a

b a

Now we consider the basic cube consisting of (0, 1), (1, 1), (0, 2), and (1, 2).
We have already assigned two colors to this cube, so we can assign the remaining
vertices only a or b. We color (0, 2) b and (1, 2) a.

The basic cube consisting of (1, 0, (1, 1), (2, 0), and (2, 1) has only been
assigned one color, so we can pick any of the three colors for (2, 1). We assign
it c and do the same to (2, 1).

a a

b a

a a

c

c

We see that the basic cube consisting of (1, 1), (1, 2), (2, 1), and (2, 2) has
only been assigned two colors, so our choices of color work. We continue in this
manner to assign colors to all of the vertices in the Hamming weight graph.

To help the program create a dominion, we use a constraint graph to keep
track of which colors are adjacent to each other.

Definition 13. A constraint graph consists of a set of vertices, which are the
colors that we can choose from when creating the dominion, and a set of edges
that connect any two colors than can be adjacent to each other in the dominion.

6

Since there can be at most two colors in any basic cube, there can be no
three-cycles in the constraint graph. Thus we can store a constraint graph as a
tree.

Example 3. The constraint graph for the dominion in Example 2 is

a

b c

Given a tree and a constraint graph, we can generate a variety of dominions.
We define a minimum constraint graph that is specific to each dominion.

Definition 14. The minimum constraint graph (MCG) for a dominion includes
an edge between two labels iff those two labels are adjacent in the dominion.

Example 4. The constraint graph in Example 3 is also a minimum constraint
graph because a, b, and c are all used in the dominion in Example 2.

4 Implementation

4.1 Data Set

We tested our neural networks on the MNIST dataset, a set of images of hand-
written numbers between 0 and 9. Each image was 28 pixels by 28 pixels
and each pixel had a grayscale value. We converted the images to black-and-
white images to simplify our initial tests. Each pixel in the grayscale image
had a value between 0 (a black pixel) and 255 (a white pixel). We modified the
code from https://www.kaggle.com/code/hojjatk/read-mnist-dataset/notebook
to read the MNIST dataset and convert the stored data into images stored as
lists of lists. If the original pixel had a value greater than 127 we changed it to
a white pixel; otherwise we changed it to a black pixel.

4.2 Constructing the Dominion Polymorphism

We want to construct a polymorphism to use as an activation function that uses
dominions to map Ham2

2 to Ham2. We refer to this function as gα. Given a
dominion D and a homomorphism α that maps a label in the dominion to a
binary image, we define

gα(a1, a2) = α(D(Ψ2(a1, a2))).

Recall that Ψ2 returns the Hamming weights of a1 and a2.
We store a dominion in python as an array. D(i, j) returns the the label in

the i-th row and j-th column of the array. Note that for a binary image of size
n, the dimensions of the dominion will be (n2 + 1)x(n2 + 1).

7

4.3 Constructing Dominions

We want to be able to construct a variety of dominion polymorphisms for any
given tree. However, generating a new dominion and homomorphism each time
we need a new dominion polymorphism is time-consuming, so we create them
in advance and save them. We begin with a set of labels for the coloring and
construct a random tree which is our constraint graph.

Example 5. To illustrate the algorithms for creating dominions and homomor-
phisms we’ll use a scaled-down version of the problem for 2 by 2 binary images.
We start with a set of five colors with labels {1, 2, 3, 4, 5} and randomly con-
struct a tree, which will be our constraint graph. For this example we get the
following tree:

1

5

4

2 3

Once we have set of labels and a constraint graph, we use the following
algorithm to generate random dominions. Note that the algorithms are stored
as lists of lists. We then save these lists as text files so that we can reconstruct
the dominion from the file when creating a dominion polymorphism.

The algorithm to generate a new row is shown below. It works by creating
a set of possible labels for the next element in the dominion and a set of labels
that cannot be assigned to the next element. If there are two possible labels
for the element, one of those two elements must be chosen so that there are no
more than two colors in any basic cube. If there is one possible label and one or
more rejected labels, we assign the element the one possible label. If there is one
possible label and no rejected labels, we can choose any label that is adjacent
to the possible label in the constraint graph.

Example 6. Since we’re using a 2x2 image, we generate a dominion of size 5.

8

Algorithm 1 Generate a Random Dominion

Input: the size s of the dominion being generated
Input: a list of labels L
Input: a constraint graph, represented as a tree t
1: Randomly choose a label from L and make it the first element in a list of

lists which we’ll call partialDominion.
2: for i = 1 to s do
3: Randomly choose a label that’s adjacent to partialDominion[0][i-1] in the

constraint graph. (We consider a label to be adjacent to itself.)
4: Assign this label at partialDominion[0][i]
5: end for
6: for i = 1 to s do
7: Generate the next line of the graph.
8: end for

Output: The dominion partialDominion

3 4 2 4 3

3 4 2 4 4

3 4 2 4 2

4 4 4 4 2

5 4 4 4 2

This is a case where the minimum constraint graph is a sugbraph of the
constraint graph, since this dominion doesn’t include the label 1. The minimum
constraint graph is pictured below.

9

Algorithm 2 Generate the i-th Row of a Dominion

Input: the (i− 1)-th row R of the dominion
Input: a list of labels L
Input: a constraint graph, represented as a tree t
1: n = the length of R
2: for j = 0 to n do
3: Create new sets of nodes, one called candidates and one called rejects.

We eventually want candidates to contain all possible labels for the j-th
element of the new row.

4: if j = 0 then
5: Add elements 0 and 1 of R to candidates.
6: else if j = n− 1 is the last node in the row then
7: Add the (n− 1)-th and (n− 2)-th elements of R and the the (n− 2)-th

element of the new row to candidates.
8: else
9: Add the (j)-th and (j−1)-th elements of R to candidates. If the (j−1)-

th element of the new row matches the (j)-th or (j + 1)-th element of
R, add it as well.

10: Add any of the following elements that aren’t already in candidates to
rejects: the (j−1)-th, j-th, and (j+1)-th elements of R and the j−1-th
element of the new row.

11: end if
12: if —candidates—=1 and —rejects—=0 then
13: Let l be the label in candidates. Add any label that’s adjacent to l in

t to candidates.
14: end if
15: Randomly choose one element of candidates.
16: Add the chosen node to the end of the i-th row
17: end for
Output: The i-th row of the dominion

10

5

4

2 3

4.4 Constructing Homomorphisms

To construct a homomorphism from a constraint graph L to Hamn, we map
each node in the constraint graph to a binary image. Given an image a0, we call
another image a1 adjacent to a0 if a0 and a1 have differing values at at most
one pixel.

Starting with a contraint graph represented as a tree, we construct a ho-
momorphism as follows. First assign a random binary image to the root of the
tree. Then run the recursion step in Algorithm 3 until every node in the tree
has been assigned a binary image.

Algorithm 3 homomorphismRecursiveStep()

Input: a constraint graph L
Input: r, the parent of whichever node is about to be assigned a value
Input: the set N of the nodes which are adjacent to r in the tree but have not

yet been assigned a binary image
Input: α, a dictionary containing the values of the homomorphism that have

already been assigned
1: if N = ∅ then
2: Return α
3: else
4: for n ∈ N do
5: Choose a random binary image that is adjacent to the image assigned

to r.
6: Assign this image as the value n and add the pair as an entry in α.
7: Let N ′ be the set of neighbors of n excluding r.
8: α = homomorphismRecursionStep(L, n,N ′, α)
9: end for

10: end if
Output: α

Example 7. Using the same constraint graph from the previous examples in
this section, we want to construct a homomorphism. We begin by assigning

the randomly generated binary image

[
1 1
0 0

]
at the root of the tree. The only

11

neighbor of the root is 5. We change the value of the pixel in the second row

and first column and assign the new image,

[
1 1
1 0

]
, to 5. 4 is the only neighbor

of 5 that hasn’t been explored. We change the value of the pixel in the first
row and first column and assign the new image to 4. Now 4 has two unexplored
neighbors, 2 and 3. To get an image for 2 we change the value of the pixel in the
second row and second column. Since every binary image is adjacent to itself,
we assign the same image to 3 as we did to 4. The complete homomorphism is
pictured in Figure 7.

Figure 2: A homomorphism from L to Ham2[
1 1
0 0

]
[
1 1
1 0

]
[
0 1
1 0

]
[
0 1
1 1

] [
0 1
1 0

]

5 Testing

5.1 Neural Network Construction

To test our neighbor function and gα we construct a small neural network with
one hidden layer. The objective of the network is to classify a binary image
by whether the handwritten digit in the image was a 0 or not. Before we
began testing we generated a constraint graph with five labels and used that
constraint graph to generate twenty dominions and twenty homomorphisms for
binary images of size 28. V0, the first layer of the network, contains just one node
which takes a binary image as its input. The hidden layer, V1, contains two nodes
with unary activation functions, which are initialized as a rotation by π

4 and a
rotation by π

2 . The last layer, V2, contains one node with a binary activation
function. We generate a dominion polymorphism using a randomly selected
dominion and homomorphism and use it as the initial activation function for
this node. The structure of the neural network is pictured in Figure 5.1.

12

Figure 3: The neural net used to test gα. It consists of three layers: V0 =
{v0}, V1 = {v1, v2}, and V2 = {v3}.

v0

v1

v2

v3

5.2 Training Process

We run the neural network on sets of training MNIST data. Each data point
consists of a binary image and a label telling us what handwritten digit the
limit depicts. We test the network with a set of 100 training data points and a
set of 200 training data points.

The training function takes as an input the number of iterations to run. It
will then run the training step that many times. During the training step, the
program randomly selects one node from the network and changes its activation
function.

We define a loss function which is called during the training step to evaluate
our changes to the activation functions. For each element of the training data
set, the loss function compares the binary image it expects to see based on the
label in the data set to the binary image that it expects to see based on the
label it assigns the image after feeding it through the network. The program
then returns the number of pixels at which the two images have different values.
The loss function returns the average number of pixels where the two images
don’t have the same value.

Each iteration of the training step calls on the neighbor function described
previously to change the activation function. The neighbor function randomly
generates a certain number of functions which could be used to replace the
activation function. When generating each function, it chooses to either alter
the original activation function or replace it entirely. If it alters the activation
function, it randomly selects an endomorphism from its list and applies the
endomorphism to each input image as well as to the output image.

If it replaces the activation function, it randomly chooses a new activation
function based on the arity of the old activation function, or the number of inputs
it took. If the arity was one, the program randomly selects a new endomorphism.
If the arity was two, the program generates a new dominion polymorphism using
a randomly selected dominion and homomorphism. If the arity was any number
other than one or two, the program selects an indicator polymorphism.

An indicator polymorphism takes a list of fixed binary images as one of its
inputs. It then takes the dot product mod 2 of the list of input images and the
list of fixed images. If the dot product is one, the polymorphism returns a white

13

image with a single black pixel. Otherwise it returns an entirely white image.
The neighbor function returns a list of all the possible replacement functions

for the current activation function. It then selects the function with the lowest
loss value and makes that the new activation function.

6 Results

6.1 Improvement in Loss Value

We see that the neural network training correctly due to improvement in the
loss function. For both of our training data sets, the loss function decreases
until reaching a certain value and then stops decreasing even when we run more
iterations of the training step. The training data set with 100 elements converges
to a loss of 101.92. The training data set with 200 elements converges to a loss
of 82.32.

The fact that the loss function stops decreasing after a certain number of
iterations suggests that the algorithm has found the most efficient set of poly-
morphisms for categorizing the training data. The loss is nonzero, which sug-
gests that the neural network isn’t overfitting because it isn’t categorizing every
function correctly. We also see that the loss decreases when we train with more
data points, suggesting that the neural network isn’t just predicting the train-
ing data but is learning and that it learns better when given more information
about the dataset.

The neural network reaches its best loss value quite quickly. For both data
sets it consistently achieved the best loss value within 10 trials. In some cases it
achieved the best loss value in as little as four iterations for the training set with
200 data points and six iterations for the training set with 100 data points. This
is a promising sign that a more complex neural network could be constructed
and would still converge within a reasonable time frame.

6.2 Next Steps

There is still quite a bit to explore in terms of discrete neural networks. The
network that we tested in this paper was still quite simple. We could test more
complex neural networks with more hidden layers to see if we get a lower loss
value. We could also have the neural network attempt to assign more specific
labels to images. Instead of telling us whether or not an image depicts a 0, we
would like the network to be able to tell us which of the digits {0, 1, 2, ..., 9} is
depicted.

We would also like to generalize our dominion polymorphisms to mapHamk
n to Hamn

for cases where k > 2.

14

7 Acknowledgements

I would like to thank my advisors, Alex Iosevich and Charlotte Aten, for letting
me build on their research on discrete neural networks and for their support and
guidance throughout the process. I would also like to thank Juan Rivera-Letelier
and Stephen Kleene for being on my thesis committee.

References

[1] Clifford Bergman. Universal algebra. Vol. 301. Pure and Applied Mathe-
matics (Boca Raton). Fundamentals and selected topics. CRC Press, Boca
Raton, FL, 2012, pp. xii+308. isbn: 978-1-4398-5129-6.

[2] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learn-
ing: From Theory to Algorithms. 32 Avenue of the Americas, New York,
NY 10013-2473, USA: Cambridge University Press, 2014. isbn: 978-1-107-
05713-5.

15

	Abstract
	Table of Contents
	Background
	Neural Networks
	Polymorphisms and Neighbor Functions
	Hamming Graphs
	Dominions

	Implementation
	Data Set
	Constructing the Dominion Polymorphism
	Constructing Dominions
	Constructing Homomorphisms

	Testing
	Neural Network Construction
	Training Process

	Results
	Improvement in Loss Value
	Next Steps

	Acknowledgements

